view src/toolbar.c @ 665:fdefd0186b75

[xemacs-hg @ 2001-09-20 06:28:42 by ben] The great integral types renaming. The purpose of this is to rationalize the names used for various integral types, so that they match their intended uses and follow consist conventions, and eliminate types that were not semantically different from each other. The conventions are: -- All integral types that measure quantities of anything are signed. Some people disagree vociferously with this, but their arguments are mostly theoretical, and are vastly outweighed by the practical headaches of mixing signed and unsigned values, and more importantly by the far increased likelihood of inadvertent bugs: Because of the broken "viral" nature of unsigned quantities in C (operations involving mixed signed/unsigned are done unsigned, when exactly the opposite is nearly always wanted), even a single error in declaring a quantity unsigned that should be signed, or even the even more subtle error of comparing signed and unsigned values and forgetting the necessary cast, can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned on specifically to catch this, but this tends to result in a great number of warnings when mixing signed and unsigned, and the casts are annoying. More has been written on this elsewhere. -- All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on 32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size as Lisp objects of type `int', and (as far as I can tell) of size_t (unsigned!) and ssize_t. The only type below that is not an EMACS_INT is Hashcode, which is an unsigned value of the same size as EMACS_INT. -- Type names should be relatively short (no more than 10 characters or so), with the first letter capitalized and no underscores if they can at all be avoided. -- "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and indexes. -- "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Bytebpos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not directly correspond to the memory representation. Use "Membpos" for this. -- "Char" refers to internal-format characters, not to the C type "char", which is really a byte. -- For the actual name changes, see the script below. I ran the following script to do the conversion. (NOTE: This script is idempotent. You can safely run it multiple times and it will not screw up previous results -- in fact, it will do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle patches coming in from old workspaces, or old branches.) There are two tags, just before and just after the change: `pre-integral-type-rename' and `post-integral-type-rename'. When merging code from the main trunk into a branch, the best thing to do is first merge up to `pre-integral-type-rename', then apply the script and associated changes, then merge from `post-integral-type-change' to the present. (Alternatively, just do the merging in one operation; but you may then have a lot of conflicts needing to be resolved by hand.) Script `fixtypes.sh' follows: ----------------------------------- cut ------------------------------------ files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]" gr Memory_Count Bytecount $files gr Lstream_Data_Count Bytecount $files gr Element_Count Elemcount $files gr Hash_Code Hashcode $files gr extcount bytecount $files gr bufpos charbpos $files gr bytind bytebpos $files gr memind membpos $files gr bufbyte intbyte $files gr Extcount Bytecount $files gr Bufpos Charbpos $files gr Bytind Bytebpos $files gr Memind Membpos $files gr Bufbyte Intbyte $files gr EXTCOUNT BYTECOUNT $files gr BUFPOS CHARBPOS $files gr BYTIND BYTEBPOS $files gr MEMIND MEMBPOS $files gr BUFBYTE INTBYTE $files gr MEMORY_COUNT BYTECOUNT $files gr LSTREAM_DATA_COUNT BYTECOUNT $files gr ELEMENT_COUNT ELEMCOUNT $files gr HASH_CODE HASHCODE $files ----------------------------------- cut ------------------------------------ `fixtypes.sh' is a Bourne-shell script; it uses 'gr': ----------------------------------- cut ------------------------------------ #!/bin/sh # Usage is like this: # gr FROM TO FILES ... # globally replace FROM with TO in FILES. FROM and TO are regular expressions. # backup files are stored in the `backup' directory. from="$1" to="$2" shift 2 echo ${1+"$@"} | xargs global-replace "s/$from/$to/g" ----------------------------------- cut ------------------------------------ `gr' in turn uses a Perl script to do its real work, `global-replace', which follows: ----------------------------------- cut ------------------------------------ : #-*- Perl -*- ### global-modify --- modify the contents of a file by a Perl expression ## Copyright (C) 1999 Martin Buchholz. ## Copyright (C) 2001 Ben Wing. ## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org> ## Maintainer: Ben Wing <ben@xemacs.org> ## Current Version: 1.0, May 5, 2001 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with XEmacs; see the file COPYING. If not, write to the Free # Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA # 02111-1307, USA. eval 'exec perl -w -S $0 ${1+"$@"}' if 0; use strict; use FileHandle; use Carp; use Getopt::Long; use File::Basename; (my $myName = $0) =~ s@.*/@@; my $usage=" Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode] PERLEXPR FILE ... Globally modify a file, either line by line or in one big hunk. Typical usage is like this: [with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc. in file names] find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n [with non-GNU print, xargs] find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n The file is read in, either line by line (with --line-mode specified) or in one big hunk (with --hunk-mode specified; it's the default), and the Perl expression is then evalled with \$_ set to the line or hunk of text, including the terminating newline if there is one. It should destructively modify the value there, storing the changed result in \$_. Files in which any modifications are made are backed up to the directory specified using --backup-dir, or to `backup' by default. To disable this, use --backup-dir= with no argument. Hunk mode is the default because it is MUCH MUCH faster than line-by-line. Use line-by-line only when it matters, e.g. you want to do a replacement only once per line (the default without the `g' argument). Conversely, when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one replacement in the entire file! "; my %options = (); $Getopt::Long::ignorecase = 0; &GetOptions ( \%options, 'help', 'backup-dir=s', 'line-mode', 'hunk-mode', ); die $usage if $options{"help"} or @ARGV <= 1; my $code = shift; die $usage if grep (-d || ! -w, @ARGV); sub SafeOpen { open ((my $fh = new FileHandle), $_[0]); confess "Can't open $_[0]: $!" if ! defined $fh; return $fh; } sub SafeClose { close $_[0] or confess "Can't close $_[0]: $!"; } sub FileContents { my $fh = SafeOpen ("< $_[0]"); my $olddollarslash = $/; local $/ = undef; my $contents = <$fh>; $/ = $olddollarslash; return $contents; } sub WriteStringToFile { my $fh = SafeOpen ("> $_[0]"); binmode $fh; print $fh $_[1] or confess "$_[0]: $!\n"; SafeClose $fh; } foreach my $file (@ARGV) { my $changed_p = 0; my $new_contents = ""; if ($options{"line-mode"}) { my $fh = SafeOpen $file; while (<$fh>) { my $save_line = $_; eval $code; $changed_p = 1 if $save_line ne $_; $new_contents .= $_; } } else { my $orig_contents = $_ = FileContents $file; eval $code; if ($_ ne $orig_contents) { $changed_p = 1; $new_contents = $_; } } if ($changed_p) { my $backdir = $options{"backup-dir"}; $backdir = "backup" if !defined ($backdir); if ($backdir) { my ($name, $path, $suffix) = fileparse ($file, ""); my $backfulldir = $path . $backdir; my $backfile = "$backfulldir/$name"; mkdir $backfulldir, 0755 unless -d $backfulldir; print "modifying $file (original saved in $backfile)\n"; rename $file, $backfile; } WriteStringToFile ($file, $new_contents); } } ----------------------------------- cut ------------------------------------ In addition to those programs, I needed to fix up a few other things, particularly relating to the duplicate definitions of types, now that some types merged with others. Specifically: 1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now look like this: (In each code snippet below, the first and last lines are the same as the original, as are all lines outside of those lines. That allows you to locate the section to be replaced, and replace the stuff in that section, verifying that there isn't anything new added that would need to be kept.) --------------------------------- snip ------------------------------------- /* Counts of bytes or chars */ typedef EMACS_INT Bytecount; typedef EMACS_INT Charcount; /* Counts of elements */ typedef EMACS_INT Elemcount; /* Hash codes */ typedef unsigned long Hashcode; /* ------------------------ dynamic arrays ------------------- */ --------------------------------- snip ------------------------------------- 2. in lstream.h, removed duplicate declaration of Bytecount. Rewrote the comment about this type. The changed code should now look like this: --------------------------------- snip ------------------------------------- #endif /* The have been some arguments over the what the type should be that specifies a count of bytes in a data block to be written out or read in, using Lstream_read(), Lstream_write(), and related functions. Originally it was long, which worked fine; Martin "corrected" these to size_t and ssize_t on the grounds that this is theoretically cleaner and is in keeping with the C standards. Unfortunately, this practice is horribly error-prone due to design flaws in the way that mixed signed/unsigned arithmetic happens. In fact, by doing this change, Martin introduced a subtle but fatal error that caused the operation of sending large mail messages to the SMTP server under Windows to fail. By putting all values back to be signed, avoiding any signed/unsigned mixing, the bug immediately went away. The type then in use was Lstream_Data_Count, so that it be reverted cleanly if a vote came to that. Now it is Bytecount. Some earlier comments about why the type must be signed: This MUST BE SIGNED, since it also is used in functions that return the number of bytes actually read to or written from in an operation, and these functions can return -1 to signal error. Note that the standard Unix read() and write() functions define the count going in as a size_t, which is UNSIGNED, and the count going out as an ssize_t, which is SIGNED. This is a horrible design flaw. Not only is it highly likely to lead to logic errors when a -1 gets interpreted as a large positive number, but operations are bound to fail in all sorts of horrible ways when a number in the upper-half of the size_t range is passed in -- this number is unrepresentable as an ssize_t, so code that checks to see how many bytes are actually written (which is mandatory if you are dealing with certain types of devices) will get completely screwed up. --ben */ typedef enum lstream_buffering --------------------------------- snip ------------------------------------- 3. in dumper.c, there are four places, all inside of switch() statements, where XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks contain identical code, and you should *REMOVE THE SECOND* and leave the first.
author ben
date Thu, 20 Sep 2001 06:31:11 +0000
parents 190b164ddcac
children 8ae895c67ce7
line wrap: on
line source

