view src/gccache-gtk.c @ 1268:fffe735e63ee

[xemacs-hg @ 2003-02-07 11:50:50 by ben] fixes for menu crashes + better preemption behavior This contains two related changes: (1) Fix problems with reentrant calling of lwlib and associated crashes when selecting menu items. (2) Improve redisplay handling of preemption. Turn on lazy lock and hold down page-down or page-up and you'll see what I mean. They are related because they both touch on the code that retrieves events and handles the internal queues. console-msw.h, event-msw.c, event-stream.c, events.h, menubar-msw.c, menubar-x.c, menubar.h: mswindows_protect_modal_loop() has been generalized to event_stream_protect_modal_loop(), and moved to event-stream.c. mswindows_in_modal_loop ->in_modal_loop likewise. Changes in event-msw.c and menubar-msw.c for the new names and calling format (use structures instead of static variables in menubar-msw.c). Delete former in_menu_callback and use in_modal_loop in its place. Remove emacs_mswindows_quit_check_disallowed_p(), superseded by in_modal_loop. Use event_stream_protect_modal_loop() in pre_activate_callback() so that we get no lwlib reentrancy. Rearrange some of the code in event-msw.c to be grouped better. Make mswindows_drain_windows_queue() respect in_modal_loop and do nothing if so. cmdloop.c, event-stream.c: Don't conditionalize on LWLIB_MENUBARS_LUCID when giving error when in_modal_loop, and give better error. event-Xt.c, event-gtk.c: If in_modal_loop, only retrieve process and timeout events. Don't retrieve any X events because processing them can lead to reentrancy in lwlib -> death. event-stream.c: Remove unused parameter to check_event_stream_ok() and change all callers. lisp.h, event-stream.c: Rearrange some functions for increased clarity -- in particular, group all the input-pending/QUIT-related stuff together, and put right next to next-event stuff, to which it's related. Add the concept of "HOW_MANY" -- when asking whether user input is pending, you can ask if at least HOW_MANY events are pending, not just if any are. Add parameter to detect_input_pending() for this. Change recursive_sit_for from a Lisp_Object (which could only be Qt or Qnil) to an int, like it should be. event-Xt.c, event-gtk.c, event-xlike-inc.c: New file. Abstract out similar code in event_{Xt/gtk}_pending_p() and write only once, using include-file tricks. Rewrite this function to implement HOW_MANY and only process events when not in_modal_loop. event-msw.c: Implement HOW_MANY and only process events when not in_modal_loop. event-tty.c: Implement HOW_MANY. redisplay.c: Add var `max-preempts' to control maximum number of preempts. (#### perhaps not useful) Rewrite preemption check so that, rather than preempting when any user events are available, only preempt when a certain number (currently 4) of them are backed up. This effectively allows redisplay to proceed to completion in the presence of a fast auto-repeat (usually the auto-repeating is generated dynamically as necessary), and you get much better display behavior with lazy-lock active. event-unixoid.c: Comment changes. event-stream.c: Rewrite discard-input much more simply and safely using the drain-queue functions. I think the old version might loop forever if called when in_modal_loop. SEMI-UNRELATED CHANGES: ----------------------- event-stream.c: Turn QUIT-checking back on when running the pre-idle hook so it can be quit out of. indent.c: Document exact functioning of `vertical-motion' better, and its differences from GNU Emacs.
author ben
date Fri, 07 Feb 2003 11:50:54 +0000
parents 2923009caf47
children a8d8f419b459
line wrap: on
line source

/* Efficient caching of Gtk GCs (graphics contexts).
   Copyright (C) 1993 Free Software Foundation, Inc.
   Copyright (C) 1994, 1995 Board of Trustees, University of Illinois.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

/* Emacs uses a lot of different display attributes; for example, assume
   that only four fonts are in use (normal, bold, italic, and bold-italic).
   Then assume that one stipple or background is used for text selections,
   and another is used for highlighting mousable regions.  That makes 16
   GCs already.  Add in the fact that another GC may be needed to display
   the text cursor in any of those regions, and you've got 32.  Add in
   more fonts, and it keeps increasing exponentially.

