Mercurial > hg > xemacs-beta
view src/redisplay.h @ 665:fdefd0186b75
[xemacs-hg @ 2001-09-20 06:28:42 by ben]
The great integral types renaming.
The purpose of this is to rationalize the names used for various
integral types, so that they match their intended uses and follow
consist conventions, and eliminate types that were not semantically
different from each other.
The conventions are:
-- All integral types that measure quantities of anything are
signed. Some people disagree vociferously with this, but their
arguments are mostly theoretical, and are vastly outweighed by
the practical headaches of mixing signed and unsigned values,
and more importantly by the far increased likelihood of
inadvertent bugs: Because of the broken "viral" nature of
unsigned quantities in C (operations involving mixed
signed/unsigned are done unsigned, when exactly the opposite is
nearly always wanted), even a single error in declaring a
quantity unsigned that should be signed, or even the even more
subtle error of comparing signed and unsigned values and
forgetting the necessary cast, can be catastrophic, as
comparisons will yield wrong results. -Wsign-compare is turned
on specifically to catch this, but this tends to result in a
great number of warnings when mixing signed and unsigned, and
the casts are annoying. More has been written on this
elsewhere.
-- All such quantity types just mentioned boil down to EMACS_INT,
which is 32 bits on 32-bit machines and 64 bits on 64-bit
machines. This is guaranteed to be the same size as Lisp
objects of type `int', and (as far as I can tell) of size_t
(unsigned!) and ssize_t. The only type below that is not an
EMACS_INT is Hashcode, which is an unsigned value of the same
size as EMACS_INT.
-- Type names should be relatively short (no more than 10
characters or so), with the first letter capitalized and no
underscores if they can at all be avoided.
-- "count" == a zero-based measurement of some quantity. Includes
sizes, offsets, and indexes.
-- "bpos" == a one-based measurement of a position in a buffer.
"Charbpos" and "Bytebpos" count text in the buffer, rather than
bytes in memory; thus Bytebpos does not directly correspond to
the memory representation. Use "Membpos" for this.
-- "Char" refers to internal-format characters, not to the C type
"char", which is really a byte.
-- For the actual name changes, see the script below.
I ran the following script to do the conversion. (NOTE: This script
is idempotent. You can safely run it multiple times and it will
not screw up previous results -- in fact, it will do nothing if
nothing has changed. Thus, it can be run repeatedly as necessary
to handle patches coming in from old workspaces, or old branches.)
There are two tags, just before and just after the change:
`pre-integral-type-rename' and `post-integral-type-rename'. When
merging code from the main trunk into a branch, the best thing to
do is first merge up to `pre-integral-type-rename', then apply the
script and associated changes, then merge from
`post-integral-type-change' to the present. (Alternatively, just do
the merging in one operation; but you may then have a lot of
conflicts needing to be resolved by hand.)
Script `fixtypes.sh' follows:
----------------------------------- cut ------------------------------------
files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]"
gr Memory_Count Bytecount $files
gr Lstream_Data_Count Bytecount $files
gr Element_Count Elemcount $files
gr Hash_Code Hashcode $files
gr extcount bytecount $files
gr bufpos charbpos $files
gr bytind bytebpos $files
gr memind membpos $files
gr bufbyte intbyte $files
gr Extcount Bytecount $files
gr Bufpos Charbpos $files
gr Bytind Bytebpos $files
gr Memind Membpos $files
gr Bufbyte Intbyte $files
gr EXTCOUNT BYTECOUNT $files
gr BUFPOS CHARBPOS $files
gr BYTIND BYTEBPOS $files
gr MEMIND MEMBPOS $files
gr BUFBYTE INTBYTE $files
gr MEMORY_COUNT BYTECOUNT $files
gr LSTREAM_DATA_COUNT BYTECOUNT $files
gr ELEMENT_COUNT ELEMCOUNT $files
gr HASH_CODE HASHCODE $files
----------------------------------- cut ------------------------------------
`fixtypes.sh' is a Bourne-shell script; it uses 'gr':
----------------------------------- cut ------------------------------------
#!/bin/sh
# Usage is like this:
# gr FROM TO FILES ...
# globally replace FROM with TO in FILES. FROM and TO are regular expressions.
# backup files are stored in the `backup' directory.
from="$1"
to="$2"
shift 2
echo ${1+"$@"} | xargs global-replace "s/$from/$to/g"
----------------------------------- cut ------------------------------------
`gr' in turn uses a Perl script to do its real work,
`global-replace', which follows:
