Mercurial > hg > xemacs-beta
view src/md5.c @ 1268:fffe735e63ee
[xemacs-hg @ 2003-02-07 11:50:50 by ben]
fixes for menu crashes + better preemption behavior
This contains two related changes:
(1) Fix problems with reentrant calling of lwlib and associated
crashes when selecting menu items.
(2) Improve redisplay handling of preemption. Turn on lazy lock
and hold down page-down or page-up and you'll see what I mean.
They are related because they both touch on the code that retrieves
events and handles the internal queues.
console-msw.h, event-msw.c, event-stream.c, events.h, menubar-msw.c, menubar-x.c, menubar.h: mswindows_protect_modal_loop() has been generalized to
event_stream_protect_modal_loop(), and moved to event-stream.c.
mswindows_in_modal_loop ->in_modal_loop likewise. Changes in
event-msw.c and menubar-msw.c for the new names and calling format
(use structures instead of static variables in menubar-msw.c).
Delete former in_menu_callback and use in_modal_loop in its place.
Remove emacs_mswindows_quit_check_disallowed_p(), superseded by
in_modal_loop. Use event_stream_protect_modal_loop() in
pre_activate_callback() so that we get no lwlib reentrancy.
Rearrange some of the code in event-msw.c to be grouped better.
Make mswindows_drain_windows_queue() respect in_modal_loop and
do nothing if so.
cmdloop.c, event-stream.c: Don't conditionalize on LWLIB_MENUBARS_LUCID when giving error when
in_modal_loop, and give better error.
event-Xt.c, event-gtk.c: If in_modal_loop, only retrieve process and timeout events.
Don't retrieve any X events because processing them can lead
to reentrancy in lwlib -> death.
event-stream.c: Remove unused parameter to check_event_stream_ok() and change
all callers.
lisp.h, event-stream.c: Rearrange some functions for increased clarity -- in particular,
group all the input-pending/QUIT-related stuff together, and
put right next to next-event stuff, to which it's related.
Add the concept of "HOW_MANY" -- when asking whether user input
is pending, you can ask if at least HOW_MANY events are pending,
not just if any are. Add parameter to detect_input_pending()
for this. Change recursive_sit_for from a Lisp_Object (which
could only be Qt or Qnil) to an int, like it should be.
event-Xt.c, event-gtk.c, event-xlike-inc.c: New file.
Abstract out similar code in event_{Xt/gtk}_pending_p() and write
only once, using include-file tricks. Rewrite this function to
implement HOW_MANY and only process events when not in_modal_loop.
event-msw.c: Implement HOW_MANY and only process events when not in_modal_loop.
event-tty.c: Implement HOW_MANY.
redisplay.c: Add var `max-preempts' to control maximum number of preempts.
(#### perhaps not useful) Rewrite preemption check so that,
rather than preempting when any user events are available, only
preempt when a certain number (currently 4) of them are backed up.
This effectively allows redisplay to proceed to completion in the
presence of a fast auto-repeat (usually the auto-repeating is
generated dynamically as necessary), and you get much better
display behavior with lazy-lock active.
event-unixoid.c: Comment changes.
event-stream.c: Rewrite discard-input much more simply and safely using the
drain-queue functions. I think the old version might loop
forever if called when in_modal_loop.
SEMI-UNRELATED CHANGES:
-----------------------
event-stream.c: Turn QUIT-checking back on when running the pre-idle hook so it
can be quit out of.
indent.c: Document exact functioning of `vertical-motion' better, and its
differences from GNU Emacs.
