view src/minibuf.c @ 665:fdefd0186b75

[xemacs-hg @ 2001-09-20 06:28:42 by ben] The great integral types renaming. The purpose of this is to rationalize the names used for various integral types, so that they match their intended uses and follow consist conventions, and eliminate types that were not semantically different from each other. The conventions are: -- All integral types that measure quantities of anything are signed. Some people disagree vociferously with this, but their arguments are mostly theoretical, and are vastly outweighed by the practical headaches of mixing signed and unsigned values, and more importantly by the far increased likelihood of inadvertent bugs: Because of the broken "viral" nature of unsigned quantities in C (operations involving mixed signed/unsigned are done unsigned, when exactly the opposite is nearly always wanted), even a single error in declaring a quantity unsigned that should be signed, or even the even more subtle error of comparing signed and unsigned values and forgetting the necessary cast, can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned on specifically to catch this, but this tends to result in a great number of warnings when mixing signed and unsigned, and the casts are annoying. More has been written on this elsewhere. -- All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on 32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size as Lisp objects of type `int', and (as far as I can tell) of size_t (unsigned!) and ssize_t. The only type below that is not an EMACS_INT is Hashcode, which is an unsigned value of the same size as EMACS_INT. -- Type names should be relatively short (no more than 10 characters or so), with the first letter capitalized and no underscores if they can at all be avoided. -- "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and indexes. -- "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Bytebpos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not directly correspond to the memory representation. Use "Membpos" for this. -- "Char" refers to internal-format characters, not to the C type "char", which is really a byte. -- For the actual name changes, see the script below. I ran the following script to do the conversion. (NOTE: This script is idempotent. You can safely run it multiple times and it will not screw up previous results -- in fact, it will do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle patches coming in from old workspaces, or old branches.) There are two tags, just before and just after the change: `pre-integral-type-rename' and `post-integral-type-rename'. When merging code from the main trunk into a branch, the best thing to do is first merge up to `pre-integral-type-rename', then apply the script and associated changes, then merge from `post-integral-type-change' to the present. (Alternatively, just do the merging in one operation; but you may then have a lot of conflicts needing to be resolved by hand.) Script `fixtypes.sh' follows: ----------------------------------- cut ------------------------------------ files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]" gr Memory_Count Bytecount $files gr Lstream_Data_Count Bytecount $files gr Element_Count Elemcount $files gr Hash_Code Hashcode $files gr extcount bytecount $files gr bufpos charbpos $files gr bytind bytebpos $files gr memind membpos $files gr bufbyte intbyte $files gr Extcount Bytecount $files gr Bufpos Charbpos $files gr Bytind Bytebpos $files gr Memind Membpos $files gr Bufbyte Intbyte $files gr EXTCOUNT BYTECOUNT $files gr BUFPOS CHARBPOS $files gr BYTIND BYTEBPOS $files gr MEMIND MEMBPOS $files gr BUFBYTE INTBYTE $files gr MEMORY_COUNT BYTECOUNT $files gr LSTREAM_DATA_COUNT BYTECOUNT $files gr ELEMENT_COUNT ELEMCOUNT $files gr HASH_CODE HASHCODE $files ----------------------------------- cut ------------------------------------ `fixtypes.sh' is a Bourne-shell script; it uses 'gr': ----------------------------------- cut ------------------------------------ #!/bin/sh # Usage is like this: # gr FROM TO FILES ... # globally replace FROM with TO in FILES. FROM and TO are regular expressions. # backup files are stored in the `backup' directory. from="$1" to="$2" shift 2 echo ${1+"$@"} | xargs global-replace "s/$from/$to/g" ----------------------------------- cut ------------------------------------ `gr' in turn uses a Perl script to do its real work, `global-replace', which follows: ----------------------------------- cut ------------------------------------ : #-*- Perl -*- ### global-modify --- modify the contents of a file by a Perl expression ## Copyright (C) 1999 Martin Buchholz. ## Copyright (C) 2001 Ben Wing. ## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org> ## Maintainer: Ben Wing <ben@xemacs.org> ## Current Version: 1.0, May 5, 2001 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with XEmacs; see the file COPYING. If not, write to the Free # Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA # 02111-1307, USA. eval 'exec perl -w -S $0 ${1+"$@"}' if 0; use strict; use FileHandle; use Carp; use Getopt::Long; use File::Basename; (my $myName = $0) =~ s@.