----------------------------------- cut ------------------------------------
: #-*- Perl -*-
### global-modify --- modify the contents of a file by a Perl expression
## Copyright (C) 1999 Martin Buchholz.
## Copyright (C) 2001 Ben Wing.
## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org>
## Maintainer: Ben Wing <ben@xemacs.org>
## Current Version: 1.0, May 5, 2001
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with XEmacs; see the file COPYING. If not, write to the Free
# Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
# 02111-1307, USA.
eval 'exec perl -w -S $0 ${1+"$@"}'
if 0;
use strict;
use FileHandle;
use Carp;
use Getopt::Long;
use File::Basename;
(my $myName = $0) =~ s@.*/@@; my $usage="
Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode]
PERLEXPR FILE ...
Globally modify a file, either line by line or in one big hunk.
Typical usage is like this:
[with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc.
in file names]
find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n
[with non-GNU print, xargs]
find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n
The file is read in, either line by line (with --line-mode specified)
or in one big hunk (with --hunk-mode specified; it's the default), and
the Perl expression is then evalled with \$_ set to the line or hunk of
text, including the terminating newline if there is one. It should
destructively modify the value there, storing the changed result in \$_.
Files in which any modifications are made are backed up to the directory
specified using --backup-dir, or to `backup' by default. To disable this,
use --backup-dir= with no argument.
Hunk mode is the default because it is MUCH MUCH faster than line-by-line.
Use line-by-line only when it matters, e.g. you want to do a replacement
only once per line (the default without the `g' argument). Conversely,
when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one
replacement in the entire file!
";
my %options = ();
$Getopt::Long::ignorecase = 0;
&GetOptions (
\%options,
'help', 'backup-dir=s', 'line-mode', 'hunk-mode',
);
die $usage if $options{"help"} or @ARGV <= 1;
my $code = shift;
die $usage if grep (-d || ! -w, @ARGV);
sub SafeOpen {
open ((my $fh = new FileHandle), $_[0]);
confess "Can't open $_[0]: $!" if ! defined $fh;
return $fh;
}
sub SafeClose {
close $_[0] or confess "Can't close $_[0]: $!";
}
sub FileContents {
my $fh = SafeOpen ("< $_[0]");
my $olddollarslash = $/;
local $/ = undef;
my $contents = <$fh>;
$/ = $olddollarslash;
return $contents;
}
sub WriteStringToFile {
my $fh = SafeOpen ("> $_[0]");
binmode $fh;
print $fh $_[1] or confess "$_[0]: $!\n";
SafeClose $fh;
}
foreach my $file (@ARGV) {
my $changed_p = 0;
my $new_contents = "";
if ($options{"line-mode"}) {
my $fh = SafeOpen $file;
while (<$fh>) {
my $save_line = $_;
eval $code;
$changed_p = 1 if $save_line ne $_;
$new_contents .= $_;
}
} else {
my $orig_contents = $_ = FileContents $file;
eval $code;
if ($_ ne $orig_contents) {
$changed_p = 1;
$new_contents = $_;
}
}
if ($changed_p) {
my $backdir = $options{"backup-dir"};
$backdir = "backup" if !defined ($backdir);
if ($backdir) {
my ($name, $path, $suffix) = fileparse ($file, "");
my $backfulldir = $path . $backdir;
my $backfile = "$backfulldir/$name";
mkdir $backfulldir, 0755 unless -d $backfulldir;
print "modifying $file (original saved in $backfile)\n";
rename $file, $backfile;
}
WriteStringToFile ($file, $new_contents);
}
}
----------------------------------- cut ------------------------------------
In addition to those programs, I needed to fix up a few other
things, particularly relating to the duplicate definitions of
types, now that some types merged with others. Specifically:
1. in lisp.h, removed duplicate declarations of Bytecount. The
changed code should now look like this: (In each code snippet
below, the first and last lines are the same as the original, as
are all lines outside of those lines. That allows you to locate
the section to be replaced, and replace the stuff in that
section, verifying that there isn't anything new added that
would need to be kept.)
--------------------------------- snip -------------------------------------
/* Counts of bytes or chars */
typedef EMACS_INT Bytecount;
typedef EMACS_INT Charcount;
/* Counts of elements */
typedef EMACS_INT Elemcount;
/* Hash codes */
typedef unsigned long Hashcode;
/* ------------------------ dynamic arrays ------------------- */
--------------------------------- snip -------------------------------------
2. in lstream.h, removed duplicate declaration of Bytecount.