/* Generic toolbar implementation.
   Copyright (C) 1995 Board of Trustees, University of Illinois.
   Copyright (C) 1995 Sun Microsystems, Inc.
   Copyright (C) 1995, 1996 Ben Wing.
   Copyright (C) 1996 Chuck Thompson.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

/* Original implementation by Chuck Thompson for 19.12.
   Default-toolbar-position and specifier-related stuff by Ben Wing. */

#include <config.h>
#include "lisp.h"

#include "buffer.h"
#include "frame.h"
#include "device.h"
#include "glyphs.h"
#include "redisplay.h"
#include "toolbar.h"
#include "window.h"

Lisp_Object Vtoolbar[4];
Lisp_Object Vtoolbar_size[4];
Lisp_Object Vtoolbar_visible_p[4];
Lisp_Object Vtoolbar_border_width[4];

Lisp_Object Vdefault_toolbar, Vdefault_toolbar_visible_p;
Lisp_Object Vdefault_toolbar_width, Vdefault_toolbar_height;
Lisp_Object Vdefault_toolbar_border_width;

Lisp_Object Vdefault_toolbar_position;
Lisp_Object Vtoolbar_buttons_captioned_p;

Lisp_Object Qtoolbar_buttonp;
Lisp_Object Q2D, Q3D, Q2d, Q3d;
Lisp_Object Q_size;

Lisp_Object Qinit_toolbar_from_resources;


static Lisp_Object
mark_toolbar_button (Lisp_Object obj)
{
  struct toolbar_button *data = XTOOLBAR_BUTTON (obj);
  mark_object (data->next);
  mark_object (data->frame);
  mark_object (data->up_glyph);
  mark_object (data->down_glyph);
  mark_object (data->disabled_glyph);
  mark_object (data->cap_up_glyph);
  mark_object (data->cap_down_glyph);
  mark_object (data->cap_disabled_glyph);
  mark_object (data->callback);
  mark_object (data->enabled_p);
  return data->help_string;
}

DEFINE_LRECORD_IMPLEMENTATION ("toolbar-button", toolbar_button,
			       mark_toolbar_button, 0, 0, 0, 0, 0,
			       struct toolbar_button);

DEFUN ("toolbar-button-p", Ftoolbar_button_p, 1, 1, 0, /*
Return non-nil if OBJECT is a toolbar button.
*/
       (object))
{
  return TOOLBAR_BUTTONP (object) ? Qt : Qnil;
}

/* Only query functions are provided for toolbar buttons.  They are
   generated and updated from a toolbar description list.  Any
   directly made changes would be wiped out the first time the toolbar
   was marked as dirty and was regenerated.  The exception to this is
   set-toolbar-button-down-flag.  Having this allows us to control the
   toolbar from elisp.  Since we only trigger the button callbacks on
   up-mouse events and we reset the flag first, there shouldn't be any
   way for this to get us in trouble (like if someone decides to
   change the toolbar from a toolbar callback). */

DEFUN ("toolbar-button-callback", Ftoolbar_button_callback, 1, 1, 0, /*
Return the callback function associated with the toolbar BUTTON.
*/
       (button))
{
  CHECK_TOOLBAR_BUTTON (button);

  return XTOOLBAR_BUTTON (button)->callback;
}

DEFUN ("toolbar-button-help-string", Ftoolbar_button_help_string, 1, 1, 0, /*
Return the help string function associated with the toolbar BUTTON.
*/
       (button))
{
  CHECK_TOOLBAR_BUTTON (button);

  return XTOOLBAR_BUTTON (button)->help_string;
}

DEFUN ("toolbar-button-enabled-p", Ftoolbar_button_enabled_p, 1, 1, 0, /*
Return t if BUTTON is active.
*/
       (button))
{
  CHECK_TOOLBAR_BUTTON (button);

  return XTOOLBAR_BUTTON (button)->enabled ? Qt : Qnil;
}

DEFUN ("set-toolbar-button-down-flag", Fset_toolbar_button_down_flag, 2, 2, 0, /*
Don't touch.
*/
       (button, flag))
{
  struct toolbar_button *tb;
  char old_flag;

  CHECK_TOOLBAR_BUTTON (button);
  tb = XTOOLBAR_BUTTON (button);
  old_flag = tb->down;

  /* If the button is ignored, don't do anything. */
  if (!tb->enabled)
    return Qnil;

  /* If flag is nil, unset the down flag, otherwise set it to true.
     This also triggers an immediate redraw of the button if the flag
     does change. */

  if (NILP (flag))
    tb->down = 0;
  else
    tb->down = 1;

  if (tb->down != old_flag)
    {
      struct frame *f = XFRAME (tb->frame);
      struct device *d;

      if (DEVICEP (f->device))
	{
	  d = XDEVICE (f->device);

	  if (DEVICE_LIVE_P (XDEVICE (f->device)))
	    {
	      tb->dirty = 1;
	      MAYBE_DEVMETH (d, output_toolbar_button, (f, button));
	    }
	}
    }

  return Qnil;
}

Lisp_Object
get_toolbar_button_glyph (struct window *w, struct toolbar_button *tb)
{
  Lisp_Object glyph = Qnil;

  /* The selected glyph logic:

     UP:		up
     DOWN:		down -> up
     DISABLED:	disabled -> up
     CAP-UP:	cap-up -> up
     CAP-DOWN:	cap-down -> cap-up -> down -> up
     CAP-DISABLED:	cap-disabled -> cap-up -> disabled -> up
     */

  if (!NILP (w->toolbar_buttons_captioned_p))
    {
      if (tb->enabled && tb->down)
	glyph = tb->cap_down_glyph;
      else if (!tb->enabled)
	glyph = tb->cap_disabled_glyph;

      if (NILP (glyph))
	glyph = tb->cap_up_glyph;
    }

  if (NILP (glyph))
    {
      if (tb->enabled && tb->down)
	glyph = tb->down_glyph;
      else if (!tb->enabled)
	glyph = tb->disabled_glyph;
    }

  /* The non-captioned up button is the ultimate fallback.  It is
     the only one we guarantee exists. */
  if (NILP (glyph))
    glyph = tb->up_glyph;

  return glyph;
}


static enum toolbar_pos
decode_toolbar_position (Lisp_Object position)
{
  if (EQ (position, Qtop))    return TOP_TOOLBAR;
  if (EQ (position, Qbottom)) return BOTTOM_TOOLBAR;
  if (EQ (position, Qleft))   return LEFT_TOOLBAR;
  if (EQ (position, Qright))  return RIGHT_TOOLBAR;
  invalid_constant ("Invalid toolbar position", position);

  return TOP_TOOLBAR; /* not reached */
}

DEFUN ("set-default-toolbar-position", Fset_default_toolbar_position, 1, 1, 0, /*
Set the position that the `default-toolbar' will be displayed at.
Valid positions are 'top, 'bottom, 'left and 'right.
See `default-toolbar-position'.
*/
       (position))
{
  enum toolbar_pos cur = decode_toolbar_position (Vdefault_toolbar_position);
  enum toolbar_pos new = decode_toolbar_position (position);

  if (cur != new)
    {
      /* The following calls will automatically cause the dirty
	 flags to be set; we delay frame size changes to avoid
	 lots of frame flickering. */
      /* #### I think this should be GC protected. -sb */
      hold_frame_size_changes ();
      set_specifier_fallback (Vtoolbar[cur], list1 (Fcons (Qnil, Qnil)));
      set_specifier_fallback (Vtoolbar[new], Vdefault_toolbar);
      set_specifier_fallback (Vtoolbar_size[cur], list1 (Fcons (Qnil, Qzero)));
      set_specifier_fallback (Vtoolbar_size[new],
			      new == TOP_TOOLBAR || new == BOTTOM_TOOLBAR
			      ? Vdefault_toolbar_height
			      : Vdefault_toolbar_width);
      set_specifier_fallback (Vtoolbar_border_width[cur],
			      list1 (Fcons (Qnil, Qzero)));
      set_specifier_fallback (Vtoolbar_border_width[new],
			      Vdefault_toolbar_border_width);
      set_specifier_fallback (Vtoolbar_visible_p[cur],
			      list1 (Fcons (Qnil, Qt)));
      set_specifier_fallback (Vtoolbar_visible_p[new],
			      Vdefault_toolbar_visible_p);
      Vdefault_toolbar_position = position;
      unhold_frame_size_changes ();
    }

  return position;
}

DEFUN ("default-toolbar-position", Fdefault_toolbar_position, 0, 0, 0, /*
Return the position that the `default-toolbar' will be displayed at.
The `default-toolbar' will only be displayed here if the corresponding
position-specific toolbar specifier does not provide a value.
*/
       ())
{
  return Vdefault_toolbar_position;
}


static Lisp_Object
update_toolbar_button (struct frame *f, struct toolbar_button *tb,
		       Lisp_Object desc, int pushright)
{
  Lisp_Object *elt, glyphs, retval, buffer;
  struct gcpro gcpro1, gcpro2;

  elt = XVECTOR_DATA (desc);
  buffer = XWINDOW (FRAME_LAST_NONMINIBUF_WINDOW (f))->buffer;

  if (!tb)
    {
      tb = alloc_lcrecord_type (struct toolbar_button, &lrecord_toolbar_button);
      tb->next = Qnil;
      XSETFRAME (tb->frame, f);
      tb->up_glyph = Qnil;
      tb->down_glyph = Qnil;
      tb->disabled_glyph = Qnil;
      tb->cap_up_glyph = Qnil;
      tb->cap_down_glyph = Qnil;
      tb->cap_disabled_glyph = Qnil;
      tb->callback = Qnil;
      tb->enabled_p = Qnil;
      tb->help_string = Qnil;

      tb->enabled = 0;
      tb->down = 0;
      tb->pushright = pushright;
      tb->blank = 0;
      tb->x = tb->y = tb->width = tb->height = -1;
      tb->dirty = 1;
    }
  XSETTOOLBAR_BUTTON (retval, tb);