*/@@; my $usage=" Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode] PERLEXPR FILE ... Globally modify a file, either line by line or in one big hunk. Typical usage is like this: [with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc. in file names] find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n [with non-GNU print, xargs] find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n The file is read in, either line by line (with --line-mode specified) or in one big hunk (with --hunk-mode specified; it's the default), and the Perl expression is then evalled with \$_ set to the line or hunk of text, including the terminating newline if there is one. It should destructively modify the value there, storing the changed result in \$_. Files in which any modifications are made are backed up to the directory specified using --backup-dir, or to `backup' by default. To disable this, use --backup-dir= with no argument. Hunk mode is the default because it is MUCH MUCH faster than line-by-line. Use line-by-line only when it matters, e.g. you want to do a replacement only once per line (the default without the `g' argument). Conversely, when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one replacement in the entire file! "; my %options = (); $Getopt::Long::ignorecase = 0; &GetOptions ( \%options, 'help', 'backup-dir=s', 'line-mode', 'hunk-mode', ); die $usage if $options{"help"} or @ARGV <= 1; my $code = shift; die $usage if grep (-d || ! -w, @ARGV); sub SafeOpen { open ((my $fh = new FileHandle), $_[0]); confess "Can't open $_[0]: $!" if ! defined $fh; return $fh; } sub SafeClose { close $_[0] or confess "Can't close $_[0]: $!"; } sub FileContents { my $fh = SafeOpen ("< $_[0]"); my $olddollarslash = $/; local $/ = undef; my $contents = <$fh>; $/ = $olddollarslash; return $contents; } sub WriteStringToFile { my $fh = SafeOpen ("> $_[0]"); binmode $fh; print $fh $_[1] or confess "$_[0]: $!\n"; SafeClose $fh; } foreach my $file (@ARGV) { my $changed_p = 0; my $new_contents = ""; if ($options{"line-mode"}) { my $fh = SafeOpen $file; while (<$fh>) { my $save_line = $_; eval $code; $changed_p = 1 if $save_line ne $_; $new_contents .= $_; } } else { my $orig_contents = $_ = FileContents $file; eval $code; if ($_ ne $orig_contents) { $changed_p = 1; $new_contents = $_; } } if ($changed_p) { my $backdir = $options{"backup-dir"}; $backdir = "backup" if !defined ($backdir); if ($backdir) { my ($name, $path, $suffix) = fileparse ($file, ""); my $backfulldir = $path . $backdir; my $backfile = "$backfulldir/$name"; mkdir $backfulldir, 0755 unless -d $backfulldir; print "modifying $file (original saved in $backfile)\n"; rename $file, $backfile; } WriteStringToFile ($file, $new_contents); } } ----------------------------------- cut ------------------------------------ In addition to those programs, I needed to fix up a few other things, particularly relating to the duplicate definitions of types, now that some types merged with others. Specifically: 1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now look like this: (In each code snippet below, the first and last lines are the same as the original, as are all lines outside of those lines. That allows you to locate the section to be replaced, and replace the stuff in that section, verifying that there isn't anything new added that would need to be kept.) --------------------------------- snip ------------------------------------- /* Counts of bytes or chars */ typedef EMACS_INT Bytecount; typedef EMACS_INT Charcount; /* Counts of elements */ typedef EMACS_INT Elemcount; /* Hash codes */ typedef unsigned long Hashcode; /* ------------------------ dynamic arrays ------------------- */ --------------------------------- snip ------------------------------------- 2. in lstream.h, removed duplicate declaration of Bytecount. Rewrote the comment about this type. The changed code should now look like this: --------------------------------- snip ------------------------------------- #endif /* The have been some arguments over the what the type should be that specifies a count of bytes in a data block to be written out or read in, using Lstream_read(), Lstream_write(), and related functions. Originally it was long, which worked fine; Martin "corrected" these to size_t and ssize_t on the grounds that this is theoretically cleaner and is in keeping with the C standards. Unfortunately, this practice is horribly error-prone due to design flaws in the way that mixed signed/unsigned arithmetic happens. In fact, by doing this change, Martin introduced a subtle but fatal error that caused the operation of sending large mail messages to the SMTP server under Windows to fail. By putting all values back to be signed, avoiding any signed/unsigned mixing, the bug immediately went away. The type then in use was Lstream_Data_Count, so that it be reverted cleanly if a vote came to that. Now it is Bytecount. Some earlier comments about why the type must be signed: This MUST BE SIGNED, since it also is used in functions that return the number of bytes actually read to or written from in an operation, and these functions can return -1 to signal error. Note that the standard Unix read() and write() functions define the count going in as a size_t, which is UNSIGNED, and the count going out as an ssize_t, which is SIGNED. This is a horrible design flaw. Not only is it highly likely to lead to logic errors when a -1 gets interpreted as a large positive number, but operations are bound to fail in all sorts of horrible ways when a number in the upper-half of the size_t range is passed in -- this number is unrepresentable as an ssize_t, so code that checks to see how many bytes are actually written (which is mandatory if you are dealing with certain types of devices) will get completely screwed up. --ben */ typedef enum lstream_buffering --------------------------------- snip ------------------------------------- 3. in dumper.c, there are four places, all inside of switch() statements, where XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks contain identical code, and you should *REMOVE THE SECOND* and leave the first.
author ben
date Thu, 20 Sep 2001 06:31:11 +0000
parents 183866b06e0b
children 943eaba38521
line wrap: on
line source