Rewrote the comment about this type. The changed code should
now look like this:
--------------------------------- snip -------------------------------------
#endif
/* The have been some arguments over the what the type should be that
specifies a count of bytes in a data block to be written out or read in,
using Lstream_read(), Lstream_write(), and related functions.
Originally it was long, which worked fine; Martin "corrected" these to
size_t and ssize_t on the grounds that this is theoretically cleaner and
is in keeping with the C standards. Unfortunately, this practice is
horribly error-prone due to design flaws in the way that mixed
signed/unsigned arithmetic happens. In fact, by doing this change,
Martin introduced a subtle but fatal error that caused the operation of
sending large mail messages to the SMTP server under Windows to fail.
By putting all values back to be signed, avoiding any signed/unsigned
mixing, the bug immediately went away. The type then in use was
Lstream_Data_Count, so that it be reverted cleanly if a vote came to
that. Now it is Bytecount.
Some earlier comments about why the type must be signed: This MUST BE
SIGNED, since it also is used in functions that return the number of
bytes actually read to or written from in an operation, and these
functions can return -1 to signal error.
Note that the standard Unix read() and write() functions define the
count going in as a size_t, which is UNSIGNED, and the count going
out as an ssize_t, which is SIGNED. This is a horrible design
flaw. Not only is it highly likely to lead to logic errors when a
-1 gets interpreted as a large positive number, but operations are
bound to fail in all sorts of horrible ways when a number in the
upper-half of the size_t range is passed in -- this number is
unrepresentable as an ssize_t, so code that checks to see how many
bytes are actually written (which is mandatory if you are dealing
with certain types of devices) will get completely screwed up.
--ben
*/
typedef enum lstream_buffering
--------------------------------- snip -------------------------------------
3. in dumper.c, there are four places, all inside of switch()
statements, where XD_BYTECOUNT appears twice as a case tag. In
each case, the two case blocks contain identical code, and you
should *REMOVE THE SECOND* and leave the first.
author | ben |
---|---|
date | Thu, 20 Sep 2001 06:31:11 +0000 |
parents | af57a77cbc92 |
children | 943eaba38521 |
line wrap: on
line source
/* Redisplay data structures. Copyright (C) 1994, 1995 Board of Trustees, University of Illinois. Copyright (C) 1996 Chuck Thompson. Copyright (C) 1995, 1996 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ #ifndef INCLUDED_redisplay_h_ #define INCLUDED_redisplay_h_ /* Redisplay DASSERT types */ #define DB_DISP_POS 1 #define DB_DISP_TEXT_LAYOUT 2 #define DB_DISP_REDISPLAY 4 /* These are the possible return values from pixel_to_glyph_translation. */ #define OVER_MODELINE 0 #define OVER_TEXT 1 #define OVER_OUTSIDE 2 #define OVER_NOTHING 3 #define OVER_BORDER 4 #define OVER_TOOLBAR 5 #define OVER_V_DIVIDER 6 #define NO_BLOCK -1 /* Imagine that the text in the buffer is displayed on a piece of paper the width of the frame and very very tall. The line start cache is an array of struct line_start_cache's, describing the start and end buffer positions for a contiguous set of lines on that piece of paper. */ typedef struct line_start_cache line_start_cache; struct line_start_cache { Charbpos start, end; int height; }; typedef struct { Dynarr_declare (line_start_cache); } line_start_cache_dynarr; /* The possible types of runes. #### The Lisp_Glyph type is broken. There should instead be a pixmap type. Currently the device-specific output routines have to worry about whether the glyph is textual or not, etc. For Mule this is a big problem because you might need multiple fonts to display the text. It also eliminates optimizations that could come from glumping the text of multiple text glyphs together -- this makes displaying binary files (with lots of control chars, etc.) very very slow. */ #define RUNE_BLANK 0 #define RUNE_CHAR 1 #define RUNE_DGLYPH 2 #define RUNE_HLINE 3 #define RUNE_VLINE 4 #define CURSOR_ON 0 #define CURSOR_OFF 1 #define NO_CURSOR 2 #define NEXT_CURSOR 3 #define IGNORE_CURSOR 4 #define DEFAULT_INDEX (face_index) 0 #define MODELINE_INDEX (face_index) 1 /* A rune is a single display element, such as a printable character or pixmap. Any single character in a buffer has one or more runes (or zero, if the character is