  /* Let's make sure nothing gets mucked up by the potential call to
     eval farther down. */
  GCPRO2 (retval, desc);

  glyphs = (CONSP (elt[0]) ? elt[0] : symbol_value_in_buffer (elt[0], buffer));

  /* If this is true we have a blank, otherwise it is an actual
     button. */
  if (KEYWORDP (glyphs))
    {
      int pos;
      int style_seen = 0;
      int size_seen = 0;
      int len = XVECTOR_LENGTH (desc);

      if (!tb->blank)
	{
	  tb->blank = 1;
	  tb->dirty = 1;
	}

      for (pos = 0; pos < len; pos += 2)
	{
	  Lisp_Object key = elt[pos];
	  Lisp_Object val = elt[pos + 1];

	  if (EQ (key, Q_style))
	    {
	      style_seen = 1;

	      if (EQ (val, Q2D) || EQ (val, Q2d))
		{
		  if (!EQ (Qnil, tb->up_glyph) || !EQ (Qt, tb->disabled_glyph))
		    {
		      tb->up_glyph = Qnil;
		      tb->disabled_glyph = Qt;
		      tb->dirty = 1;
		    }
		}
	      else if (EQ (val, Q3D) || (EQ (val, Q3d)))
		{
		  if (!EQ (Qt, tb->up_glyph) || !EQ (Qnil, tb->disabled_glyph))
		    {
		      tb->up_glyph = Qt;
		      tb->disabled_glyph = Qnil;
		      tb->dirty = 1;
		    }
		}
	    }
	  else if (EQ (key, Q_size))
	    {
	      size_seen = 1;

	      if (!EQ (val, tb->down_glyph))
		{
		  tb->down_glyph = val;
		  tb->dirty = 1;
		}
	    }
	}

      if (!style_seen)
	{
	  /* The default style is 3D. */
	  if (!EQ (Qt, tb->up_glyph) || !EQ (Qnil, tb->disabled_glyph))
	    {
	      tb->up_glyph = Qt;
	      tb->disabled_glyph = Qnil;
	      tb->dirty = 1;
	    }
	}

      if (!size_seen)
	{
	  /* The default width is set to nil.  The device specific
             code will fill it in at its discretion. */
	  if (!NILP (tb->down_glyph))
	    {
	      tb->down_glyph = Qnil;
	      tb->dirty = 1;
	    }
	}

      /* The rest of these fields are not used by blanks.  We make
         sure they are nulled out in case this button object formerly
         represented a real button. */
      if (!NILP (tb->callback)
	  || !NILP (tb->enabled_p)
	  || !NILP (tb->help_string))
	{
	  tb->cap_up_glyph = Qnil;
	  tb->cap_down_glyph = Qnil;
	  tb->cap_disabled_glyph = Qnil;
	  tb->callback = Qnil;
	  tb->enabled_p = Qnil;
	  tb->help_string = Qnil;
	  tb->dirty = 1;
	}
    }
  else
    {
      if (tb->blank)
	{
	  tb->blank = 0;
	  tb->dirty = 1;
	}

      /* We know that we at least have an up_glyph.  Well, no, we
         don't.  The user may have changed the button glyph on us. */
      if (CONSP (glyphs))
	{
	  if (!EQ (XCAR (glyphs), tb->up_glyph))
	    {
	      tb->up_glyph = XCAR (glyphs);
	      tb->dirty = 1;
	    }
	  glyphs = XCDR (glyphs);
	}
      else
	tb->up_glyph = Qnil;

      /* We might have a down_glyph. */
      if (CONSP (glyphs))
	{
	  if (!EQ (XCAR (glyphs), tb->down_glyph))
	    {
	      tb->down_glyph = XCAR (glyphs);
	      tb->dirty = 1;
	    }
	  glyphs = XCDR (glyphs);
	}
      else
	tb->down_glyph = Qnil;

      /* We might have a disabled_glyph. */
      if (CONSP (glyphs))
	{
	  if (!EQ (XCAR (glyphs), tb->disabled_glyph))
	    {
	      tb->disabled_glyph = XCAR (glyphs);
	      tb->dirty = 1;
	    }
	  glyphs = XCDR (glyphs);
	}
      else
	tb->disabled_glyph = Qnil;

      /* We might have a cap_up_glyph. */
      if (CONSP (glyphs))
	{
	  if (!EQ (XCAR (glyphs), tb->cap_up_glyph))
	    {
	      tb->cap_up_glyph = XCAR (glyphs);
	      tb->dirty = 1;
	    }
	  glyphs = XCDR (glyphs);
	}
      else
	tb->cap_up_glyph = Qnil;

      /* We might have a cap_down_glyph. */
      if (CONSP (glyphs))
	{
	  if (!EQ (XCAR (glyphs), tb->cap_down_glyph))
	    {
	      tb->cap_down_glyph = XCAR (glyphs);
	      tb->dirty = 1;
	    }
	  glyphs = XCDR (glyphs);
	}
      else
	tb->cap_down_glyph = Qnil;

      /* We might have a cap_disabled_glyph. */
      if (CONSP (glyphs))
	{
	  if (!EQ (XCAR (glyphs), tb->cap_disabled_glyph))
	    {
	      tb->cap_disabled_glyph = XCAR (glyphs);
	      tb->dirty = 1;
	    }
	}
      else
	tb->cap_disabled_glyph = Qnil;

      /* Update the callback. */
      if (!EQ (tb->callback, elt[1]))
	{
	  tb->callback = elt[1];
	  /* This does not have an impact on the display properties of the
	     button so we do not mark it as dirty if it has changed. */
	}

      /* Update the enabled field. */
      if (!EQ (tb->enabled_p, elt[2]))
	{
	  tb->enabled_p = elt[2];
	  tb->dirty = 1;
	}

      /* We always do the following because if the enabled status is
	 determined by a function its decision may change without us being
	 able to detect it. */
      {
	int old_enabled = tb->enabled;

	if (NILP (tb->enabled_p))
	  tb->enabled = 0;
	else if (EQ (tb->enabled_p, Qt))
	  tb->enabled = 1;
	else
	  {
	    if (NILP (tb->enabled_p) || EQ (tb->enabled_p, Qt))
	      /* short-circuit the common case for speed */
	      tb->enabled = !NILP (tb->enabled_p);
	    else
	      {
		Lisp_Object result =
		  eval_in_buffer_trapping_errors
		    ("Error in toolbar enabled-p form",
		     XBUFFER
		     (WINDOW_BUFFER
		      (XWINDOW (FRAME_LAST_NONMINIBUF_WINDOW (f)))),
		     tb->enabled_p);
		if (UNBOUNDP (result))
		  /* #### if there was an error in the enabled-p
		     form, should we pretend like it's enabled
		     or disabled? */
		  tb->enabled = 0;
		else
		  tb->enabled = !NILP (result);
	      }
	  }

	if (old_enabled != tb->enabled)
	  tb->dirty = 1;
      }

      /* Update the help echo string. */
      if (!EQ (tb->help_string, elt[3]))
	{
	  tb->help_string = elt[3];
	  /* This does not have an impact on the display properties of the
	     button so we do not mark it as dirty if it has changed. */
	}
    }

  /* If this flag changes, the position is changing for sure unless
     some very unlikely geometry occurs. */
  if (tb->pushright != pushright)
    {
      tb->pushright = pushright;
      tb->dirty = 1;
    }

  /* The position and size fields are only manipulated in the
     device-dependent code. */
  UNGCPRO;
  return retval;
}

void
mark_frame_toolbar_buttons_dirty (struct frame *f, enum toolbar_pos pos)
{
  Lisp_Object button = FRAME_TOOLBAR_BUTTONS (f, pos);

  while (!NILP (button))
    {
      struct toolbar_button *tb = XTOOLBAR_BUTTON (button);
      tb->dirty = 1;
      button = tb->next;
    }
  return;
}

static Lisp_Object
compute_frame_toolbar_buttons (struct frame *f, enum toolbar_pos pos,
			       Lisp_Object toolbar)
{
  Lisp_Object buttons, prev_button, first_button;
  Lisp_Object orig_toolbar = toolbar;
  int pushright_seen = 0;
  struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;

  first_button = FRAME_TOOLBAR_BUTTONS (f, pos);
  buttons = prev_button = first_button;

  /* Yes, we're being paranoid. */
  GCPRO5 (toolbar, buttons, prev_button, first_button, orig_toolbar);

  if (NILP (toolbar))
    {
      /* The output mechanisms will take care of clearing the former
         toolbar. */
      UNGCPRO;
      return Qnil;
    }

  if (!CONSP (toolbar))
    sferror ("toolbar description must be a list", toolbar);