/* Minibuffer input and completion.
   Copyright (C) 1985, 1986, 1992-1995 Free Software Foundation, Inc.
   Copyright (C) 1995 Sun Microsystems, Inc.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Mule 2.0, FSF 19.28.  Mule-ized except as noted.
   Substantially different from FSF. */

/* #### dmoore - All sorts of things in here can call lisp, like message.
   Track all this stuff. */

#include <config.h>
#include "lisp.h"

#include "buffer.h"
#include "commands.h"
#include "console-stream.h"
#include "events.h"
#include "frame.h"
#include "insdel.h"
#include "redisplay.h"
#include "window.h"

/* Depth in minibuffer invocations.  */
int minibuf_level;

Lisp_Object Qcompletion_ignore_case;

/* Nonzero means completion ignores case.  */
int completion_ignore_case;

/* List of regexps that should restrict possible completions.  */
Lisp_Object Vcompletion_regexp_list;

/* The echo area buffer. */
Lisp_Object Vecho_area_buffer;

/* Prompt to display in front of the minibuffer contents */
Lisp_Object Vminibuf_prompt;

/* Added on 97/3/14 by Jareth Hein (jhod@po.iijnet.or.jp) for input system support */
/* String to be displayed in front of prompt of the minibuffer contents */
Lisp_Object Vminibuf_preprompt;

/* Hook to run just after entry to minibuffer. */
Lisp_Object Qminibuffer_setup_hook, Vminibuffer_setup_hook;

Lisp_Object Qappend_message, Qcurrent_message_label,
            Qclear_message, Qdisplay_message;


DEFUN ("minibuffer-depth", Fminibuffer_depth, 0, 0, 0, /*
Return current depth of activations of minibuffer, a nonnegative integer.
*/
       ())
{
  return make_int (minibuf_level);
}

/* The default buffer to use as the window-buffer of minibuffer windows */
/*  Note there is special code in kill-buffer to make this unkillable */
Lisp_Object Vminibuffer_zero;


/* Actual minibuffer invocation. */

static Lisp_Object
read_minibuffer_internal_unwind (Lisp_Object unwind_data)
{
  Lisp_Object frame;
  XWINDOW (minibuf_window)->last_modified[CURRENT_DISP] = Qzero;
  XWINDOW (minibuf_window)->last_modified[DESIRED_DISP] = Qzero;
  XWINDOW (minibuf_window)->last_modified[CMOTION_DISP] = Qzero;
  XWINDOW (minibuf_window)->last_facechange[CURRENT_DISP] = Qzero;
  XWINDOW (minibuf_window)->last_facechange[DESIRED_DISP] = Qzero;
  XWINDOW (minibuf_window)->last_facechange[CMOTION_DISP] = Qzero;
  Vminibuf_prompt = Felt (unwind_data, Qzero);
  minibuf_level = XINT (Felt (unwind_data, make_int (1)));
  while (CONSP (unwind_data))
    {
      Lisp_Object victim = unwind_data;
      unwind_data = XCDR (unwind_data);
      free_cons (XCONS (victim));
    }

  /* If cursor is on the minibuffer line,
     show the user we have exited by putting it in column 0.  */
  frame = Fselected_frame (Qnil);
  if (!noninteractive
      && !NILP (frame)
      && !NILP (XFRAME (frame)->minibuffer_window))
    {
      struct window *w = XWINDOW (XFRAME (frame)->minibuffer_window);
      redisplay_move_cursor (w, 0, 0);
    }

  return Qnil;
}

/* 97/4/13 jhod: Added for input methods */
DEFUN ("set-minibuffer-preprompt", Fset_minibuffer_preprompt, 1, 1, 0, /*
Set the minibuffer preprompt string to PREPROMPT. This is used by language
input methods to relay state information to the user.
*/
       (preprompt))
{
  if (NILP (preprompt))
    {
      Vminibuf_preprompt = Qnil;
    }
  else
    {
      CHECK_STRING (preprompt);

      Vminibuf_preprompt = LISP_GETTEXT (preprompt);
    }
  return Qnil;
}

DEFUN ("read-minibuffer-internal", Fread_minibuffer_internal, 1, 1, 0, /*
Lowest-level interface to minibuffers.  Don't call this.
*/
       (prompt))
{
  /* This function can GC */
  int speccount = specpdl_depth ();
  Lisp_Object val;

  CHECK_STRING (prompt);

  single_console_state ();

  record_unwind_protect (read_minibuffer_internal_unwind,
                         noseeum_cons
			 (Vminibuf_prompt,
			  noseeum_cons (make_int (minibuf_level), Qnil)));
  Vminibuf_prompt = LISP_GETTEXT (prompt);

  /* NOTE: Here (or somewhere around here), in FSFmacs 19.30,
     choose_minibuf_frame() is called.  This is the only
     place in FSFmacs that it's called any more -- there's
     also a call in xterm.c, but commented out, and 19.28
     had the calls in different places.

     choose_minibuf_frame() does the following:

  if (!EQ (minibuf_window, selected_frame()->minibuffer_window))
    {
      Fset_window_buffer (selected_frame()->minibuffer_window,
			  XWINDOW (minibuf_window)->buffer);
      minibuf_window = selected_frame()->minibuffer_window;
    }

  #### Note that we don't do the set-window-buffer.  This call is
  similar, but not identical, to a set-window-buffer call made
  in `read-from-minibuffer' in minibuf.el.  I hope it's close
  enough, because minibuf_window isn't really exported to Lisp.