invisible) corresponding to it. (Printable characters typically have one rune associated with them, but control characters have two -- a ^ and a letter -- and other non-printing characters (those displayed in octal) have four. */ /* WARNING! In compare_runes (one of the most heavily used functions) two runes are compared. So please be careful with changes to this structure. See comments in compare_runes. #### This should really be made smaller. */ typedef struct rune rune; struct rune { face_index findex; /* face rune is displayed with. The face_index is an index into a window-specific array of face cache elements. Each face cache element corresponds to one "merged face" (the result of merging all the faces that overlap the rune) and contains the instance values for each of the face properties in this particular window. */ Charbpos charbpos; /* buffer position this rune is displaying; for the modeline, the value here is a Charcount, but who's looking? */ Charbpos endpos; /* if set this rune covers a range of pos */ /* #### Chuck, what does it mean for a rune to cover a range of pos? I don't get this. */ /* #### This isn't used as an rvalue anywhere! remove! */ short xpos; /* horizontal starting position in pixels */ short width; /* pixel width of rune */ unsigned char cursor_type; /* is this rune covered by the cursor? */ unsigned char type; /* type of rune object */ /* We used to do bitfields here, but if I (JV) count correctly that doesn't matter for the size of the structure. All the bit fiddling _does_ slow down redisplay by about 10%. So don't do that */ union /* Information specific to the type of rune */ { /* #### Glyphs are rare. Is it really necessary to waste 8 bytes on every rune for that?! */ /* DGLYPH */ struct { Lisp_Object glyph; Lisp_Object extent; /* extent rune is attached to, if any. If this is a rune in the modeline then this might be nil. */ int xoffset; /* Number of pixels that need to be chopped off the left of the glyph. This has the effect of shifting the glyph to the left while still clipping at XPOS. */ } dglyph; /* CHAR */ struct { Emchar ch; /* Character of this rune. */ } chr; /* HLINE */ struct { short thickness; /* how thick to make hline */ short yoffset; /* how far down from top of line to put top */ } hline; } object; /* actual rune object */ }; typedef struct { Dynarr_declare (rune); } rune_dynarr; /* These must have distinct values. Note that the ordering actually represents priority levels. TEXT has the lowest priority level. */ enum display_type { TEXT, LEFT_OUTSIDE_MARGIN, LEFT_INSIDE_MARGIN, RIGHT_INSIDE_MARGIN, RIGHT_OUTSIDE_MARGIN, OVERWRITE }; /* A display block represents a run of text on a single line. Apparently there is only one display block per line for each of the types listed in `enum display_type'. A display block consists mostly of an array of runes, one per atomic display element (printable character, pixmap, etc.). */ /* #### Yuckity yuckity yuck yuck yuck yuck yuck!! Chuck, I think you should redo this. It should not be the responsibility of the device-specific code to worry about the different faces. The generic stuff in redisplay-output.c should glump things up into sub-blocks, each of which corresponds to a single pixmap or a single run of text in the same font. It might still make sense for the device-specific output routine to get passed an entire display line. That way, it can make calls to XDrawText() (which draws multiple runs of single-font data) instead of XDrawString(). The reason for this is to reduce the amount of X traffic, which will help things significantly on a slow line. */ typedef struct display_block display_block; struct display_block { enum display_type type; /* type of display block */ int start_pos; /* starting pixel position of block */ int end_pos; /* ending pixel position of block */ rune_dynarr *runes; /* Dynamic array of runes */ }; typedef struct { Dynarr_declare (display_block); } display_block_dynarr; typedef struct layout_bounds_type { int left_out; int left_in; int left_white; int right_white; int right_in; int right_out; } layout_bounds; typedef struct glyph_block glyph_block; struct glyph_block { Lisp_Object glyph; Lisp_Object extent; /* The rest are only used by margin routines. */ face_index findex; int active; int width; }; typedef struct { Dynarr_declare (glyph_block); } glyph_block_dynarr; /*************************************************************************/ /* display lines */ /*************************************************************************/ /* Modeline commentary: IMO the modeline is handled very badly, we special case virtually *everything* in the redisplay routines for the modeline. The fact that dl->charbpos can be either a buffer position or a char count highlights this. There is no abstraction at all that I can find and it means that the code is made very ugly as a result. Either we should treat the modeline *entirely* separately, or we should abstract to something that applies equally well to the modeline and to buffer text, the things are not enormously different after all and handling them identically at some level would eliminate some bugs that still exist (mainly to do with modeline handling). This problem doesn't help trying to implement gutters which are somewhere in between buffer text and modeline text. Redisplay commentary: Everything in redisplay is tied very tightly to the things that are being displayed, and the context, e.g. buffers and windows. According to Chuck this is so that we can get speed, which seems fine to me, however this usage is extended too far down the redisplay routines IMO. At some level there should be functions that know how to display strings with extents and faces, regardless of buffer etc. After all the window system does not care. <andy@xemacs.org> */ typedef struct display_line display_line; struct display_line { short ypos; /* vertical position in pixels of the baseline for this line. */ unsigned short ascent, descent; /* maximum values for this line. The ascent is the number of pixels above the baseline, and the descent is the number of pixels below the baseline. The descent includes the baseline pixel-row itself, I think. */ unsigned short clip; /* amount of bottom of line to clip in pixels.*/ unsigned short top_clip; /* amount of top of line to clip in pixels.*/ Charbpos charbpos; /* first buffer position on line */ Charbpos end_charbpos; /* last buffer position on line */ Charcount offset; /* adjustment to charbpos vals */ Charcount num_chars; /* # of chars on line including expansion of tabs and control chars */ int cursor_elt; /* rune block of TEXT display block cursor is at or -1 */ char used_prop_data; /* can't incrementally update if line used propagation data */ layout_bounds bounds; /* line boundary positions */ char modeline; /* t if this line is a modeline */ char line_continuation; /* t if this line continues to next display line. */ /* Dynamic array of display blocks */ display_block_dynarr *display_blocks; /* Dynamic arrays of left and right glyph blocks */ glyph_block_dynarr *left_glyphs; glyph_block_dynarr *right_glyphs; face_index left_margin_findex; face_index right_margin_findex; face_index default_findex; }; #define DISPLAY_LINE_HEIGHT(dl) \ (dl->ascent + dl->descent - (dl->clip + dl->top_clip)) #define DISPLAY_LINE_YPOS(dl) \ (dl->ypos - (dl->ascent - dl->top_clip)) #define DISPLAY_LINE_YEND(dl) \ ((dl->ypos + dl->descent) - dl->clip) typedef struct { Dynarr_declare (display_line); } display_line_dynarr; /* The following two structures are used to represent an area to displayed and where to display it. Using these two structures all combinations of clipping and position can be accommodated. */ /* This represents an area to be displayed into. */ typedef struct display_box display_box; struct display_box { int xpos; /* absolute horizontal position of area */ int ypos; /* absolute vertical position of area */ int width, height; }; /* This represents the area from a glyph to be displayed. */ typedef struct display_glyph_area display_glyph_area; struct display_glyph_area { int xoffset; /* horizontal offset of the glyph, +ve means display the glyph with x offset by xoffset, -ve means display starting xoffset into the glyph. */ int yoffset; /* vertical offset of the glyph, +ve means display the glyph with y offset by yoffset, -ve means display starting xoffset into the glyph. */ int width, height; /* width and height of glyph to display. */ }; /* It could be argued that the following two structs belong in extents.h, but they're only used by redisplay and it simplifies the header files to put them here. */ typedef struct { Dynarr_declare (EXTENT); } EXTENT_dynarr; struct font_metric_info { int width; int height; /* always ascent + descent; for convenience */ int ascent; int descent; int proportional_p; }; /* NOTE NOTE NOTE: Currently the positions in an extent fragment structure are Bytebpos's, not Charbpos's. This could change. */ struct extent_fragment { Lisp_Object object; /* buffer or string */ struct frame *frm; Bytebpos pos, end; EXTENT_dynarr *extents; glyph_block_dynarr *begin_glyphs, *end_glyphs; unsigned int invisible:1; unsigned int invisible_ellipses:1; unsigned int previously_invisible:1; unsigned int invisible_ellipses_already_displayed:1; }; #define EDGE_TOP 1 #define EDGE_LEFT 2 #define EDGE_BOTTOM 4 #define EDGE_RIGHT 8 #define EDGE_ALL (EDGE_TOP | EDGE_LEFT | EDGE_BOTTOM | EDGE_RIGHT) /*************************************************************************/ /* change flags */ /*************************************************************************/ /* Quick flags to signal redisplay. redisplay() sets them all to 0 when it finishes. If none of them are set when it starts, it assumes that nothing needs to be done. Functions that make a change that is (potentially) visible on the screen should set the appropriate flag. If any of these flags are set, redisplay will look more carefully to see if anything has really changed. */ /* Nonzero if the contents of a buffer have changed since the last time redisplay completed. */ extern int buffers_changed; extern int buffers_changed_set; /* Nonzero if head_clip or tail_clip of a buffer has changed since last redisplay that finished. */ extern int clip_changed; extern int clip_changed_set; /* Nonzero if any extent has changed since the last time redisplay completed. */ extern int extents_changed; extern int extents_changed_set; /* Nonzero if any face has changed since the last time redisplay completed. */ extern int faces_changed; /* Nonzero means one or more frames have been marked as garbaged. */ extern int frame_changed; /* True if any of the builtin display glyphs (continuation, hscroll, control-arrow, etc) is in need of updating somewhere. */ extern int glyphs_changed; extern int glyphs_changed_set; /* True if any displayed subwindow is in need of updating somewhere. */ extern int subwindows_changed; extern int subwindows_changed_set; /* True if any displayed subwindow is in need of updating somewhere. */ extern int subwindows_state_changed; extern int subwindows_state_changed_set; /* True if an icon is in need of updating somewhere. */ extern int icon_changed; extern int icon_changed_set; /* True if a menubar is in need of updating somewhere. */ extern int menubar_changed; extern int menubar_changed_set; /* True iff we should redraw the modelines on the next redisplay. */ extern int modeline_changed; extern int modeline_changed_set; /* Nonzero if point has changed in some buffer since the last time redisplay completed. */ extern int point_changed; extern int point_changed_set; /* Nonzero if some frame has changed its size. */ extern int size_changed; /* Nonzero if some device has signaled that it wants to change size. */ extern int asynch_device_change_pending; /* Nonzero if any toolbar has changed. */ extern int toolbar_changed; extern int toolbar_changed_set; /* Nonzero if any gutter has changed. */ extern int gutter_changed; extern int gutter_changed_set; /* Nonzero if any window has changed since the last time redisplay completed */ extern int windows_changed; /* Nonzero if any frame's window structure has changed since the last time redisplay completed. */ extern int windows_structure_changed; /* These macros can be relatively expensive. Since they are often called numerous times between each call to redisplay, we keep track if each has already been called and don't bother doing most of the work if it is currently set. */ #define MARK_TYPE_CHANGED(object) do { \ if (!object##_changed_set) { \ Lisp_Object MTC_devcons, MTC_concons; \ DEVICE_LOOP_NO_BREAK (MTC_devcons, MTC_concons) \ { \ Lisp_Object MTC_frmcons; \ struct device *MTC_d = XDEVICE (XCAR (MTC_devcons)); \ DEVICE_FRAME_LOOP (MTC_frmcons, MTC_d) \ { \ struct frame *MTC_f = XFRAME (XCAR (MTC_frmcons)); \ MTC_f->object##_changed = 1; \ MTC_f->modiff++; \ } \ MTC_d->object##_changed = 1; \ } \ object##_changed = 1; \ object##_changed_set = 1; } \ } while (0) #define MARK_BUFFERS_CHANGED MARK_TYPE_CHANGED (buffers) #define MARK_CLIP_CHANGED MARK_TYPE_CHANGED (clip) #define MARK_EXTENTS_CHANGED MARK_TYPE_CHANGED (extents) #define MARK_ICON_CHANGED MARK_TYPE_CHANGED (icon) #define MARK_MENUBAR_CHANGED MARK_TYPE_CHANGED (menubar) #define MARK_MODELINE_CHANGED MARK_TYPE_CHANGED (modeline) #define MARK_POINT_CHANGED MARK_TYPE_CHANGED (point) #define MARK_TOOLBAR_CHANGED MARK_TYPE_CHANGED (toolbar) #define MARK_GUTTER_CHANGED MARK_TYPE_CHANGED (gutter) #define MARK_GLYPHS_CHANGED MARK_TYPE_CHANGED (glyphs) #define MARK_SUBWINDOWS_CHANGED MARK_TYPE_CHANGED (subwindows) #define MARK_SUBWINDOWS_STATE_CHANGED