author | ben |
---|---|
date | Fri, 07 Feb 2003 11:50:54 +0000 |
parents | 804517e16990 |
children | 6c7605dfcf07 |
line wrap: on
line source
/* md5.c - Functions to compute MD5 message digest of files or memory blocks according to the definition of MD5 in RFC 1321 from April 1992. Copyright (C) 1995, 1996 Free Software Foundation, Inc. Copyright (C) 2001, 2002 Ben Wing. NOTE: The canonical source of this file is maintained with the GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */ /* XEmacs frontend written by Ben Wing, Jareth Hein and Hrvoje Niksic. */ #ifdef HAVE_CONFIG_H # include <config.h> #endif #include <sys/types.h> #include <string.h> #include <stdio.h> #include <limits.h> /* The following contortions are an attempt to use the C preprocessor to determine an unsigned integral type that is 32 bits wide. An alternative approach is to use autoconf's AC_CHECK_SIZEOF macro, but doing that would require that the configure script compile and *run* the resulting executable. Locally running cross-compiled executables is usually not possible. */ #ifdef _LIBC # include <sys/types.h> typedef u_int32_t md5_uint32; #else # if defined __STDC__ && __STDC__ # define UINT_MAX_32_BITS 4294967295U # else # define UINT_MAX_32_BITS 0xFFFFFFFF # endif /* If UINT_MAX isn't defined, assume it's a 32-bit type. This should be valid for all systems GNU cares about because that doesn't include 16-bit systems, and only modern systems (that certainly have <limits.h>) have 64+-bit integral types. */ # ifndef UINT_MAX # define UINT_MAX UINT_MAX_32_BITS # endif # if UINT_MAX == UINT_MAX_32_BITS typedef unsigned int md5_uint32; # else # if USHRT_MAX == UINT_MAX_32_BITS typedef unsigned short md5_uint32; # else # if ULONG_MAX == UINT_MAX_32_BITS typedef unsigned long md5_uint32; # else /* The following line is intended to evoke an error. Using #error is not portable enough. */ "Cannot determine unsigned 32-bit data type." # endif # endif # endif #endif #include "lisp.h" #include "buffer.h" #include "lstream.h" # include "file-coding.h" /* Structure to save state of computation between the single steps. */ struct md5_ctx { md5_uint32 A; md5_uint32 B; md5_uint32 C; md5_uint32 D; md5_uint32 total[2]; md5_uint32 buflen; char buffer[128]; }; #ifdef WORDS_BIGENDIAN # define SWAP(n) \ (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) #else # define SWAP(n) (n) #endif /* This array contains the bytes used to pad the buffer to the next 64-byte boundary. (RFC 1321, 3.1: Step 1) */ static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; static void md5_process_block (const void *, size_t, struct md5_ctx *); /* Initialize structure containing state of computation. (RFC 1321, 3.3: Step 3) */ static void md5_init_ctx (struct md5_ctx *ctx) { ctx->A = 0x67452301; ctx->B = 0xefcdab89; ctx->C = 0x98badcfe; ctx->D = 0x10325476; ctx->total[0] = ctx->total[1] = 0; ctx->buflen = 0; } /* Put result from CTX in first 16 bytes following RESBUF. The result must be in little endian byte order. IMPORTANT: On some systems it is required that RESBUF is correctly aligned for a 32 bits value. */ static void * md5_read_ctx (const struct md5_ctx *ctx, void *resbuf) { ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A); ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B); ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C); ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D); return resbuf; } /* Process the remaining bytes in the internal buffer and the usual prolog according to the standard and write the result to RESBUF. IMPORTANT: On some systems it is required that RESBUF is correctly aligned for a 32 bits value. */ static void * md5_finish_ctx (struct md5_ctx *ctx, void *resbuf) { /* Take yet unprocessed bytes into account. */ md5_uint32 bytes = ctx->buflen; size_t pad; /* Now count remaining bytes. */ ctx->total[0] += bytes; if (ctx->total[0] < bytes) ++ctx->total[1]; pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; memcpy (&ctx->buffer[bytes], fillbuf, pad); /* Put the 64-bit file length in *bits* at the end of the buffer. */ *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3); *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); /* Process last bytes. */ md5_process_block (ctx->buffer, bytes + pad + 8, ctx); return md5_read_ctx (ctx, resbuf); } #ifndef emacs /* unused in Emacs */ /* Compute MD5 message digest for bytes read from STREAM. The resulting message digest number will be written into the 16 bytes beginning at RESBLOCK. */ int md5_stream (FILE *stream, void *resblock) { /* Important: BLOCKSIZE must be a multiple of 64. */ #define BLOCKSIZE 4096 struct md5_ctx ctx; char buffer[BLOCKSIZE + 72]; size_t sum; /* Initialize the computation context. */ md5_init_ctx (&ctx); /* Iterate over full file contents. */ while (1) { /* We read the file in blocks of BLOCKSIZE bytes. One call of the computation function processes the whole buffer so that with the next round of the loop another block can be read. */ size_t n; sum = 0; /* Read block. Take care for partial reads. */ do { n = retry_fread (buffer + sum, 1, BLOCKSIZE - sum, stream); sum += n; } while (sum < BLOCKSIZE && n != 0); if (n == 0 && ferror (stream)) return 1; /* If end of file is reached, end the loop. */ if (n == 0) break; /* Process buffer with BLOCKSIZE bytes. Note that BLOCKSIZE % 64 == 0 */ md5_process_block (buffer, BLOCKSIZE, &ctx); } /* Add the last bytes if necessary. */ if (sum > 0) md5_process_bytes (buffer, sum, &ctx); /* Construct result in desired memory. */ md5_finish_ctx (&ctx, resblock); return 0; } /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The result is always in little endian byte order, so that a byte-wise output yields to the wanted ASCII representation of the message digest. */ void * md5_buffer (const char *buffer, size_t len, void *resblock) { struct md5_ctx ctx; /* Initialize the computation context. */ md5_init_ctx (&ctx); /* Process whole buffer but last len % 64 bytes. */ md5_process_bytes (buffer, len, &ctx); /* Put result in desired memory area. */ return md5_finish_ctx (&ctx, resblock); } #endif /* not emacs */ static void md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx) { /* When we already have some bits in our internal buffer concatenate both inputs first. */ if (ctx->buflen != 0) { size_t left_over = ctx->buflen; size_t add = 128 - left_over > len ? len : 128 - left_over; memcpy (&ctx->buffer[left_over], buffer, add); ctx->buflen += add; if (left_over + add > 64) { md5_process_block (ctx->buffer, (left_over + add) & ~63, ctx); /* The regions in the following copy operation cannot overlap. */ memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63], (left_over + add) & 63); ctx->buflen = (left_over + add) & 63; } buffer = (const char *) buffer + add; len -= add; } /* Process available complete blocks. */ if (len > 64) { md5_process_block (buffer, len & ~63, ctx); buffer = (const char *) buffer + (len & ~63); len &= 63; } /* Move remaining bytes in internal buffer. */ if (len > 0) { memcpy (ctx->buffer, buffer, len); ctx->buflen = len; } } /* These are the four functions used in the four steps of the MD5 algorithm and defined in the RFC 1321. The first function is a little bit optimized (as found in Colin Plumbs public domain implementation). */ /* #define FF(b, c, d) ((b & c) | (~b & d)) */ #define FF(b, c, d) (d ^ (b & (c ^ d))) #define FG(b, c, d) FF (d, b, c) #define FH(b, c, d) (b ^ c ^ d) #define FI(b, c, d) (c ^ (b | ~d)) /* Process LEN bytes of BUFFER, accumulating context into CTX. It is assumed that LEN % 64 == 0. */ static void md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx) { md5_uint32 correct_words[16]; const md5_uint32 *words = (const md5_uint32 *) buffer; size_t nwords = len / sizeof (md5_uint32); const md5_uint32 *endp = words + nwords; md5_uint32 A = ctx->A; md5_uint32 B = ctx->B; md5_uint32 