  The comment above choose_minibuf_frame() reads:

  Put minibuf on currently selected frame's minibuffer.
  We do this whenever the user starts a new minibuffer
  or when a minibuffer exits.  */

  minibuf_window = FRAME_MINIBUF_WINDOW (selected_frame ());

  run_hook (Qminibuffer_setup_hook);

  minibuf_level++;
  clear_echo_area (selected_frame (), Qnil, 0);

  val = call_command_loop (Qt);

  return unbind_to (speccount, val);
}



/* Completion hair */

/* Compare exactly LEN chars of strings at S1 and S2,
   ignoring case if appropriate.
   Return -1 if strings match,
   else number of chars that match at the beginning.  */

/* Note that this function works in Charcounts, unlike most functions.
   This is necessary for many reasons, one of which is that two
   strings may match even if they have different numbers of bytes,
   if IGNORE_CASE is true. */

Charcount
scmp_1 (const Intbyte *s1, const Intbyte *s2, Charcount len,
	int ignore_case)
{
  Charcount l = len;

  if (ignore_case)
    {
      while (l)
        {
          Emchar c1 = DOWNCASE (current_buffer, charptr_emchar (s1));
          Emchar c2 = DOWNCASE (current_buffer, charptr_emchar (s2));

          if (c1 == c2)
            {
              l--;
              INC_CHARPTR (s1);
              INC_CHARPTR (s2);
            }
          else
            break;
        }
    }
  else
    {
      while (l && charptr_emchar (s1) == charptr_emchar (s2))
	{
	  l--;
	  INC_CHARPTR (s1);
	  INC_CHARPTR (s2);
	}
    }

  if (l == 0)
    return -1;
  else return len - l;
}


int
regexp_ignore_completion_p (const Intbyte *nonreloc,
			    Lisp_Object reloc, Bytecount offset,
			    Bytecount length)
{
  /* Ignore this element if it fails to match all the regexps.  */
  if (!NILP (Vcompletion_regexp_list))
    {
      Lisp_Object regexps;
      EXTERNAL_LIST_LOOP (regexps, Vcompletion_regexp_list)
	{
	  Lisp_Object re = XCAR (regexps);
	  CHECK_STRING (re);
	  if (fast_string_match (re, nonreloc, reloc, offset,
				 length, 0, ERROR_ME, 0) < 0)
	    return 1;
	}
    }
  return 0;
}


/* Callers should GCPRO, since this may call eval */
static int
ignore_completion_p (Lisp_Object completion_string,
                     Lisp_Object pred, Lisp_Object completion)
{
  if (regexp_ignore_completion_p (0, completion_string, 0, -1))
    return 1;

  /* Ignore this element if there is a predicate
     and the predicate doesn't like it. */
  if (!NILP (pred))
  {
    Lisp_Object tem;
    if (EQ (pred, Qcommandp))
      tem = Fcommandp (completion);
    else
      tem = call1 (pred, completion);
    if (NILP (tem))
      return 1;
  }
  return 0;
}


/* #### Maybe we should allow COLLECTION to be a hash table.
   It is wrong for the use of obarrays to be better-rewarded than the
   use of hash tables.  By better-rewarded I mean that you can pass an
   obarray to all of the completion functions, whereas you can't do
   anything like that with a hash table.

   To do so, there should probably be a
   map_obarray_or_alist_or_hash_table function which would be used by
   both Ftry_completion and Fall_completions.  But would the
   additional funcalls slow things down?  */

DEFUN ("try-completion", Ftry_completion, 2, 3, 0, /*
Return common substring of all completions of STRING in COLLECTION.
COLLECTION must be an alist, an obarray, or a function.
Each string in COLLECTION is tested to see if it begins with STRING.
All that match are compared together; the longest initial sequence
common to all matches is returned as a string.  If there is no match
at all, nil is returned.  For an exact match, t is returned.

If COLLECTION is an alist, the cars of the elements of the alist
\(which must be strings) form the set of possible completions.

If COLLECTION is an obarray, the names of all symbols in the obarray
are the possible completions.

If COLLECTION is a function, it is called with three arguments: the
values STRING, PREDICATE and nil.  Whatever it returns becomes the
value of `try-completion'.