  /* First synchronize any existing buttons. */
  while (!NILP (toolbar) && !NILP (buttons))
    {
      struct toolbar_button *tb;

      if (NILP (XCAR (toolbar)))
	{
	  if (pushright_seen)
	    sferror
	      ("more than one partition (nil) in toolbar description",
	       orig_toolbar);
	  else
	    pushright_seen = 1;
	}
      else
	{
	  tb = XTOOLBAR_BUTTON (buttons);
	  update_toolbar_button (f, tb, XCAR (toolbar), pushright_seen);
	  prev_button = buttons;
	  buttons = tb->next;
	}

      toolbar = XCDR (toolbar);
    }

  /* If we hit the end of the toolbar, then clean up any excess
     buttons and return. */
  if (NILP (toolbar))
    {
      if (!NILP (buttons))
	{
	  /* If this is the case the only thing we saw was a
             pushright marker. */
	  if (EQ (buttons, first_button))
	    {
	      UNGCPRO;
	      return Qnil;
	    }
	  else
	    XTOOLBAR_BUTTON (prev_button)->next = Qnil;
	}
      UNGCPRO;
      return first_button;
    }

  /* At this point there are more buttons on the toolbar than we
     actually have in existence. */
  while (!NILP (toolbar))
    {
      Lisp_Object new_button;

      if (NILP (XCAR (toolbar)))
	{
	  if (pushright_seen)
	    sferror
	      ("more than one partition (nil) in toolbar description",
	       orig_toolbar);
	  else
	    pushright_seen = 1;
	}
      else
	{
	  new_button = update_toolbar_button (f, NULL, XCAR (toolbar),
					      pushright_seen);

	  if (NILP (first_button))
	    {
	      first_button = prev_button = new_button;
	    }
	  else
	    {
	      XTOOLBAR_BUTTON (prev_button)->next = new_button;
	      prev_button = new_button;
	    }
	}

      toolbar = XCDR (toolbar);
    }

  UNGCPRO;
  return first_button;
}

static void
set_frame_toolbar (struct frame *f, enum toolbar_pos pos)
{
  struct window *w = XWINDOW (FRAME_LAST_NONMINIBUF_WINDOW (f));
  Lisp_Object toolbar = w->toolbar[pos];
  f->toolbar_buttons[pos] = (FRAME_REAL_TOOLBAR_VISIBLE (f, pos)
			     ? compute_frame_toolbar_buttons (f, pos, toolbar)
			     : Qnil);
}

static void
compute_frame_toolbars_data (struct frame *f)
{
  set_frame_toolbar (f, TOP_TOOLBAR);
  set_frame_toolbar (f, BOTTOM_TOOLBAR);
  set_frame_toolbar (f, LEFT_TOOLBAR);
  set_frame_toolbar (f, RIGHT_TOOLBAR);
}

void
update_frame_toolbars (struct frame *f)
{
  struct device *d = XDEVICE (f->device);

  if (DEVICE_SUPPORTS_TOOLBARS_P (d)
      && (f->toolbar_changed || f->frame_changed || f->clear))
    {
      int pos;

      /* We're not officially "in redisplay", so we still have a
	 chance to re-layout toolbars and windows. This is done here,
	 because toolbar is the only thing which currently might
	 necessitate this layout, as it is outside any windows. We
	 take care not to change size if toolbar geometry is really
	 unchanged, as it will hose windows whose pixsizes are not
	 multiple of character sizes. */

      for (pos = 0; pos < 4; pos++)
	if (FRAME_REAL_TOOLBAR_SIZE (f, pos)
	    != FRAME_CURRENT_TOOLBAR_SIZE (f, pos))
	  {
	    int width, height;
	    pixel_to_char_size (f, FRAME_PIXWIDTH (f), FRAME_PIXHEIGHT (f),
				&width, &height);
	    change_frame_size (f, height, width, 0);
	    break;
	  }

      for (pos = 0; pos < 4; pos++)
	f->current_toolbar_size[pos] = FRAME_REAL_TOOLBAR_SIZE (f, pos);

      /* Removed the check for the minibuffer here.  We handle this
	 more correctly now by consistently using
	 FRAME_LAST_NONMINIBUF_WINDOW instead of FRAME_SELECTED_WINDOW
	 throughout the toolbar code. */
      compute_frame_toolbars_data (f);

      DEVMETH (d, output_frame_toolbars, (f));
    }

  f->toolbar_changed = 0;
}

void
init_frame_toolbars (struct frame *f)
{
  struct device *d = XDEVICE (f->device);

  if (DEVICE_SUPPORTS_TOOLBARS_P (d))
    {
      Lisp_Object frame;
      int pos;

      compute_frame_toolbars_data (f);
      XSETFRAME (frame, f);
      call_critical_lisp_code (XDEVICE (FRAME_DEVICE (f)),
			       Qinit_toolbar_from_resources,
			       frame);
      MAYBE_DEVMETH (d, initialize_frame_toolbars, (f));

      /* We are here as far in frame creation so cached specifiers are
	 already recomputed, and possibly modified by resource
	 initialization. Remember current toolbar geometry so next
	 redisplay will not needlessly relayout toolbars. */
      for (pos = 0; pos < 4; pos++)
	f->current_toolbar_size[pos] = FRAME_REAL_TOOLBAR_SIZE (f, pos);
    }
}

void
init_device_toolbars (struct device *d)
{
  Lisp_Object device;

  XSETDEVICE (device, d);
  if (DEVICE_SUPPORTS_TOOLBARS_P (d))
    call_critical_lisp_code (d,
			     Qinit_toolbar_from_resources,
			     device);
}

void
init_global_toolbars (struct device *d)
{
  if (DEVICE_SUPPORTS_TOOLBARS_P (d))
    call_critical_lisp_code (d,
			     Qinit_toolbar_from_resources,
			     Qglobal);
}

void
free_frame_toolbars (struct frame *f)
{
  /* If we had directly allocated any memory for the toolbars instead
     of using all Lisp_Objects this is where we would now free it. */

  MAYBE_FRAMEMETH (f, free_frame_toolbars, (f));
}

void
get_toolbar_coords (struct frame *f, enum toolbar_pos pos, int *x, int *y,
		    int *width, int *height, int *vert, int for_layout)
{
  int visible_top_toolbar_height, visible_bottom_toolbar_height;
  int adjust = (for_layout ? 1 : 0);

  /* The top and bottom toolbars take precedence over the left and
     right. */
  visible_top_toolbar_height = (FRAME_REAL_TOP_TOOLBAR_VISIBLE (f)
				? FRAME_REAL_TOP_TOOLBAR_HEIGHT (f) +
				  2 * FRAME_REAL_TOP_TOOLBAR_BORDER_WIDTH (f)
				: 0);
  visible_bottom_toolbar_height = (FRAME_REAL_BOTTOM_TOOLBAR_VISIBLE (f)
				? FRAME_REAL_BOTTOM_TOOLBAR_HEIGHT (f) +
				  2 *
				   FRAME_REAL_BOTTOM_TOOLBAR_BORDER_WIDTH (f)
				: 0);

  /* We adjust the width and height by one to give us a narrow border
     at the outside edges.  However, when we are simply determining
     toolbar location we don't want to do that. */

  switch (pos)
    {
    case TOP_TOOLBAR:
      *x = 1;
      *y = 0;	/* #### should be 1 if no menubar */
      *width = FRAME_PIXWIDTH (f) - 2;
      *height = FRAME_REAL_TOP_TOOLBAR_HEIGHT (f) +
	2 * FRAME_REAL_TOP_TOOLBAR_BORDER_WIDTH (f) - adjust;
      *vert = 0;
      break;
    case BOTTOM_TOOLBAR:
      *x = 1;
      *y = FRAME_PIXHEIGHT (f) - FRAME_REAL_BOTTOM_TOOLBAR_HEIGHT (f) -
	2 * FRAME_REAL_BOTTOM_TOOLBAR_BORDER_WIDTH (f);
      *width = FRAME_PIXWIDTH (f) - 2;
      *height = FRAME_REAL_BOTTOM_TOOLBAR_HEIGHT (f) +
	2 * FRAME_REAL_BOTTOM_TOOLBAR_BORDER_WIDTH (f) - adjust;
      *vert = 0;
      break;
    case LEFT_TOOLBAR:
      *x = 1;
      *y = visible_top_toolbar_height;
      *width = FRAME_REAL_LEFT_TOOLBAR_WIDTH (f) +
	2 * FRAME_REAL_LEFT_TOOLBAR_BORDER_WIDTH (f) - adjust;
      *height = (FRAME_PIXHEIGHT (f) - visible_top_toolbar_height -
		 visible_bottom_toolbar_height - 1);
      *vert = 1;
      break;
    case RIGHT_TOOLBAR:
      *x = FRAME_PIXWIDTH (f) - FRAME_REAL_RIGHT_TOOLBAR_WIDTH (f) -
	2 * FRAME_REAL_RIGHT_TOOLBAR_BORDER_WIDTH (f);
      *y = visible_top_toolbar_height;
      *width = FRAME_REAL_RIGHT_TOOLBAR_WIDTH (f) +
	2 * FRAME_REAL_RIGHT_TOOLBAR_BORDER_WIDTH (f) - adjust;
      *height = (FRAME_PIXHEIGHT (f) - visible_top_toolbar_height -
		 visible_bottom_toolbar_height);
      *vert = 1;
      break;
    default:
      abort ();
    }
}

