Mercurial > hg > xemacs-beta
view src/line-number.c @ 1268:fffe735e63ee
[xemacs-hg @ 2003-02-07 11:50:50 by ben]
fixes for menu crashes + better preemption behavior
This contains two related changes:
(1) Fix problems with reentrant calling of lwlib and associated
crashes when selecting menu items.
(2) Improve redisplay handling of preemption. Turn on lazy lock
and hold down page-down or page-up and you'll see what I mean.
They are related because they both touch on the code that retrieves
events and handles the internal queues.
console-msw.h, event-msw.c, event-stream.c, events.h, menubar-msw.c, menubar-x.c, menubar.h: mswindows_protect_modal_loop() has been generalized to
event_stream_protect_modal_loop(), and moved to event-stream.c.
mswindows_in_modal_loop ->in_modal_loop likewise. Changes in
event-msw.c and menubar-msw.c for the new names and calling format
(use structures instead of static variables in menubar-msw.c).
Delete former in_menu_callback and use in_modal_loop in its place.
Remove emacs_mswindows_quit_check_disallowed_p(), superseded by
in_modal_loop. Use event_stream_protect_modal_loop() in
pre_activate_callback() so that we get no lwlib reentrancy.
Rearrange some of the code in event-msw.c to be grouped better.
Make mswindows_drain_windows_queue() respect in_modal_loop and
do nothing if so.
cmdloop.c, event-stream.c: Don't conditionalize on LWLIB_MENUBARS_LUCID when giving error when
in_modal_loop, and give better error.
event-Xt.c, event-gtk.c: If in_modal_loop, only retrieve process and timeout events.
Don't retrieve any X events because processing them can lead
to reentrancy in lwlib -> death.
event-stream.c: Remove unused parameter to check_event_stream_ok() and change
all callers.
lisp.h, event-stream.c: Rearrange some functions for increased clarity -- in particular,
group all the input-pending/QUIT-related stuff together, and
put right next to next-event stuff, to which it's related.
Add the concept of "HOW_MANY" -- when asking whether user input
is pending, you can ask if at least HOW_MANY events are pending,
not just if any are. Add parameter to detect_input_pending()
for this. Change recursive_sit_for from a Lisp_Object (which
could only be Qt or Qnil) to an int, like it should be.
event-Xt.c, event-gtk.c, event-xlike-inc.c: New file.
Abstract out similar code in event_{Xt/gtk}_pending_p() and write
only once, using include-file tricks. Rewrite this function to
implement HOW_MANY and only process events when not in_modal_loop.
event-msw.c: Implement HOW_MANY and only process events when not in_modal_loop.
event-tty.c: Implement HOW_MANY.
redisplay.c: Add var `max-preempts' to control maximum number of preempts.
(#### perhaps not useful) Rewrite preemption check so that,
rather than preempting when any user events are available, only
preempt when a certain number (currently 4) of them are backed up.
This effectively allows redisplay to proceed to completion in the
presence of a fast auto-repeat (usually the auto-repeating is
generated dynamically as necessary), and you get much better
display behavior with lazy-lock active.
event-unixoid.c: Comment changes.
event-stream.c: Rewrite discard-input much more simply and safely using the
drain-queue functions. I think the old version might loop
forever if called when in_modal_loop.
SEMI-UNRELATED CHANGES:
-----------------------
event-stream.c: Turn QUIT-checking back on when running the pre-idle hook so it
can be quit out of.
indent.c: Document exact functioning of `vertical-motion' better, and its
differences from GNU Emacs.