MARK_TYPE_CHANGED (subwindows_state) #define CLASS_RESET_CHANGED_FLAGS(p) do { \ (p)->buffers_changed = 0; \ (p)->clip_changed = 0; \ (p)->extents_changed = 0; \ (p)->faces_changed = 0; \ (p)->frame_changed = 0; \ (p)->icon_changed = 0; \ (p)->menubar_changed = 0; \ (p)->modeline_changed = 0; \ (p)->point_changed = 0; \ (p)->toolbar_changed = 0; \ (p)->gutter_changed = 0; \ (p)->glyphs_changed = 0; \ (p)->subwindows_changed = 0; \ (p)->subwindows_state_changed = 0; \ (p)->windows_changed = 0; \ (p)->windows_structure_changed = 0; \ } while (0) #define GLOBAL_RESET_CHANGED_FLAGS do { \ buffers_changed = 0; \ clip_changed = 0; \ extents_changed = 0; \ frame_changed = 0; \ icon_changed = 0; \ menubar_changed = 0; \ modeline_changed = 0; \ point_changed = 0; \ toolbar_changed = 0; \ gutter_changed = 0; \ glyphs_changed = 0; \ subwindows_changed = 0; \ subwindows_state_changed = 0; \ windows_changed = 0; \ windows_structure_changed = 0; \ } while (0) #define CLASS_REDISPLAY_FLAGS_CHANGEDP(p) \ ( (p)->buffers_changed || \ (p)->clip_changed || \ (p)->extents_changed || \ (p)->faces_changed || \ (p)->frame_changed || \ (p)->icon_changed || \ (p)->menubar_changed || \ (p)->modeline_changed || \ (p)->point_changed || \ (p)->toolbar_changed || \ (p)->gutter_changed || \ (p)->glyphs_changed || \ (p)->size_changed || \ (p)->subwindows_changed || \ (p)->subwindows_state_changed || \ (p)->windows_changed || \ (p)->windows_structure_changed ) #define GLOBAL_REDISPLAY_FLAGS_CHANGEDP \ ( buffers_changed || \ clip_changed || \ extents_changed || \ faces_changed || \ frame_changed || \ icon_changed || \ menubar_changed || \ modeline_changed || \ point_changed || \ toolbar_changed || \ gutter_changed || \ glyphs_changed || \ size_changed || \ subwindows_changed || \ subwindows_state_changed || \ windows_changed || \ windows_structure_changed ) /* Anytime a console, device or frame is added or deleted we need to reset these flags. */ #define RESET_CHANGED_SET_FLAGS do { \ buffers_changed_set = 0; \ clip_changed_set = 0; \ extents_changed_set = 0; \ icon_changed_set = 0; \ menubar_changed_set = 0; \ modeline_changed_set = 0; \ point_changed_set = 0; \ toolbar_changed_set = 0; \ gutter_changed_set = 0; \ glyphs_changed_set = 0; \ subwindows_changed_set = 0; \ subwindows_state_changed_set = 0; \ } while (0) /*************************************************************************/ /* redisplay global variables */ /*************************************************************************/ /* redisplay structure used by various utility routines. */ extern display_line_dynarr *cmotion_display_lines; /* Nonzero means truncate lines in all windows less wide than the frame. */ extern int truncate_partial_width_windows; /* Nonzero if we're in a display critical section. */ extern int in_display; /* Nonzero means no need to redraw the entire frame on resuming a suspended Emacs. This is useful on terminals with multiple pages, where one page is used for Emacs and another for all else. */ extern int no_redraw_on_reenter; /* Non-nil means flash the frame instead of ringing the bell. */ extern Lisp_Object Vvisible_bell; /* Thickness of shadow border around 3D modelines. */ extern Lisp_Object Vmodeline_shadow_thickness; /* Scroll if point lands on the bottom line and that line is partially clipped. */ extern int scroll_on_clipped_lines; extern Lisp_Object Vglobal_mode_string; /* The following two variables are defined in emacs.c and are used to convey information discovered on the command line way early (before *anything* is initialized). */ /* If non-zero, a window-system was specified on the command line. Defined in emacs.c. */ extern int display_arg; /* Type of display specified. Defined in emacs.c. */ extern const char *display_use; /* Nonzero means reading single-character input with prompt so put cursor on minibuffer after the prompt. */ extern int cursor_in_echo_area; extern Lisp_Object Qbar_cursor, Qcursor_in_echo_area, Vwindow_system; extern Lisp_Object Qtop_bottom; /*************************************************************************/ /* redisplay exported functions */ /*************************************************************************/ EXFUN (Fredraw_frame, 2); int redisplay_text_width_string (struct window *w, int findex, Intbyte *nonreloc, Lisp_Object reloc, Bytecount offset, Bytecount len); int redisplay_frame_text_width_string (struct frame *f, Lisp_Object face, Intbyte *nonreloc, Lisp_Object reloc, Bytecount offset, Bytecount len); int redisplay_frame (struct frame *f, int