If optional third argument PREDICATE is non-nil, it is used to test
each possible match.  The match is a candidate only if PREDICATE
returns non-nil.  The argument given to PREDICATE is the alist element
or the symbol from the obarray.
*/
       (string, collection, predicate))
{
  /* This function can GC */
  Lisp_Object bestmatch, tail;
  Charcount bestmatchsize = 0;
  int list;
  int indice = 0;
  int matchcount = 0;
  int obsize;
  Lisp_Object bucket;
  Charcount slength, blength;

  CHECK_STRING (string);

  if (CONSP (collection))
    {
      Lisp_Object tem = XCAR (collection);
      if (SYMBOLP (tem))	/* lambda, autoload, etc.  Emacs-lisp sucks */
	return call3 (collection, string, predicate, Qnil);
      else
	list = 1;
    }
  else if (VECTORP (collection))
    list = 0;
  else if (NILP (collection))
    list = 1;
  else
    return call3 (collection, string, predicate, Qnil);

  bestmatch = Qnil;
  blength = 0;
  slength = XSTRING_CHAR_LENGTH (string);

  /* If COLLECTION is not a list, set TAIL just for gc pro.  */
  tail = collection;
  if (!list)
    {
      obsize = XVECTOR_LENGTH (collection);
      bucket = XVECTOR_DATA (collection)[indice];
    }
  else /* warning suppression */
    {
      obsize = 0;
      bucket = Qnil;
    }

  while (1)
    {
      /* Get the next element of the alist or obarray. */
      /* Exit the loop if the elements are all used up. */
      /* elt gets the alist element or symbol.
	 eltstring gets the name to check as a completion. */
      Lisp_Object elt;
      Lisp_Object eltstring;

      if (list)
	{
	  if (NILP (tail))
	    break;
	  elt = Fcar (tail);
	  eltstring = Fcar (elt);
	  tail = Fcdr (tail);
	}
      else
	{
	  if (!ZEROP (bucket))
	    {
              Lisp_Symbol *next;
	      if (!SYMBOLP (bucket))
		{
		  invalid_argument ("Bad obarray passed to try-completions",
				    bucket);
		}
	      next = symbol_next (XSYMBOL (bucket));
	      elt = bucket;
	      eltstring = Fsymbol_name (elt);
              if (next)
		XSETSYMBOL (bucket, next);
	      else
		bucket = Qzero;
	    }
	  else if (++indice >= obsize)
	    break;
	  else
	    {
	      bucket = XVECTOR_DATA (collection)[indice];
	      continue;
	    }
	}

      /* Is this element a possible completion? */

      if (STRINGP (eltstring))
	{
	  Charcount eltlength = XSTRING_CHAR_LENGTH (eltstring);
	  if (slength <= eltlength
	      && (0 > scmp (XSTRING_DATA (eltstring),
                            XSTRING_DATA (string),
                            slength)))
	    {
              {
                struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
                int loser;
                GCPRO4 (tail, string, eltstring, bestmatch);
                loser = ignore_completion_p (eltstring, predicate, elt);
                UNGCPRO;
                if (loser)      /* reject this one */
                  continue;
              }

	      /* Update computation of how much all possible
		 completions match */

	      matchcount++;
	      if (NILP (bestmatch))
		{
		  bestmatch = eltstring;
                  blength = eltlength;
		  bestmatchsize = eltlength;
		}
	      else
		{
		  Charcount compare = min (bestmatchsize, eltlength);
		  Charcount matchsize =
		    scmp (XSTRING_DATA (bestmatch),
			  XSTRING_DATA (eltstring),
			  compare);
		  if (matchsize < 0)
		    matchsize = compare;
		  if (completion_ignore_case)
		    {
		      /* If this is an exact match except for case,
			 use it as the best match rather than one that is not
			 an exact match.  This way, we get the case pattern
			 of the actual match.  */
		      if ((matchsize == eltlength
			   && matchsize < blength)
			  ||
			  /* If there is more than one exact match ignoring
			     case, and one of them is exact including case,
			     prefer that one.  */
			  /* If there is no exact match ignoring case,
			     prefer a match that does not change the case
			     of the input.  */
			  ((matchsize == eltlength)
			   ==
			   (matchsize == blength)
			   && 0 > scmp_1 (XSTRING_DATA (eltstring),
					  XSTRING_DATA (string),
					  slength, 0)
			   && 0 <= scmp_1 (XSTRING_DATA (bestmatch),
					   XSTRING_DATA (string),
					   slength, 0)))
                      {
			bestmatch = eltstring;
                        blength = eltlength;
                      }
		    }
		  bestmatchsize = matchsize;
		}
	    }
	}
    }

  if (NILP (bestmatch))
    return Qnil;		/* No completions found */
  /* If we are ignoring case, and there is no exact match,
     and no additional text was supplied,
     don't change the case of what the user typed.  */
  if (completion_ignore_case
      && bestmatchsize == slength
      && blength > bestmatchsize)
    return string;

  /* Return t if the supplied string is an exact match (counting case);
     it does not require any change to be made.  */
  if (matchcount == 1
      && bestmatchsize == slength
      && 0 > scmp_1 (XSTRING_DATA (bestmatch),
		     XSTRING_DATA (string),
		     bestmatchsize, 0))
    return Qt;

  /* Else extract the part in which all completions agree */
  return Fsubstring (bestmatch, Qzero, make_int (bestmatchsize));
}


DEFUN ("all-completions", Fall_completions, 2, 3, 0, /*
Search for partial matches to STRING in COLLECTION.
COLLECTION must be an alist, an obarray, or a function.
Each string in COLLECTION is tested to see if it begins with STRING.
The value is a list of all the strings from COLLECTION that match.