#define CHECK_TOOLBAR(pos) do {						\
  if (FRAME_REAL_##pos##_VISIBLE (f))					\
    {									\
      int x, y, width, height, vert;					\
  									\
      get_toolbar_coords (f, pos, &x, &y, &width, &height, &vert, 0);	\
      if ((x_coord >= x) && (x_coord < (x + width)))			\
	{								\
	  if ((y_coord >= y) && (y_coord < (y + height)))		\
	    return FRAME_TOOLBAR_BUTTONS (f, pos);			\
	}								\
    }									\
} while (0)

static Lisp_Object
toolbar_buttons_at_pixpos (struct frame *f, int x_coord, int y_coord)
{
  CHECK_TOOLBAR (TOP_TOOLBAR);
  CHECK_TOOLBAR (BOTTOM_TOOLBAR);
  CHECK_TOOLBAR (LEFT_TOOLBAR);
  CHECK_TOOLBAR (RIGHT_TOOLBAR);

  return Qnil;
}
#undef CHECK_TOOLBAR

/* The device dependent code actually does the work of positioning the
   buttons, but we are free to access that information at this
   level. */
Lisp_Object
toolbar_button_at_pixpos (struct frame *f, int x_coord, int y_coord)
{
  Lisp_Object buttons = toolbar_buttons_at_pixpos (f, x_coord, y_coord);

  while (!NILP (buttons))
    {
      struct toolbar_button *tb = XTOOLBAR_BUTTON (buttons);

      if ((x_coord >= tb->x) && (x_coord < (tb->x + tb->width)))
	{
	  if ((y_coord >= tb->y) && (y_coord < (tb->y + tb->height)))
	    {
	      /* If we are over a blank, return nil. */
	      if (tb->blank)
		return Qnil;
	      else
		return buttons;
	    }
	}

      buttons = tb->next;
    }

  /* We are not over a toolbar or we are over a blank in the toolbar. */
  return Qnil;
}


/************************************************************************/
/*                        Toolbar specifier type                        */
/************************************************************************/

DEFINE_SPECIFIER_TYPE (toolbar);

#define CTB_ERROR(msg) do {						    \
									      maybe_signal_error (Qinvalid_argument, msg, button, Qtoolbar, errb); \
  RETURN_SANS_WARNINGS Qnil;						    \
} while (0)

/* Returns Q_style if key was :style, Qt if ok otherwise, Qnil if error. */
static Lisp_Object
check_toolbar_button_keywords (Lisp_Object button, Lisp_Object key,
			       Lisp_Object val, Error_Behavior errb)
{
  if (!KEYWORDP (key))
    {
      maybe_signal_error_2 (Qinvalid_argument, "Not a keyword", key, button,
				 Qtoolbar, errb);
      return Qnil;
    }

  if (EQ (key, Q_style))
    {
      if (!EQ (val, Q2D)
	  && !EQ (val, Q3D)
	  && !EQ (val, Q2d)
	  && !EQ (val, Q3d))
	CTB_ERROR ("Unrecognized toolbar blank style");

      return Q_style;
    }
  else if (EQ (key, Q_size))
    {
      if (!NATNUMP (val))
	CTB_ERROR ("invalid toolbar blank size");
    }
  else
    {
      CTB_ERROR ("invalid toolbar blank keyword");
    }

  return Qt;
}

/* toolbar button spec is [pixmap-pair function enabled-p help]
	               or [:style 2d-or-3d :size width-or-height] */

DEFUN ("check-toolbar-button-syntax", Fcheck_toolbar_button_syntax, 1, 2, 0, /*
Verify the syntax of entry BUTTON in a toolbar description list.
If you want to verify the syntax of a toolbar description list as a
whole, use `check-valid-instantiator' with a specifier type of 'toolbar.
*/
       (button, noerror))
{
  Lisp_Object *elt, glyphs, value;
  int len;
  Error_Behavior errb = decode_error_behavior_flag (noerror);

  if (!VECTORP (button))
    CTB_ERROR ("toolbar button descriptors must be vectors");
  elt = XVECTOR_DATA (button);

  if (XVECTOR_LENGTH (button) == 2)
    {
      if (!EQ (Q_style, check_toolbar_button_keywords (button, elt[0],
						       elt[1], errb)))
	CTB_ERROR ("must specify toolbar blank style");

      return Qt;
    }

  if (XVECTOR_LENGTH (button) != 4)
    CTB_ERROR ("toolbar button descriptors must be 2 or 4 long");

  /* The first element must be a list of glyphs of length 1-6.  The
     first entry is the pixmap for the up state, the second for the
     down state, the third for the disabled state, the fourth for the
     captioned up state, the fifth for the captioned down state and
     the sixth for the captioned disabled state.  Only the up state is
     mandatory. */
  if (!CONSP (elt[0]))
    {
      /* We can't check the buffer-local here because we don't know
	 which buffer to check in.  #### I think this is a bad thing.
	 See if we can't get enough information to this function so
	 that it can check.

	 #### Wrong.  We shouldn't be checking the value at all here.
	 The user might set or change the value at any time. */
      value = Fsymbol_value (elt[0]);

      if (!CONSP (value))
	{
	  if (KEYWORDP (elt[0]))
	    {
	      int fsty = 0;

	      if (EQ (Q_style, check_toolbar_button_keywords (button, elt[0],
							      elt[1],
							      errb)))
		fsty++;

	      if (EQ (Q_style, check_toolbar_button_keywords (button, elt[2],
							      elt[3],
							      errb)))
		fsty++;

	      if (!fsty)
		CTB_ERROR ("must specify toolbar blank style");
	      else if (EQ (elt[0], elt[2]))
		CTB_ERROR
		  ("duplicate keywords in toolbar button blank description");

	      return Qt;
	    }
	  else
	    CTB_ERROR ("first element of button must be a list (of glyphs)");
	}
    }
  else
    value = elt[0];

  len = XINT (Flength (value));
  if (len < 1)
    CTB_ERROR ("toolbar button glyph list must have at least 1 entry");

  if (len > 6)
    CTB_ERROR ("toolbar button glyph list can have at most 6 entries");

  glyphs = value;
  while (!NILP (glyphs))
    {
      if (!GLYPHP (XCAR (glyphs)))
	{
	  /* We allow nil for the down and disabled glyphs but not for
             the up glyph. */
	  if (EQ (glyphs, value) || !NILP (XCAR (glyphs)))
	    {
	      CTB_ERROR
		("all elements of toolbar button glyph list must be glyphs.");
	    }
	}
      glyphs = XCDR (glyphs);
    }

  /* The second element is the function to run when the button is
     activated.  We do not do any checking on it because it is legal
     for the function to not be defined until after the toolbar is.
     It is the user's problem to get this right.

     The third element is either a boolean indicating the enabled
     status or a function used to determine it.  Again, it is the
     user's problem if this is wrong.

     The fourth element, if not nil, must be a string which will be
     displayed as the help echo. */

  /* #### This should be allowed to be a function returning a string
     as well as just a string. */
  if (!NILP (elt[3]) && !STRINGP (elt[3]))
    CTB_ERROR ("toolbar button help echo string must be a string");

  return Qt;
}
#undef CTB_ERROR

static void
toolbar_validate (Lisp_Object instantiator)
{
  int pushright_seen = 0;
  Lisp_Object rest;

  if (NILP (instantiator))
    return;

  if (!CONSP (instantiator))
    sferror ("Toolbar spec must be list or nil", instantiator);

  for (rest = instantiator; !NILP (rest); rest = XCDR (rest))
    {
      if (!CONSP (rest))
	sferror ("Bad list in toolbar spec", instantiator);

      if (NILP (XCAR (rest)))
	{
	  if (pushright_seen)
  	    sferror
	      ("More than one partition (nil) in instantiator description",
	       instantiator);
	  else
	    pushright_seen = 1;
	}
      else
	Fcheck_toolbar_button_syntax (XCAR (rest), Qnil);
    }
}

static void
toolbar_after_change (Lisp_Object specifier, Lisp_Object locale)
{
  /* #### This is overkill.  I really need to rethink the after-change
     functions to make them easier to use. */
  MARK_TOOLBAR_CHANGED;
}

DEFUN ("toolbar-specifier-p", Ftoolbar_specifier_p, 1, 1, 0, /*
Return non-nil if OBJECT is a toolbar specifier.

See `make-toolbar-specifier' for a description of possible toolbar
instantiators.
*/
       (object))
{
  return TOOLBAR_SPECIFIERP (object) ? Qt : Qnil;
}


/*
  Helper for invalidating the real specifier when default
  specifier caching changes
*/
static void
recompute_overlaying_specifier (Lisp_Object real_one[4])
{
  enum toolbar_pos pos = decode_toolbar_position (Vdefault_toolbar_position);
  Fset_specifier_dirty_flag (real_one[pos]);
}

static void
toolbar_specs_changed (Lisp_Object specifier, struct window *w,
		       Lisp_Object oldval)
{
  /* This could be smarter but I doubt that it would make any
     noticeable difference given the infrequency with which this is
     probably going to be called.
     */
  MARK_TOOLBAR_CHANGED;
}

static void
default_toolbar_specs_changed (Lisp_Object specifier, struct window *w,
			       Lisp_Object oldval)
{
  recompute_overlaying_specifier (Vtoolbar);
}

static void
default_toolbar_size_changed_in_frame (Lisp_Object specifier, struct frame *f,
				       Lisp_Object oldval)
{
  recompute_overlaying_specifier (Vtoolbar_size);
}

static void
default_toolbar_border_width_changed_in_frame (Lisp_Object specifier,
					       struct frame *f,
					       Lisp_Object oldval)
{
  recompute_overlaying_specifier (Vtoolbar_border_width);
}

static void
default_toolbar_visible_p_changed_in_frame (Lisp_Object specifier,
					    struct frame *f,
					    Lisp_Object oldval)
{
  recompute_overlaying_specifier (Vtoolbar_visible_p);
}

static void
toolbar_geometry_changed_in_window (Lisp_Object specifier, struct window *w,
				    Lisp_Object oldval)
{
  MARK_TOOLBAR_CHANGED;
  MARK_WINDOWS_CHANGED (w);
}

static void
default_toolbar_size_changed_in_window (Lisp_Object specifier, struct window *w,
					Lisp_Object oldval)
{
  recompute_overlaying_specifier (Vtoolbar_size);
}

static void
default_toolbar_border_width_changed_in_window (Lisp_Object specifier,
						struct window *w,
						Lisp_Object oldval)
{
  recompute_overlaying_specifier (Vtoolbar_border_width);
}

static void
default_toolbar_visible_p_changed_in_window (Lisp_Object specifier,
					     struct window *w,
					     Lisp_Object oldval)
{
  recompute_overlaying_specifier (Vtoolbar_visible_p);
}

static void
toolbar_buttons_captioned_p_changed (Lisp_Object specifier, struct window *w,
				     Lisp_Object oldval)
{
  /* This could be smarter but I doubt that it would make any
     noticeable difference given the infrequency with which this is
     probably going to be called. */
  MARK_TOOLBAR_CHANGED;
}


void
syms_of_toolbar (void)
{
  INIT_LRECORD_IMPLEMENTATION (toolbar_button);