preemption_check); void redisplay (void); struct display_block *get_display_block_from_line (struct display_line *dl, enum display_type type); layout_bounds calculate_display_line_boundaries (struct window *w, int modeline); Charbpos point_at_center (struct window *w, int type, Charbpos start, Charbpos point); int line_at_center (struct window *w, int type, Charbpos start, Charbpos point); int window_half_pixpos (struct window *w); void redisplay_echo_area (void); void free_display_structs (struct window_mirror *mir); void free_display_lines (display_line_dynarr *dla); void mark_redisplay_structs (display_line_dynarr *dla); void generate_displayable_area (struct window *w, Lisp_Object disp_string, int xpos, int ypos, int width, int height, display_line_dynarr* dl, Charbpos start_pos, face_index default_face); /* `generate_title_string' in frame.c needs this */ void generate_formatted_string_db (Lisp_Object format_str, Lisp_Object result_str, struct window *w, struct display_line *dl, struct display_block *db, face_index findex, int min_pixpos, int max_pixpos, int type); int real_current_modeline_height (struct window *w); int pixel_to_glyph_translation (struct frame *f, int x_coord, int y_coord, int *col, int *row, int *obj_x, int *obj_y, struct window **w, Charbpos *charbpos, Charbpos *closest, Charcount *modeline_closest, Lisp_Object *obj1, Lisp_Object *obj2); void glyph_to_pixel_translation (struct window *w, int char_x, int char_y, int *pix_x, int *pix_y); int point_in_line_start_cache (struct window *w, Charbpos point, int min_past); int point_would_be_visible (struct window *w, Charbpos startp, Charbpos point); Charbpos start_of_last_line (struct window *w, Charbpos startp); Charbpos end_of_last_line (struct window *w, Charbpos startp); Charbpos start_with_line_at_pixpos (struct window *w, Charbpos point, int pixpos); Charbpos start_with_point_on_display_line (struct window *w, Charbpos point, int line); int redisplay_variable_changed (Lisp_Object sym, Lisp_Object *val, Lisp_Object in_object, int flags); void redisplay_glyph_changed (Lisp_Object glyph, Lisp_Object property, Lisp_Object locale); #ifdef MEMORY_USAGE_STATS int compute_display_line_dynarr_usage (display_line_dynarr *dyn, struct overhead_stats *ovstats); int compute_line_start_cache_dynarr_usage (line_start_cache_dynarr *dyn, struct overhead_stats *ovstats); #endif /* defined in redisplay-output.c */ int get_next_display_block (layout_bounds bounds, display_block_dynarr *dba, int start_pos, int *next_start); void redisplay_output_layout (Lisp_Object domain, Lisp_Object image_instance, struct display_box* db, struct display_glyph_area* dga, face_index findex, int cursor_start, int cursor_width, int cursor_height); void redisplay_output_subwindow (struct window *w, Lisp_Object image_instance, struct display_box* db, struct display_glyph_area* dga, face_index findex, int cursor_start, int cursor_width, int cursor_height); void redisplay_unmap_subwindows_maybe (struct frame* f, int x, int y, int width, int height); void redisplay_output_pixmap (struct window *w, Lisp_Object image_instance, struct display_box* db, struct display_glyph_area* dga, face_index findex, int cursor_start, int cursor_width, int cursor_height, int offset_bitmap); int redisplay_calculate_display_boxes (struct display_line *dl, int xpos, int xoffset, int start_pixpos, int width, struct display_box* dest, struct display_glyph_area* src); int redisplay_normalize_glyph_area (struct display_box* dest, struct display_glyph_area* glyphsrc); void redisplay_clear_to_window_end (struct window *w, int ypos1, int ypos2); void redisplay_clear_region (Lisp_Object window, face_index findex, int x, int y, int width, int height); void redisplay_clear_top_of_window (struct window *w); void redisplay_clear_bottom_of_window (struct window *w, display_line_dynarr *ddla, int min_start, int max_end); void redisplay_update_line (struct window *w, int first_line, int last_line, int update_values); void redisplay_output_window (struct window *w); void bevel_modeline (struct window *w, struct display_line *dl); int redisplay_move_cursor (struct window *w, Charbpos new_point, int no_output_end); void redisplay_redraw_cursor (struct frame *f, int run_begin_end_meths); void output_display_line (struct window *w, display_line_dynarr *cdla, display_line_dynarr *ddla, int line, int force_start, int force_end); void sync_display_line_structs (struct window *w, int line, int do_blocks, display_line_dynarr *cdla, display_line_dynarr *ddla); #endif /* INCLUDED_redisplay_h_ */