   We used to keep these GCs in a cache of merged (fully qualified) faces.
   However, a lot of other code in xterm.c used XChangeGC of existing GCs,
   which is kind of slow and kind of random.  Also, managing the face cache
   was tricky because it was hard to know when a face was no longer visible
   on the frame -- we had to mark all frames as garbaged whenever a face
   was changed, which caused an unpleasant amount of flicker (since faces are
   created/destroyed (= changed) whenever a frame is created/destroyed.

   So this code maintains a cache at the GC level instead of at the face
   level.  There is an upper limit on the size of the cache, after which we
   will stop creating GCs and start reusing them (reusing the least-recently-
   used ones first).  So if faces get changed, their GCs will eventually be
   recycled.  Also more sharing of GCs is possible.

   This code uses hashtables.  It could be that, if the cache size is small
   enough, a linear search might be faster; but I doubt it, since we need
   `equal' comparisons, not `eq', and I expect that the optimal cache size
   will be ~100.

   Written by jwz, 14 jun 93
   Hacked by William Perry, apr 2000
 */

#include <config.h>
#include <gtk/gtk.h>
#include "lisp.h"
#include "gccache-gtk.h"

#define GC_CACHE_SIZE 100

#define GCCACHE_HASH

#ifdef GCCACHE_HASH
#include "lisp.h"
#include "hash.h"
#endif

struct gcv_and_mask {
	GdkGCValues gcv;
	GdkGCValuesMask mask;
};

struct gc_cache_cell {
  GdkGC *gc;
  struct gcv_and_mask gcvm;
  struct gc_cache_cell *prev, *next;
};

struct gc_cache {
  GdkWindow *window;	/* used only as arg to XCreateGC */
  int size;
  struct gc_cache_cell *head;
  struct gc_cache_cell *tail;
#ifdef GCCACHE_HASH
  struct hash_table * table;
#endif

  int create_count;
  int delete_count;
};

#ifdef GCCACHE_HASH
static unsigned long
gc_cache_hash (const void *arg)
{
  const struct gcv_and_mask *gcvm = (const struct gcv_and_mask *) arg;
  unsigned long *longs = (unsigned long *) &gcvm->gcv;
  unsigned long hash = gcvm->mask;
  unsigned int i;
  /* This could look at the mask and only use the used slots in the
     hash code.  That would win in that we wouldn't have to initialize
     every slot of the gcv when calling gc_cache_lookup.  But we need
     the hash function to be as fast as possible; some timings should
     be done. */
  for (i = 0; i < (sizeof (GdkGCValues) / sizeof (unsigned long)); i++)
    hash = (hash<<1) ^ *longs++;
  return hash;
}

#endif /* GCCACHE_HASH */

static int
gc_cache_eql (const void *arg1, const void *arg2)
{
  /* See comment in gc_cache_hash */
  const struct gcv_and_mask *gcvm1 = (const struct gcv_and_mask *) arg1;
  const struct gcv_and_mask *gcvm2 = (const struct gcv_and_mask *) arg2;

  return !memcmp(&gcvm1->gcv, &gcvm2->gcv, sizeof(gcvm1->gcv))
    && gcvm1->mask == gcvm2->mask;
}

struct gc_cache *
make_gc_cache (GtkWidget *widget)
{
  struct gc_cache *cache = xnew (struct gc_cache);
  cache->window = widget->window;
  cache->size = 0;
  cache->head = cache->tail = 0;
  cache->create_count = cache->delete_count = 0;
#ifdef GCCACHE_HASH
  cache->table =
    make_general_hash_table (GC_CACHE_SIZE, gc_cache_hash, gc_cache_eql);
#endif
  return cache;
}

void
free_gc_cache (struct gc_cache *cache)
{
  struct gc_cache_cell *rest, *next;
  rest = cache->head;
  while (rest)
    {
      gdk_gc_destroy(rest->gc);
      next = rest->next;
      xfree (rest);
      rest = next;
    }
#ifdef GCCACHE_HASH
  free_hash_table (cache->table);
#endif
  xfree (cache);
}