C = ctx->C; md5_uint32 D = ctx->D; /* First increment the byte count. RFC 1321 specifies the possible length of the file up to 2^64 bits. Here we only compute the number of bytes. Do a double word increment. */ ctx->total[0] += len; if (ctx->total[0] < len) ++ctx->total[1]; /* Process all bytes in the buffer with 64 bytes in each round of the loop. */ while (words < endp) { md5_uint32 *cwp = correct_words; md5_uint32 A_save = A; md5_uint32 B_save = B; md5_uint32 C_save = C; md5_uint32 D_save = D; /* First round: using the given function, the context and a constant the next context is computed. Because the algorithms processing unit is a 32-bit word and it is determined to work on words in little endian byte order we perhaps have to change the byte order before the computation. To reduce the work for the next steps we store the swapped words in the array CORRECT_WORDS. */ #define OP(a, b, c, d, s, T) \ do \ { \ a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \ ++words; \ CYCLIC (a, s); \ a += b; \ } \ while (0) /* It is unfortunate that C does not provide an operator for cyclic rotation. Hope the C compiler is smart enough. */ #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) /* Before we start, one word to the strange constants. They are defined in RFC 1321 as T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64 */ /* Round 1. */ OP (A, B, C, D, 7, 0xd76aa478); OP (D, A, B, C, 12, 0xe8c7b756); OP (C, D, A, B, 17, 0x242070db); OP (B, C, D, A, 22, 0xc1bdceee); OP (A, B, C, D, 7, 0xf57c0faf); OP (D, A, B, C, 12, 0x4787c62a); OP (C, D, A, B, 17, 0xa8304613); OP (B, C, D, A, 22, 0xfd469501); OP (A, B, C, D, 7, 0x698098d8); OP (D, A, B, C, 12, 0x8b44f7af); OP (C, D, A, B, 17, 0xffff5bb1); OP (B, C, D, A, 22, 0x895cd7be); OP (A, B, C, D, 7, 0x6b901122); OP (D, A, B, C, 12, 0xfd987193); OP (C, D, A, B, 17, 0xa679438e); OP (B, C, D, A, 22, 0x49b40821); /* For the second to fourth round we have the possibly swapped words in CORRECT_WORDS. Redefine the macro to take an additional first argument specifying the function to use. */ #undef OP #define OP(f, a, b, c, d, k, s, T) \ do \ { \ a += f (b, c, d) + correct_words[k] + T; \ CYCLIC (a, s); \ a += b; \ } \ while (0) /* Round 2. */ OP (FG, A, B, C, D, 1, 5, 0xf61e2562); OP (FG, D, A, B, C, 6, 9, 0xc040b340); OP (FG, C, D, A, B, 11, 14, 0x265e5a51); OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa); OP (FG, A, B, C, D, 5, 5, 0xd62f105d); OP (FG, D, A, B, C, 10, 9, 0x02441453); OP (FG, C, D, A, B, 15, 14, 0xd8a1e681); OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8); OP (FG, A, B, C, D, 9, 5, 0x21e1cde6); OP (FG, D, A, B, C, 14, 9, 0xc33707d6); OP (FG, C, D, A, B, 3, 14, 0xf4d50d87); OP (FG, B, C, D, A, 8, 20, 0x455a14ed); OP (FG, A, B, C, D, 13, 5, 0xa9e3e905); OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8); OP (FG, C, D, A, B, 7, 14, 0x676f02d9); OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a); /* Round 3. */ OP (FH, A, B, C, D, 5, 4, 0xfffa3942); OP (FH, D, A, B, C, 8, 11, 0x8771f681); OP (FH, C, D, A, B, 11, 16, 0x6d9d6122); OP (FH, B, C, D, A, 14, 23, 0xfde5380c); OP (FH, A, B, C, D, 1, 4, 0xa4beea44); OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9); OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60); OP (FH, B, C, D, A, 10, 23, 0xbebfbc70); OP (FH, A, B, C, D, 13, 4, 0x289b7ec6); OP (FH, D, A, B, C, 0, 11, 0xeaa127fa); OP (FH, C, D, A, B, 3, 16, 0xd4ef3085); OP (FH, B, C, D, A, 6, 23, 0x04881d05); OP (FH, A, B, C, D, 9, 4, 0xd9d4d039); OP (FH, D, A, B, C, 12, 11, 0xe6db99e5); OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8); OP (FH, B, C, D, A, 2, 23, 0xc4ac5665); /* Round 4. */ OP (FI, A, B, C, D, 0, 6, 0xf4292244); OP (FI, D, A, B, C, 7, 10, 0x432aff97); OP (FI, C, D, A, B, 14, 15, 0xab9423a7); OP (FI, B, C, D, A, 5, 21, 0xfc93a039); OP (FI, A, B, C, D, 12, 6, 0x655b59c3); OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92); OP (FI, C, D, A, B, 