author | ben |
---|---|
date | Fri, 07 Feb 2003 11:50:54 +0000 |
parents | 804517e16990 |
children | 308d34e9f07d |
line wrap: on
line source
/* Line number cache. Copyright (C) 1997 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ /* To calculate the line numbers, redisplay must count the newlines from a known position. This used to be BUF_BEGV, but this made the line numbering extremely slow for large buffers, because Emacs had to rescan the whole buffer at each redisplay. To make line numbering efficient, we maintain a buffer-local cache of recently used positions and their line numbers. The cache is implemented as a small ring of cache positions. A cache position is either nil or a cons of a buffer position (marker) and the corresponding line number. When calculating the line numbers, this cache is consulted if it would otherwise take too much time to count the newlines in the buffer (see the comment to buffer_line_number().) Insertion and deletions that contain/delete newlines invalidate the cached positions after the insertion point. This guarantees relatively fast line numbers caching (even in buffers where point moves a lot), and low memory usage. All of this is done only in the buffers where the cache is actually initialized -- i.e. where line-numbering is on, and you move the point farther than LINE_NUMBER_FAR from the beginning of buffer. In this sense, the cache is lazy -- if you don't use it, you don't pay for it. NOTE: line-number cache should not be confused with line-start cache. Line-start cache (a part of redisplay) works with the display lines, whereas this works with the buffer lines (literally counting the newlines). */ #include <config.h> #include "lisp.h" #include "buffer.h" #include "line-number.h" /* #### The following three values could stand more exploration for best performance. */ /* Size of the ring. The current code expects this to be a small number. If you make it larger, you should probably optimize the code below to keep it sorted. */ #define LINE_NUMBER_RING_SIZE 8 /* How much traversal has to be exceeded for two points to be considered "far" from each other. When two points are far, cache will be used. */ #define LINE_NUMBER_FAR 16384 /* How large a string has to be to give up searching it for newlines, before change. */ #define LINE_NUMBER_LARGE_STRING 256 /* To be used only when you *know* the cache has been allocated! */ #define LINE_NUMBER_RING(b) (XCAR ((b)->text->line_number_cache)) #define LINE_NUMBER_BEGV(b) (XCDR ((b)->text->line_number_cache)) /* Initialize the cache. Cache is (in pseudo-BNF): CACHE = nil | INITIALIZED-CACHE INITIALIZED-CACHE = cons (RING, BEGV-LINE) RING = vector (*RING-ELEMENT) RING-ELEMENT = nil | RING-PAIR RING-PAIR = cons (marker, integer) BEGV-LINE = integer Line number cache should never, ever, be visible to Lisp (because destructively modifying its elements can cause crashes.) Debug it using debug_print (current_buffer->text->last_number_cache). */ static void allocate_line_number_cache (struct buffer *b) { b->text->line_number_cache = Fcons (make_vector (LINE_NUMBER_RING_SIZE, Qnil), Qzero); narrow_line_number_cache (b); } /* Flag LINE_NUMBER_BEGV (b) as dirty. Do it only if the line number cache is already initialized. */ void narrow_line_number_cache (struct buffer *b) { if (NILP (b->text->line_number_cache)) return; if (BUF_BEG (b) == BUF_BEGV (b)) /* The is the case Fwiden and save_restriction_restore. Since we know the correct value, we can update it now. */ LINE_NUMBER_BEGV (b) = Qzero; else /* Calculating the line number of BUF_BEGV here is a bad idea, because there is absolutely no reason to do it before the next redisplay. We simply mark it as dirty instead. */ LINE_NUMBER_BEGV (b) = make_int (-1); } /* Invalidate the line number cache positions that lie after POS. */ static void invalidate_line_number_cache (struct buffer *b, Charbpos pos) { EMACS_INT i, j; Lisp_Object *ring = XVECTOR_DATA (LINE_NUMBER_RING (b)); for (i = 0; i < LINE_NUMBER_RING_SIZE; i++) { if (!CONSP (ring[i])) break; /* As the marker stays behind the insertions, this check might as well be `>'. However, Finsert_before_markers can advance the marker anyway, which bites in shell buffers. #### This forces recreation of the cached marker (and recalculation of newlines) every time a newline is inserted at point, which is way losing. Isn't there a way to make a marker impervious to Finsert_before_markers()?? Maybe I should convert the code to use extents. */ if (marker_position (XCAR (ring[i])) >= pos) { /* Get the marker out of the way. */ Fset_marker (XCAR (ring[i]), Qnil, Qnil); /* ...and shift the ring elements, up to the first nil. */ for (j = i; !NILP (ring[j]) && j < LINE_NUMBER_RING_SIZE - 1; j++) ring[j] = ring[j + 1]; ring[j] = Qnil; /* Must recheck position i. */ i--; } } } /* Invalidate the cache positions