GdkGC *
gc_cache_lookup (struct gc_cache *cache, GdkGCValues *gcv, GdkGCValuesMask mask)
{
  struct gc_cache_cell *cell, *next, *prev;
  struct gcv_and_mask gcvm;

  if ((!!cache->head) != (!!cache->tail)) abort ();
  if (cache->head && (cache->head->prev || cache->tail->next)) abort ();

  /* Gdk does not have the equivalent of 'None' for the clip_mask, so
     we need to check it carefully, or gdk_gc_new_with_values will
     coredump */
  if ((mask & GDK_GC_CLIP_MASK) && !gcv->clip_mask)
  {
      mask &= ~GDK_GC_CLIP_MASK;
  }

  gcvm.mask = mask;
  gcvm.gcv = *gcv;	/* this copies... */

#ifdef GCCACHE_HASH

  if (gethash (&gcvm, cache->table, (const void **) &cell))

#else /* !GCCACHE_HASH */

  cell = cache->tail;	/* start at the end (most recently used) */
  while (cell)
    {
      if (gc_cache_eql (&gcvm, &cell->gcvm))
	break;
      else
	cell = cell->prev;
    }

  /* #### This whole file needs some serious overhauling. */
  if (!(mask | GDK_GC_TILE) && cell->gcvm.gcv.tile)
    cell = 0;
  else if (!(mask | GDK_GC_STIPPLE) && cell->gcvm.gcv.stipple)
    cell = 0;

  if (cell)

#endif /* !GCCACHE_HASH */

    {
      /* Found a cell.  Move this cell to the end of the list, so that it
	 will be less likely to be collected than a cell that was accessed
	 less recently.
       */
      if (cell == cache->tail)
	return cell->gc;

      next = cell->next;
      prev = cell->prev;
      if (prev) prev->next = next;
      if (next) next->prev = prev;
      if (cache->head == cell) cache->head = next;
      cell->next = 0;
      cell->prev = cache->tail;
      cache->tail->next = cell;
      cache->tail = cell;
      if (cache->head == cell) abort ();
      if (cell->next) abort ();
      if (cache->head->prev) abort ();
      if (cache->tail->next) abort ();
      return cell->gc;
    }

  /* else, cache miss. */

  if (cache->size == GC_CACHE_SIZE)
    /* Reuse the first cell on the list (least-recently-used).
       Remove it from the list, and unhash it from the table.
     */
    {
      cell = cache->head;
      cache->head = cell->next;
      cache->head->prev = 0;
      if (cache->tail == cell) cache->tail = 0; /* only one */
      gdk_gc_destroy (cell->gc);
      cache->delete_count++;
#ifdef GCCACHE_HASH
      remhash (&cell->gcvm, cache->table);
#endif
    }
  else if (cache->size > GC_CACHE_SIZE)
    abort ();
  else
    {
      /* Allocate a new cell (don't put it in the list or table yet). */
      cell = xnew (struct gc_cache_cell);
      cache->size++;
    }

  /* Now we've got a cell (new or reused).  Fill it in. */
  memcpy (&cell->gcvm.gcv, gcv, sizeof (GdkGCValues));
  cell->gcvm.mask = mask;

  /* Put the cell on the end of the list. */
  cell->next = 0;
  cell->prev = cache->tail;
  if (cache->tail) cache->tail->next = cell;
  cache->tail = cell;
  if (! cache->head) cache->head = cell;

  cache->create_count++;
#ifdef GCCACHE_HASH
  /* Hash it in the table */
  puthash (&cell->gcvm, cell, cache->table);
#endif

  /* Now make and return the GC. */
  cell->gc = gdk_gc_new_with_values (cache->window, gcv, mask);

  /* debug */
  assert (cell->gc == gc_cache_lookup (cache, gcv, mask));

  return cell->gc;
}