  DEFSYMBOL_MULTIWORD_PREDICATE (Qtoolbar_buttonp);
  DEFSYMBOL (Q2D);
  DEFSYMBOL (Q3D);
  DEFSYMBOL (Q2d);
  DEFSYMBOL (Q3d);
  DEFKEYWORD (Q_size);

  DEFSYMBOL (Qinit_toolbar_from_resources);
  DEFSUBR (Ftoolbar_button_p);
  DEFSUBR (Ftoolbar_button_callback);
  DEFSUBR (Ftoolbar_button_help_string);
  DEFSUBR (Ftoolbar_button_enabled_p);
  DEFSUBR (Fset_toolbar_button_down_flag);
  DEFSUBR (Fcheck_toolbar_button_syntax);
  DEFSUBR (Fset_default_toolbar_position);
  DEFSUBR (Fdefault_toolbar_position);
  DEFSUBR (Ftoolbar_specifier_p);
}

void
vars_of_toolbar (void)
{
  staticpro (&Vdefault_toolbar_position);
  Vdefault_toolbar_position = Qtop;

#ifdef HAVE_WINDOW_SYSTEM
  Fprovide (Qtoolbar);
#endif
}

void
specifier_type_create_toolbar (void)
{
  INITIALIZE_SPECIFIER_TYPE (toolbar, "toolbar", "toolbar-specifier-p");

  SPECIFIER_HAS_METHOD (toolbar, validate);
  SPECIFIER_HAS_METHOD (toolbar, after_change);
}

void
reinit_specifier_type_create_toolbar (void)
{
  REINITIALIZE_SPECIFIER_TYPE (toolbar);
}

void
specifier_vars_of_toolbar (void)
{
  Lisp_Object fb;

  DEFVAR_SPECIFIER ("default-toolbar", &Vdefault_toolbar /*
Specifier for a fallback toolbar.
Use `set-specifier' to change this.

The position of this toolbar is specified in the function
`default-toolbar-position'.  If the corresponding position-specific
toolbar (e.g. `top-toolbar' if `default-toolbar-position' is 'top)
does not specify a toolbar in a particular domain (usually a window),
then the value of `default-toolbar' in that domain, if any, will be
used instead.

Note that the toolbar at any particular position will not be
displayed unless its visibility flag is true and its thickness
\(width or height, depending on orientation) is non-zero.  The
visibility is controlled by the specifiers `top-toolbar-visible-p',
`bottom-toolbar-visible-p', `left-toolbar-visible-p', and
`right-toolbar-visible-p', and the thickness is controlled by the
specifiers `top-toolbar-height', `bottom-toolbar-height',
`left-toolbar-width', and `right-toolbar-width'.

Note that one of the four visibility specifiers inherits from
`default-toolbar-visibility' and one of the four thickness
specifiers inherits from either `default-toolbar-width' or
`default-toolbar-height' (depending on orientation), just
like for the toolbar description specifiers (e.g. `top-toolbar')
mentioned above.

Therefore, if you are setting `default-toolbar', you should control
the visibility and thickness using `default-toolbar-visible-p',
`default-toolbar-width', and `default-toolbar-height', rather than
using position-specific specifiers.  That way, you will get sane
behavior if the user changes the default toolbar position.

The format of the instantiator for a toolbar is a list of
toolbar-button-descriptors.  Each toolbar-button-descriptor
is a vector in one of the following formats:

  [GLYPH-LIST FUNCTION ENABLED-P HELP] or
  [:style 2D-OR-3D] or
  [:style 2D-OR-3D :size WIDTH-OR-HEIGHT] or
  [:size WIDTH-OR-HEIGHT :style 2D-OR-3D]

Optionally, one of the toolbar-button-descriptors may be nil
instead of a vector; this signifies the division between
the toolbar buttons that are to be displayed flush-left,
and the buttons to be displayed flush-right.

The first vector format above specifies a normal toolbar button;
the others specify blank areas in the toolbar.

For the first vector format:

-- GLYPH-LIST should be a list of one to six glyphs (as created by
   `make-glyph') or a symbol whose value is such a list.  The first
   glyph, which must be provided, is the glyph used to display the
   toolbar button when it is in the "up" (not pressed) state.  The
   optional second glyph is for displaying the button when it is in
   the "down" (pressed) state.  The optional third glyph is for when
   the button is disabled.  The optional fourth, fifth and sixth glyphs
   are used to specify captioned versions for the up, down and disabled
   states respectively.  The function `toolbar-make-button-list' is
   useful in creating these glyph lists.  The specifier variable
   `toolbar-buttons-captioned-p' controls which glyphs are actually used.

-- Even if you do not provide separate down-state and disabled-state
   glyphs, the user will still get visual feedback to indicate which
   state the button is in.  Buttons in the up-state are displayed
   with a shadowed border that gives a raised appearance to the
   button.  Buttons in the down-state are displayed with shadows that
   give a recessed appearance.  Buttons in the disabled state are
   displayed with no shadows, giving a 2-d effect.

-- If some of the toolbar glyphs are not provided, they inherit as follows:

     UP:                up
     DOWN:              down -> up
     DISABLED:          disabled -> up
     CAP-UP:            cap-up -> up
     CAP-DOWN:          cap-down -> cap-up -> down -> up
     CAP-DISABLED:      cap-disabled -> cap-up -> disabled -> up

-- The second element FUNCTION is a function to be called when the
   toolbar button is activated (i.e. when the mouse is released over
   the toolbar button, if the press occurred in the toolbar).  It
   can be any form accepted by `call-interactively', since this is
   how it is invoked.

-- The third element ENABLED-P specifies whether the toolbar button
   is enabled (disabled buttons do nothing when they are activated,
   and are displayed differently; see above).  It should be either
   a boolean or a form that evaluates to a boolean.

-- The fourth element HELP, if non-nil, should be a string.  This
   string is displayed in the echo area when the mouse passes over
   the toolbar button.

For the other vector formats (specifying blank areas of the toolbar):

-- 2D-OR-3D should be one of the symbols '2d or '3d, indicating
   whether the area is displayed with shadows (giving it a raised,
   3-d appearance) or without shadows (giving it a flat appearance).

-- WIDTH-OR-HEIGHT specifies the length, in pixels, of the blank
   area.  If omitted, it defaults to a device-specific value
   (8 pixels for X devices).
*/ );

  Vdefault_toolbar = Fmake_specifier (Qtoolbar);
  /* #### It would be even nicer if the specifier caching
     automatically knew about specifier fallbacks, so we didn't
     have to do it ourselves. */
  set_specifier_caching (Vdefault_toolbar,
			 offsetof (struct window, default_toolbar),
			 default_toolbar_specs_changed,
			 0, 0, 0);

  DEFVAR_SPECIFIER ("top-toolbar",
		    &Vtoolbar[TOP_TOOLBAR] /*
Specifier for the toolbar at the top of the frame.
Use `set-specifier' to change this.
See `default-toolbar' for a description of a valid toolbar instantiator.
*/ );
  Vtoolbar[TOP_TOOLBAR] = Fmake_specifier (Qtoolbar);
  set_specifier_caching (Vtoolbar[TOP_TOOLBAR],
			 offsetof (struct window, toolbar[TOP_TOOLBAR]),
			 toolbar_specs_changed,
			 0, 0, 0);

  DEFVAR_SPECIFIER ("bottom-toolbar",
		    &Vtoolbar[BOTTOM_TOOLBAR] /*
Specifier for the toolbar at the bottom of the frame.
Use `set-specifier' to change this.
See `default-toolbar' for a description of a valid toolbar instantiator.

Note that, unless the `default-toolbar-position' is `bottom', by
default the height of the bottom toolbar (controlled by
`bottom-toolbar-height') is 0; thus, a bottom toolbar will not be
displayed even if you provide a value for `bottom-toolbar'.
*/ );
  Vtoolbar[BOTTOM_TOOLBAR] = Fmake_specifier (Qtoolbar);
  set_specifier_caching (Vtoolbar[BOTTOM_TOOLBAR],
			 offsetof (struct window, toolbar[BOTTOM_TOOLBAR]),
			 toolbar_specs_changed,
			 0, 0, 0);

  DEFVAR_SPECIFIER ("left-toolbar",
		    &Vtoolbar[LEFT_TOOLBAR] /*
Specifier for the toolbar at the left edge of the frame.
Use `set-specifier' to change this.
See `default-toolbar' for a description of a valid toolbar instantiator.