If COLLECTION is an alist, the cars of the elements of the alist
\(which must be strings) form the set of possible completions.

If COLLECTION is an obarray, the names of all symbols in the obarray
are the possible completions.

If COLLECTION is a function, it is called with three arguments: the
values STRING, PREDICATE and t.  Whatever it returns becomes the
value of `all-completions'.

If optional third argument PREDICATE is non-nil, it is used to test
each possible match.  The match is a candidate only if PREDICATE
returns non-nil.  The argument given to PREDICATE is the alist element
or the symbol from the obarray.
*/
       (string, collection, predicate))
{
  /* This function can GC */
  Lisp_Object tail;
  Lisp_Object allmatches;
  int list;
  int indice = 0;
  int obsize;
  Lisp_Object bucket;
  Charcount slength;

  CHECK_STRING (string);

  if (CONSP (collection))
    {
      Lisp_Object tem = XCAR (collection);
      if (SYMBOLP (tem))	/* lambda, autoload, etc.  Emacs-lisp sucks */
	return call3 (collection, string, predicate, Qt);
      else
	list = 1;
    }
  else if (VECTORP (collection))
    list = 0;
  else if (NILP (collection))
    list = 1;
  else
    return call3 (collection, string, predicate, Qt);

  allmatches = Qnil;
  slength = XSTRING_CHAR_LENGTH (string);

  /* If COLLECTION is not a list, set TAIL just for gc pro.  */
  tail = collection;
  if (!list)
    {
      obsize = XVECTOR_LENGTH (collection);
      bucket = XVECTOR_DATA (collection)[indice];
    }
  else /* warning suppression */
    {
      obsize = 0;
      bucket = Qnil;
    }

  while (1)
    {
      /* Get the next element of the alist or obarray. */
      /* Exit the loop if the elements are all used up. */
      /* elt gets the alist element or symbol.
	 eltstring gets the name to check as a completion. */
      Lisp_Object elt;
      Lisp_Object eltstring;

      if (list)
	{
	  if (NILP (tail))
	    break;
	  elt = Fcar (tail);
	  eltstring = Fcar (elt);
	  tail = Fcdr (tail);
	}
      else
	{
	  if (!ZEROP (bucket))
	    {
              Lisp_Symbol *next = symbol_next (XSYMBOL (bucket));
	      elt = bucket;
	      eltstring = Fsymbol_name (elt);
              if (next)
		XSETSYMBOL (bucket, next);
	      else
		bucket = Qzero;
            }
	  else if (++indice >= obsize)
	    break;
	  else
	    {
	      bucket = XVECTOR_DATA (collection)[indice];
	      continue;
	    }
	}

      /* Is this element a possible completion? */

      if (STRINGP (eltstring)
          && (slength <= XSTRING_CHAR_LENGTH (eltstring))
          /* Reject alternatives that start with space
	     unless the input starts with space.  */
	  && ((XSTRING_CHAR_LENGTH (string) > 0 &&
	       string_char (XSTRING (string), 0) == ' ')
	      || string_char (XSTRING (eltstring), 0) != ' ')
	  && (0 > scmp (XSTRING_DATA (eltstring),
                        XSTRING_DATA (string),
                        slength)))
	{
	  /* Yes.  Now check whether predicate likes it. */
          struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
          int loser;
          GCPRO4 (tail, eltstring, allmatches, string);
          loser = ignore_completion_p (eltstring, predicate, elt);
          UNGCPRO;
          if (!loser)
            /* Ok => put it on the list. */
            allmatches = Fcons (eltstring, allmatches);
        }
    }

  return Fnreverse (allmatches);
}

/* Useless FSFmacs functions */
/* More than useless.  I've nuked minibuf_prompt_width so they won't
   function at all in XEmacs at the moment.  They are used to
   implement some braindamage in FSF which we aren't including. --cet */

#if 0
xxDEFUN ("minibuffer-prompt", Fminibuffer_prompt, 0, 0, 0, /*
Return the prompt string of the currently-active minibuffer.
If no minibuffer is active, return nil.
*/
	 ())
{
  return Fcopy_sequence (Vminibuf_prompt);
}

xxDEFUN ("minibuffer-prompt-width", Fminibuffer_prompt_width, 0, 0, 0, /*
Return the display width of the minibuffer prompt.
*/
	 ())
{
  return make_int (minibuf_prompt_width);
}
#endif /* 0 */