after POS, if the string to be inserted contains a newline. If the string is too large (larger than LINE_NUMBER_LARGE_STRING), invalidate the cache positions after POS without prior search. This will do nothing if the cache is uninitialized. */ void insert_invalidate_line_number_cache (struct buffer *b, Charbpos pos, const Ibyte *nonreloc, Bytecount length) { if (NILP (b->text->line_number_cache)) return; if (length > LINE_NUMBER_LARGE_STRING || /* We could also count how many newlines there are in the string and update the cache accordingly, but it would be too much work for too little gain. */ memchr ((void *)nonreloc, '\n', length)) invalidate_line_number_cache (b, pos); } /* Invalidate the cache positions after FROM, if the region to be deleted contains a newline. If the region-to-be-deleted is larger than LINE_NUMBER_LARGE_STRING, invalidate the cache positions after FROM without unconditionally. This will do nothing if the cache is uninitialized. */ void delete_invalidate_line_number_cache (struct buffer *b, Charbpos from, Charbpos to) { if (NILP (b->text->line_number_cache)) return; if ((to - from) > LINE_NUMBER_LARGE_STRING) invalidate_line_number_cache (b, from); else { EMACS_INT shortage; scan_buffer (b, '\n', from, to, 1, &shortage, 0); if (!shortage) invalidate_line_number_cache (b, from); } } /* Get the nearest known position we know the line number of (i.e. BUF_BEGV, and cached positions). The return position will be either closer than BEG, or BEG. The line of this known position will be stored in LINE. *LINE should be initialized to the line number of BEG (normally, BEG will be BUF_BEGV, and *LINE will be XINT (LINE_NUMBER_BEGV). This will initialize the cache, if necessary. */ static void get_nearest_line_number (struct buffer *b, Charbpos *beg, Charbpos pos, EMACS_INT *line) { EMACS_INT i; Lisp_Object *ring = XVECTOR_DATA (LINE_NUMBER_RING (b)); Charcount length = pos - *beg; if (length < 0) length = -length; /* Find the ring entry closest to POS, if it is closer than BEG. */ for (i = 0; i < LINE_NUMBER_RING_SIZE && CONSP (ring[i]); i++) { Charbpos newpos = marker_position (XCAR (ring[i])); Charcount howfar = newpos - pos; if (howfar < 0) howfar = -howfar; if (howfar < length) { length = howfar; *beg = newpos; *line = XINT (XCDR (ring[i])); } } } /* Add a (POS . LINE) pair to the ring, and rotate it. */ static void add_position_to_cache (struct buffer *b, Charbpos pos, EMACS_INT line) { Lisp_Object *ring = XVECTOR_DATA (LINE_NUMBER_RING (b)); int i = LINE_NUMBER_RING_SIZE - 1; /* Set the last marker in the ring to point nowhere. */ if (CONSP (ring[i])) Fset_marker (XCAR (ring[i]), Qnil, Qnil); /* Rotate the ring... */ for (; i > 0; i--) ring[i] = ring[i - 1]; /* ...and update it. */ ring[0] = Fcons (Fset_marker (Fmake_marker (), make_int (pos), wrap_buffer (b)), make_int (line)); } /* Calculate the line number in buffer B at position POS. If CACHEP is non-zero, initialize and facilitate the line-number cache. The line number of the first line is 0. If narrowing is in effect, count the lines are counted from the beginning of the visible portion of the buffer. The cache works as follows: To calculate the line number, we need two positions: position of point (POS) and the position from which to count newlines (BEG). We start by setting BEG to BUF_BEGV. If this would require too much searching (i.e. pos - BUF_BEGV > LINE_NUMBER_FAR), try to find a closer position in the ring. If it is found, use that position for BEG, and increment the line number appropriately. If the calculation (with or without the cache lookup) required more than LINE_NUMBER_FAR characters of traversal, update the cache. */ EMACS_INT buffer_line_number (struct buffer *b, Charbpos pos, int cachep) { Charbpos beg = BUF_BEGV (b); EMACS_INT cached_lines = 0; EMACS_INT shortage, line; if ((pos > beg ? pos - beg : beg - pos) <= LINE_NUMBER_FAR) cachep = 0; if (cachep) { if (NILP (b->text->line_number_cache)) allocate_line_number_cache (b); /* If we don't know the line number of BUF_BEGV, calculate it now. */ if (XINT (LINE_NUMBER_BEGV (b)) == -1) { LINE_NUMBER_BEGV (b) = Qzero; /* #### This has a side-effect of changing the cache. */ LINE_NUMBER_BEGV (b) = make_int (buffer_line_number (b, BUF_BEGV (b), 1)); } cached_lines = XINT (LINE_NUMBER_BEGV (b)); get_nearest_line_number (b, &beg, pos, &cached_lines); } scan_buffer (b, '\n', beg, pos, pos > beg ? EMACS_INT_MAX : -EMACS_INT_MAX, &shortage, 0); line = EMACS_INT_MAX - shortage; if (beg > pos) line = -line; line += cached_lines; if (cachep) { /* If too far, update the cache. */ if ((pos > beg ? pos - beg : beg - pos) > LINE_NUMBER_FAR) add_position_to_cache (b, pos, line); /* Account for narrowing. If cache is not used, this is unnecessary, because we counted from BUF_BEGV anyway. */ line -= XINT (LINE_NUMBER_BEGV (b)); } return line; }