Note that, unless the `default-toolbar-position' is `left', by
default the height of the left toolbar (controlled by
`left-toolbar-width') is 0; thus, a left toolbar will not be
displayed even if you provide a value for `left-toolbar'.
*/ );
  Vtoolbar[LEFT_TOOLBAR] = Fmake_specifier (Qtoolbar);
  set_specifier_caching (Vtoolbar[LEFT_TOOLBAR],
			 offsetof (struct window, toolbar[LEFT_TOOLBAR]),
			 toolbar_specs_changed,
			 0, 0, 0);

  DEFVAR_SPECIFIER ("right-toolbar",
		    &Vtoolbar[RIGHT_TOOLBAR] /*
Specifier for the toolbar at the right edge of the frame.
Use `set-specifier' to change this.
See `default-toolbar' for a description of a valid toolbar instantiator.

Note that, unless the `default-toolbar-position' is `right', by
default the height of the right toolbar (controlled by
`right-toolbar-width') is 0; thus, a right toolbar will not be
displayed even if you provide a value for `right-toolbar'.
*/ );
  Vtoolbar[RIGHT_TOOLBAR] = Fmake_specifier (Qtoolbar);
  set_specifier_caching (Vtoolbar[RIGHT_TOOLBAR],
			 offsetof (struct window, toolbar[RIGHT_TOOLBAR]),
			 toolbar_specs_changed,
			 0, 0, 0);

  /* initially, top inherits from default; this can be
     changed with `set-default-toolbar-position'. */
  fb = list1 (Fcons (Qnil, Qnil));
  set_specifier_fallback (Vdefault_toolbar, fb);
  set_specifier_fallback (Vtoolbar[TOP_TOOLBAR], Vdefault_toolbar);
  set_specifier_fallback (Vtoolbar[BOTTOM_TOOLBAR], fb);
  set_specifier_fallback (Vtoolbar[LEFT_TOOLBAR],   fb);
  set_specifier_fallback (Vtoolbar[RIGHT_TOOLBAR],  fb);

  DEFVAR_SPECIFIER ("default-toolbar-height", &Vdefault_toolbar_height /*
*Height of the default toolbar, if it's oriented horizontally.
This is a specifier; use `set-specifier' to change it.

The position of the default toolbar is specified by the function
`set-default-toolbar-position'.  If the corresponding position-specific
toolbar thickness specifier (e.g. `top-toolbar-height' if
`default-toolbar-position' is 'top) does not specify a thickness in a
particular domain (a window or a frame), then the value of
`default-toolbar-height' or `default-toolbar-width' (depending on the
toolbar orientation) in that domain, if any, will be used instead.

Note that `default-toolbar-height' is only used when
`default-toolbar-position' is 'top or 'bottom, and `default-toolbar-width'
is only used when `default-toolbar-position' is 'left or 'right.

Note that all of the position-specific toolbar thickness specifiers
have a fallback value of zero when they do not correspond to the
default toolbar.  Therefore, you will have to set a non-zero thickness
value if you want a position-specific toolbar to be displayed.

Internally, toolbar thickness specifiers are instantiated in both
window and frame domains, for different purposes.  The value in the
domain of a frame's selected window specifies the actual toolbar
thickness that you will see in that frame.  The value in the domain of
a frame itself specifies the toolbar thickness that is used in frame
geometry calculations.

Thus, for example, if you set the frame width to 80 characters and the
left toolbar width for that frame to 68 pixels, then the frame will
be sized to fit 80 characters plus a 68-pixel left toolbar.  If you
then set the left toolbar width to 0 for a particular buffer (or if
that buffer does not specify a left toolbar or has a nil value
specified for `left-toolbar-visible-p'), you will find that, when
that buffer is displayed in the selected window, the window will have
a width of 86 or 87 characters -- the frame is sized for a 68-pixel
left toolbar but the selected window specifies that the left toolbar
is not visible, so it is expanded to take up the slack.
*/ );
  Vdefault_toolbar_height = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vdefault_toolbar_height,
			 offsetof (struct window, default_toolbar_height),
			 default_toolbar_size_changed_in_window,
			 offsetof (struct frame, default_toolbar_height),
			 default_toolbar_size_changed_in_frame, 0);

  DEFVAR_SPECIFIER ("default-toolbar-width", &Vdefault_toolbar_width /*
*Width of the default toolbar, if it's oriented vertically.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-height' for more information.
*/ );
  Vdefault_toolbar_width = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vdefault_toolbar_width,
			 offsetof (struct window, default_toolbar_width),
			 default_toolbar_size_changed_in_window,
			 offsetof (struct frame, default_toolbar_width),
			 default_toolbar_size_changed_in_frame, 0);

  DEFVAR_SPECIFIER ("top-toolbar-height",
		    &Vtoolbar_size[TOP_TOOLBAR] /*
*Height of the top toolbar.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-height' for more information.
*/ );
  Vtoolbar_size[TOP_TOOLBAR] = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vtoolbar_size[TOP_TOOLBAR],
			 offsetof (struct window, toolbar_size[TOP_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame, toolbar_size[TOP_TOOLBAR]),
			 frame_size_slipped, 0);

  DEFVAR_SPECIFIER ("bottom-toolbar-height",
		    &Vtoolbar_size[BOTTOM_TOOLBAR] /*
*Height of the bottom toolbar.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-height' for more information.
*/ );
  Vtoolbar_size[BOTTOM_TOOLBAR] = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vtoolbar_size[BOTTOM_TOOLBAR],
			 offsetof (struct window, toolbar_size[BOTTOM_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame, toolbar_size[BOTTOM_TOOLBAR]),
			 frame_size_slipped, 0);

  DEFVAR_SPECIFIER ("left-toolbar-width",
		    &Vtoolbar_size[LEFT_TOOLBAR] /*
*Width of left toolbar.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-height' for more information.
*/ );
  Vtoolbar_size[LEFT_TOOLBAR] = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vtoolbar_size[LEFT_TOOLBAR],
			 offsetof (struct window, toolbar_size[LEFT_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame, toolbar_size[LEFT_TOOLBAR]),
			 frame_size_slipped, 0);

  DEFVAR_SPECIFIER ("right-toolbar-width",
		    &Vtoolbar_size[RIGHT_TOOLBAR] /*
*Width of right toolbar.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-height' for more information.
*/ );
  Vtoolbar_size[RIGHT_TOOLBAR] = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vtoolbar_size[RIGHT_TOOLBAR],
			 offsetof (struct window, toolbar_size[RIGHT_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame, toolbar_size[RIGHT_TOOLBAR]),
			 frame_size_slipped, 0);

  fb = Qnil;
#ifdef HAVE_TTY
  fb = Fcons (Fcons (list1 (Qtty), Qzero), fb);
#endif
#ifdef HAVE_GTK
  fb = Fcons (Fcons (list1 (Qgtk), make_int (DEFAULT_TOOLBAR_HEIGHT)), fb);
#endif
#ifdef HAVE_X_WINDOWS
  fb = Fcons (Fcons (list1 (Qx), make_int (DEFAULT_TOOLBAR_HEIGHT)), fb);
#endif
#ifdef HAVE_MS_WINDOWS
  fb = Fcons (Fcons (list1 (Qmswindows),
		     make_int (MSWINDOWS_DEFAULT_TOOLBAR_HEIGHT)), fb);
#endif
  if (!NILP (fb))
    set_specifier_fallback (Vdefault_toolbar_height, fb);

  fb = Qnil;
#ifdef HAVE_TTY
  fb = Fcons (Fcons (list1 (Qtty), Qzero), fb);
#endif
#ifdef HAVE_GTK
  fb = Fcons (Fcons (list1 (Qgtk), make_int (DEFAULT_TOOLBAR_WIDTH)), fb);
#endif
#ifdef HAVE_X_WINDOWS
  fb = Fcons (Fcons (list1 (Qx), make_int (DEFAULT_TOOLBAR_WIDTH)), fb);
#endif
#ifdef HAVE_MS_WINDOWS
  fb = Fcons (Fcons (list1 (Qmswindows),
		     make_int (MSWINDOWS_DEFAULT_TOOLBAR_WIDTH)), fb);
#endif
  if (!NILP (fb))
    set_specifier_fallback (Vdefault_toolbar_width, fb);

  set_specifier_fallback (Vtoolbar_size[TOP_TOOLBAR], Vdefault_toolbar_height);
  fb = list1 (Fcons (Qnil, Qzero));
  set_specifier_fallback (Vtoolbar_size[BOTTOM_TOOLBAR], fb);
  set_specifier_fallback (Vtoolbar_size[LEFT_TOOLBAR],   fb);
  set_specifier_fallback (Vtoolbar_size[RIGHT_TOOLBAR],  fb);

  DEFVAR_SPECIFIER ("default-toolbar-border-width",
		    &Vdefault_toolbar_border_width /*
*Width of the border around the default toolbar.
This is a specifier; use `set-specifier' to change it.

The position of the default toolbar is specified by the function
`set-default-toolbar-position'.  If the corresponding position-specific
toolbar border width specifier (e.g. `top-toolbar-border-width' if
`default-toolbar-position' is 'top) does not specify a border width in a
particular domain (a window or a frame), then the value of
`default-toolbar-border-width' in that domain, if any, will be used
instead.