/************************************************************************/
/*                              echo area                               */
/************************************************************************/

extern int stdout_needs_newline;

static Lisp_Object
clear_echo_area_internal (struct frame *f, Lisp_Object label, int from_print,
			  int no_restore)
{
  /* This function can call lisp */
  if (!NILP (Ffboundp (Qclear_message)))
    {
      Lisp_Object frame;

      XSETFRAME (frame, f);
      return call4 (Qclear_message, label, frame, from_print ? Qt : Qnil,
		    no_restore ? Qt : Qnil);
    }
  else
    {
      write_string_to_stdio_stream (stderr, 0, (const Intbyte *) "\n", 0, 1,
				    Qterminal, 0);
      return Qnil;
    }
}

Lisp_Object
clear_echo_area (struct frame *f, Lisp_Object label, int no_restore)
{
  /* This function can call lisp */
  return clear_echo_area_internal (f, label, 0, no_restore);
}

Lisp_Object
clear_echo_area_from_print (struct frame *f, Lisp_Object label, int no_restore)
{
  /* This function can call lisp */
  return clear_echo_area_internal (f, label, 1, no_restore);
}

void
echo_area_append (struct frame *f, const Intbyte *nonreloc, Lisp_Object reloc,
		  Bytecount offset, Bytecount length,
		  Lisp_Object label)
{
  /* This function can call lisp */
  Lisp_Object obj;
  struct gcpro gcpro1;
  Lisp_Object frame;

  /* There is an inlining bug in egcs-20000131 c++ that can be worked
     around as follows:  */
#if defined (__GNUC__) && defined (__cplusplus)
  alloca (4);
#endif

  /* some callers pass in a null string as a way of clearing the echo area.
     check for length == 0 now; if this case, neither nonreloc nor reloc
     may be valid.  */
  if (length == 0)
    return;

  fixup_internal_substring (nonreloc, reloc, offset, &length);

  /* also check it here, in case the string was really blank. */
  if (length == 0)
    return;

  if (!NILP (Ffboundp (Qappend_message)))
    {
      if (STRINGP (reloc) && offset == 0 && length == XSTRING_LENGTH (reloc))
	obj = reloc;
      else
	{
	  if (STRINGP (reloc))
	    nonreloc = XSTRING_DATA (reloc);
	  obj = make_string (nonreloc + offset, length);
	}

      XSETFRAME (frame, f);
      GCPRO1 (obj);
      call4 (Qappend_message, label, obj, frame,
	     EQ (label, Qprint) ? Qt : Qnil);
      UNGCPRO;
    }
  else
    {
      if (STRINGP (reloc))
	nonreloc = XSTRING_DATA (reloc);
      write_string_to_stdio_stream (stderr, 0, nonreloc, offset, length,
				    Qterminal, 0);
    }
}

void
echo_area_message (struct frame *f, const Intbyte *nonreloc,
		   Lisp_Object reloc, Bytecount offset, Bytecount length,
		   Lisp_Object label)
{
  /* This function can call lisp */
  clear_echo_area (f, label, 1);
  echo_area_append (f, nonreloc, reloc, offset, length, label);
}

int
echo_area_active (struct frame *f)
{
  /* By definition, the echo area is active if the echo-area buffer
     is not empty.  No need to call Lisp code. (Anyway, this function
     is called from redisplay.) */
  struct buffer *echo_buffer = XBUFFER (Vecho_area_buffer);
  return BUF_BEGV (echo_buffer) != BUF_ZV (echo_buffer);
}

Lisp_Object
echo_area_status (struct frame *f)
{
  /* This function can call lisp */
  if (!NILP (Ffboundp (Qcurrent_message_label)))
    {
      Lisp_Object frame;

      XSETFRAME (frame, f);
      return call1 (Qcurrent_message_label, frame);
    }
  else
    return stdout_needs_newline ? Qmessage : Qnil;
}

Lisp_Object
echo_area_contents (struct frame *f)
{
  /* See above.  By definition, the contents of the echo-area buffer
     are the contents of the echo area. */
  return Fbuffer_substring (Qnil, Qnil, Vecho_area_buffer);
}

/* Dump an informative message to the echo area.  This function takes a
   string in internal format. */
void
message_internal (const Intbyte *nonreloc, Lisp_Object reloc,
		  Bytecount offset, Bytecount length)
{
  /* This function can call lisp  */
  if (NILP (Vexecuting_macro))
    echo_area_message (selected_frame (), nonreloc, reloc, offset, length,
		       Qmessage);
}

void
message_append_internal (const Intbyte *nonreloc, Lisp_Object reloc,
			 Bytecount offset, Bytecount length)
{
  /* This function can call lisp  */
  if (NILP (Vexecuting_macro))
    echo_area_append (selected_frame (), nonreloc, reloc, offset, length,
		      Qmessage);
}