10, 15, 0xffeff47d); OP (FI, B, C, D, A, 1, 21, 0x85845dd1); OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f); OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0); OP (FI, C, D, A, B, 6, 15, 0xa3014314); OP (FI, B, C, D, A, 13, 21, 0x4e0811a1); OP (FI, A, B, C, D, 4, 6, 0xf7537e82); OP (FI, D, A, B, C, 11, 10, 0xbd3af235); OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb); OP (FI, B, C, D, A, 9, 21, 0xeb86d391); /* Add the starting values of the context. */ A += A_save; B += B_save; C += C_save; D += D_save; } /* Put checksum in context given as argument. */ ctx->A = A; ctx->B = B; ctx->C = C; ctx->D = D; } #ifdef emacs /* Find out what format the buffer will be saved in, so we can make the digest based on what it will look like on disk. */ static Lisp_Object md5_coding_system (Lisp_Object object, Lisp_Object coding, Lisp_Object istream, int error_me_not) { Lisp_Object coding_system; if (NILP (coding)) { if (BUFFERP (object)) /* Use the file coding for this buffer by default. */ coding = XBUFFER (object)->buffer_file_coding_system; else /* Attempt to autodetect the coding of the string. This is VERY hit-and-miss. #### It shouldn't be. */ coding = detect_coding_stream (istream); } if (error_me_not) { coding_system = find_coding_system_for_text_file (coding, 0); if (NILP (coding_system)) /* Default to binary. */ coding_system = Fget_coding_system (Qbinary); } else coding_system = get_coding_system_for_text_file (coding, 0); return coding_system; } DEFUN ("md5", Fmd5, 1, 5, 0, /* Return the MD5 message digest of OBJECT, a buffer or string. Optional arguments START and END denote positions for computing the digest of a portion of OBJECT. The optional CODING argument specifies the coding system the text is to be represented in while computing the digest. If unspecified, it defaults to the current format of the data, or is guessed. If NOERROR is non-nil, silently assume binary coding if the guesswork fails. Normally, an error is signaled in such case. CODING and NOERROR arguments are meaningful only in XEmacsen with file-coding or Mule support. Otherwise, they are ignored. */ (object, start, end, coding, noerror)) { /* This function can GC */ /* Can this really GC? How? */ struct md5_ctx ctx; unsigned char digest[16]; unsigned char thehash[33]; int i; Lisp_Object raw_instream = Qnil, instream = Qnil; struct gcpro gcpro1, gcpro2; GCPRO2 (raw_instream, instream); /* Set up the input stream. */ if (BUFFERP (object)) { struct buffer *b; Charbpos begv, endv; CHECK_LIVE_BUFFER (object); b = XBUFFER (object); /* Figure out where we need to get info from */ get_buffer_range_char (b, start, end, &begv, &endv, GB_ALLOW_NIL); raw_instream = make_lisp_buffer_input_stream (b, begv, endv, 0); } else { Bytecount bstart, bend; CHECK_STRING (object); get_string_range_byte (object, start, end, &bstart, &bend, GB_HISTORICAL_STRING_BEHAVIOR); raw_instream = make_lisp_string_input_stream (object, bstart, bend - bstart); } /* Determine the coding and set up the conversion stream. */ coding = md5_coding_system (object, coding, raw_instream, !NILP (noerror)); Lstream_rewind (XLSTREAM (raw_instream)); instream = make_coding_input_stream (XLSTREAM (raw_instream), coding, CODING_ENCODE, 0); /* Initialize MD5 context. */ md5_init_ctx (&ctx); /* Get the data while doing the conversion. */ while (1) { Ibyte tempbuf[1024]; /* some random amount */ Bytecount size_in_bytes = Lstream_read (XLSTREAM (instream), tempbuf, sizeof (tempbuf)); if (!size_in_bytes) break; /* Process the bytes. */ md5_process_bytes (tempbuf, size_in_bytes, &ctx); } Lstream_delete (XLSTREAM (instream)); Lstream_delete (XLSTREAM (raw_instream)); UNGCPRO; md5_finish_ctx (&ctx, digest); for (i = 0; i < 16; i++) sprintf ((char *) (thehash + (i * 2)), "%02x", digest[i]); return make_string (thehash, 32); } void syms_of_md5 (void) { DEFSUBR (Fmd5); } void vars_of_md5 (void) { Fprovide (intern ("md5")); } #endif /* emacs */