Internally, toolbar border width specifiers are instantiated in both
window and frame domains, for different purposes.  The value in the
domain of a frame's selected window specifies the actual toolbar border
width that you will see in that frame.  The value in the domain of a
frame itself specifies the toolbar border width that is used in frame
geometry calculations.  Changing the border width value in the frame
domain will result in a size change in the frame itself, while changing
the value in a window domain will not.
*/ );
  Vdefault_toolbar_border_width = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vdefault_toolbar_border_width,
			 offsetof (struct window, default_toolbar_border_width),
			 default_toolbar_border_width_changed_in_window,
			 offsetof (struct frame, default_toolbar_border_width),
			 default_toolbar_border_width_changed_in_frame, 0);

  DEFVAR_SPECIFIER ("top-toolbar-border-width",
		    &Vtoolbar_border_width[TOP_TOOLBAR] /*
*Border width of the top toolbar.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-height' for more information.
*/ );
  Vtoolbar_border_width[TOP_TOOLBAR] = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vtoolbar_border_width[TOP_TOOLBAR],
			 offsetof (struct window,
				   toolbar_border_width[TOP_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame,
				   toolbar_border_width[TOP_TOOLBAR]),
			 frame_size_slipped, 0);

  DEFVAR_SPECIFIER ("bottom-toolbar-border-width",
		    &Vtoolbar_border_width[BOTTOM_TOOLBAR] /*
*Border width of the bottom toolbar.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-height' for more information.
*/ );
  Vtoolbar_border_width[BOTTOM_TOOLBAR] = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vtoolbar_border_width[BOTTOM_TOOLBAR],
			 offsetof (struct window,
				   toolbar_border_width[BOTTOM_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame,
				   toolbar_border_width[BOTTOM_TOOLBAR]),
			 frame_size_slipped, 0);

  DEFVAR_SPECIFIER ("left-toolbar-border-width",
		    &Vtoolbar_border_width[LEFT_TOOLBAR] /*
*Border width of left toolbar.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-height' for more information.
*/ );
  Vtoolbar_border_width[LEFT_TOOLBAR] = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vtoolbar_border_width[LEFT_TOOLBAR],
			 offsetof (struct window,
				   toolbar_border_width[LEFT_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame,
				   toolbar_border_width[LEFT_TOOLBAR]),
			 frame_size_slipped, 0);

  DEFVAR_SPECIFIER ("right-toolbar-border-width",
		    &Vtoolbar_border_width[RIGHT_TOOLBAR] /*
*Border width of right toolbar.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-height' for more information.
*/ );
  Vtoolbar_border_width[RIGHT_TOOLBAR] = Fmake_specifier (Qnatnum);
  set_specifier_caching (Vtoolbar_border_width[RIGHT_TOOLBAR],
			 offsetof (struct window,
				   toolbar_border_width[RIGHT_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame,
				   toolbar_border_width[RIGHT_TOOLBAR]),
			 frame_size_slipped, 0);

  fb = Qnil;
#ifdef HAVE_TTY
  fb = Fcons (Fcons (list1 (Qtty), Qzero), fb);
#endif
#ifdef HAVE_X_WINDOWS
  fb = Fcons (Fcons (list1 (Qx), make_int (DEFAULT_TOOLBAR_BORDER_WIDTH)), fb);
#endif
#ifdef HAVE_GTK
  fb = Fcons (Fcons (list1 (Qgtk), make_int (DEFAULT_TOOLBAR_BORDER_WIDTH)), fb);
#endif
#ifdef HAVE_MS_WINDOWS
  fb = Fcons (Fcons (list1 (Qmswindows), make_int (MSWINDOWS_DEFAULT_TOOLBAR_BORDER_WIDTH)), fb);
#endif
  if (!NILP (fb))
    set_specifier_fallback (Vdefault_toolbar_border_width, fb);

  set_specifier_fallback (Vtoolbar_border_width[TOP_TOOLBAR], Vdefault_toolbar_border_width);
  fb = list1 (Fcons (Qnil, Qzero));
  set_specifier_fallback (Vtoolbar_border_width[BOTTOM_TOOLBAR], fb);
  set_specifier_fallback (Vtoolbar_border_width[LEFT_TOOLBAR],   fb);
  set_specifier_fallback (Vtoolbar_border_width[RIGHT_TOOLBAR],  fb);

  DEFVAR_SPECIFIER ("default-toolbar-visible-p", &Vdefault_toolbar_visible_p /*
*Whether the default toolbar is visible.
This is a specifier; use `set-specifier' to change it.

The position of the default toolbar is specified by the function
`set-default-toolbar-position'.  If the corresponding position-specific
toolbar visibility specifier (e.g. `top-toolbar-visible-p' if
`default-toolbar-position' is 'top) does not specify a visible-p value
in a particular domain (a window or a frame), then the value of
`default-toolbar-visible-p' in that domain, if any, will be used
instead.

Both window domains and frame domains are used internally, for
different purposes.  The distinction here is exactly the same as
for thickness specifiers; see `default-toolbar-height' for more
information.

`default-toolbar-visible-p' and all of the position-specific toolbar
visibility specifiers have a fallback value of true.
*/ );
  Vdefault_toolbar_visible_p = Fmake_specifier (Qboolean);
  set_specifier_caching (Vdefault_toolbar_visible_p,
			 offsetof (struct window, default_toolbar_visible_p),
			 default_toolbar_visible_p_changed_in_window,
			 offsetof (struct frame, default_toolbar_visible_p),
			 default_toolbar_visible_p_changed_in_frame, 0);

  DEFVAR_SPECIFIER ("top-toolbar-visible-p",
		    &Vtoolbar_visible_p[TOP_TOOLBAR] /*
*Whether the top toolbar is visible.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-visible-p' for more information.
*/ );
  Vtoolbar_visible_p[TOP_TOOLBAR] = Fmake_specifier (Qboolean);
  set_specifier_caching (Vtoolbar_visible_p[TOP_TOOLBAR],
			 offsetof (struct window,
				   toolbar_visible_p[TOP_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame,
				   toolbar_visible_p[TOP_TOOLBAR]),
			 frame_size_slipped, 0);

  DEFVAR_SPECIFIER ("bottom-toolbar-visible-p",
		    &Vtoolbar_visible_p[BOTTOM_TOOLBAR] /*
*Whether the bottom toolbar is visible.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-visible-p' for more information.
*/ );
  Vtoolbar_visible_p[BOTTOM_TOOLBAR] = Fmake_specifier (Qboolean);
  set_specifier_caching (Vtoolbar_visible_p[BOTTOM_TOOLBAR],
			 offsetof (struct window,
				   toolbar_visible_p[BOTTOM_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame,
				   toolbar_visible_p[BOTTOM_TOOLBAR]),
			 frame_size_slipped, 0);

  DEFVAR_SPECIFIER ("left-toolbar-visible-p",
		    &Vtoolbar_visible_p[LEFT_TOOLBAR] /*
*Whether the left toolbar is visible.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-visible-p' for more information.
*/ );
  Vtoolbar_visible_p[LEFT_TOOLBAR] = Fmake_specifier (Qboolean);
  set_specifier_caching (Vtoolbar_visible_p[LEFT_TOOLBAR],
			 offsetof (struct window,
				   toolbar_visible_p[LEFT_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame,
				   toolbar_visible_p[LEFT_TOOLBAR]),
			 frame_size_slipped, 0);

  DEFVAR_SPECIFIER ("right-toolbar-visible-p",
		    &Vtoolbar_visible_p[RIGHT_TOOLBAR] /*
*Whether the right toolbar is visible.
This is a specifier; use `set-specifier' to change it.

See `default-toolbar-visible-p' for more information.
*/ );
  Vtoolbar_visible_p[RIGHT_TOOLBAR] = Fmake_specifier (Qboolean);
  set_specifier_caching (Vtoolbar_visible_p[RIGHT_TOOLBAR],
			 offsetof (struct window,
				   toolbar_visible_p[RIGHT_TOOLBAR]),
			 toolbar_geometry_changed_in_window,
			 offsetof (struct frame,
				   toolbar_visible_p[RIGHT_TOOLBAR]),
			 frame_size_slipped, 0);

  /* initially, top inherits from default; this can be
     changed with `set-default-toolbar-position'. */
  fb = list1 (Fcons (Qnil, Qt));
  set_specifier_fallback (Vdefault_toolbar_visible_p, fb);
  set_specifier_fallback (Vtoolbar_visible_p[TOP_TOOLBAR],
			  Vdefault_toolbar_visible_p);
  set_specifier_fallback (Vtoolbar_visible_p[BOTTOM_TOOLBAR], fb);
  set_specifier_fallback (Vtoolbar_visible_p[LEFT_TOOLBAR],   fb);
  set_specifier_fallback (Vtoolbar_visible_p[RIGHT_TOOLBAR],  fb);

  DEFVAR_SPECIFIER ("toolbar-buttons-captioned-p",
		    &Vtoolbar_buttons_captioned_p /*
*Whether the toolbar buttons are captioned.
This will only have a visible effect for those toolbar buttons which had
captioned versions specified.
This is a specifier; use `set-specifier' to change it.
*/ );
  Vtoolbar_buttons_captioned_p = Fmake_specifier (Qboolean);
  set_specifier_caching (Vtoolbar_buttons_captioned_p,
			 offsetof (struct window, toolbar_buttons_captioned_p),
			 toolbar_buttons_captioned_p_changed,
			 0, 0, 0);
  set_specifier_fallback (Vtoolbar_buttons_captioned_p,
			  list1 (Fcons (Qnil, Qt)));
}