/* The next three functions are interfaces to message_internal() that
   take strings in external format.  message() does I18N3 translating
   on the format string; message_no_translate() does not. */

static void
message_1 (const char *fmt, va_list args)
{
  /* This function can call lisp */
  if (fmt)
    {
      struct gcpro gcpro1;
      /* message_internal() might GC, e.g. if there are after-change-hooks
	 on the echo area buffer */
      Lisp_Object obj = emacs_doprnt_string_va ((const Intbyte *) fmt, Qnil,
						-1, args);
      GCPRO1 (obj);
      message_internal (0, obj, 0, -1);
      UNGCPRO;
    }
  else
    message_internal (0, Qnil, 0, 0);
}

static void
message_append_1 (const char *fmt, va_list args)
{
  /* This function can call lisp */
  if (fmt)
    {
      struct gcpro gcpro1;
      /* message_internal() might GC, e.g. if there are after-change-hooks
	 on the echo area buffer */
      Lisp_Object obj = emacs_doprnt_string_va ((const Intbyte *) fmt, Qnil,
						-1, args);
      GCPRO1 (obj);
      message_append_internal (0, obj, 0, -1);
      UNGCPRO;
    }
  else
    message_append_internal (0, Qnil, 0, 0);
}

void
clear_message (void)
{
  /* This function can call lisp */
  message_internal (0, Qnil, 0, 0);
}

void
message (const char *fmt, ...)
{
  /* This function can call lisp */
  /* I think it's OK to pass the data of Lisp strings as arguments to
     this function.  No GC'ing will occur until the data has already
     been copied. */
  va_list args;

  va_start (args, fmt);
  if (fmt)
    fmt = GETTEXT (fmt);
  message_1 (fmt, args);
  va_end (args);
}

void
message_append (const char *fmt, ...)
{
  /* This function can call lisp */
  va_list args;

  va_start (args, fmt);
  if (fmt)
    fmt = GETTEXT (fmt);
  message_append_1 (fmt, args);
  va_end (args);
}

void
message_no_translate (const char *fmt, ...)
{
  /* This function can call lisp */
  /* I think it's OK to pass the data of Lisp strings as arguments to
     this function.  No GC'ing will occur until the data has already
     been copied. */
  va_list args;

  va_start (args, fmt);
  message_1 (fmt, args);
  va_end (args);
}


/************************************************************************/
/*                            initialization                            */
/************************************************************************/

void
syms_of_minibuf (void)
{
  DEFSYMBOL (Qminibuffer_setup_hook);

  DEFSYMBOL (Qcompletion_ignore_case);

  DEFSUBR (Fminibuffer_depth);
#if 0
  DEFSUBR (Fminibuffer_prompt);
  DEFSUBR (Fminibuffer_prompt_width);
#endif
  DEFSUBR (Fset_minibuffer_preprompt);
  DEFSUBR (Fread_minibuffer_internal);

  DEFSUBR (Ftry_completion);
  DEFSUBR (Fall_completions);

  DEFSYMBOL (Qappend_message);
  DEFSYMBOL (Qclear_message);
  DEFSYMBOL (Qdisplay_message);
  DEFSYMBOL (Qcurrent_message_label);
}

void
reinit_vars_of_minibuf (void)
{
  minibuf_level = 0;
}

void
vars_of_minibuf (void)
{
  reinit_vars_of_minibuf ();

  staticpro (&Vminibuf_prompt);
  Vminibuf_prompt = Qnil;

  /* Added by Jareth Hein (jhod@po.iijnet.or.jp) for input system support */
  staticpro (&Vminibuf_preprompt);
  Vminibuf_preprompt = Qnil;

  DEFVAR_LISP ("minibuffer-setup-hook", &Vminibuffer_setup_hook /*
Normal hook run just after entry to minibuffer.
*/ );
  Vminibuffer_setup_hook = Qnil;

  DEFVAR_BOOL ("completion-ignore-case", &completion_ignore_case /*
Non-nil means don't consider case significant in completion.
*/ );
  completion_ignore_case = 0;

  DEFVAR_LISP ("completion-regexp-list", &Vcompletion_regexp_list /*
List of regexps that should restrict possible completions.
Each completion has to match all regexps in this list.
*/ );
  Vcompletion_regexp_list = Qnil;
}

void
reinit_complex_vars_of_minibuf (void)
{
  /* This function can GC */
#ifdef I18N3
  /* #### This needs to be fixed up so that the gettext() gets called
     at runtime instead of at load time. */
#endif
  Vminibuffer_zero
    = Fget_buffer_create
      (build_string (DEFER_GETTEXT (" *Minibuf-0*")));
  Vecho_area_buffer
    = Fget_buffer_create
      (build_string (DEFER_GETTEXT (" *Echo Area*")));
}

void
complex_vars_of_minibuf (void)
{
  reinit_complex_vars_of_minibuf ();
}