view src/marker.c @ 665:fdefd0186b75

[xemacs-hg @ 2001-09-20 06:28:42 by ben] The great integral types renaming. The purpose of this is to rationalize the names used for various integral types, so that they match their intended uses and follow consist conventions, and eliminate types that were not semantically different from each other. The conventions are: -- All integral types that measure quantities of anything are signed. Some people disagree vociferously with this, but their arguments are mostly theoretical, and are vastly outweighed by the practical headaches of mixing signed and unsigned values, and more importantly by the far increased likelihood of inadvertent bugs: Because of the broken "viral" nature of unsigned quantities in C (operations involving mixed signed/unsigned are done unsigned, when exactly the opposite is nearly always wanted), even a single error in declaring a quantity unsigned that should be signed, or even the even more subtle error of comparing signed and unsigned values and forgetting the necessary cast, can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned on specifically to catch this, but this tends to result in a great number of warnings when mixing signed and unsigned, and the casts are annoying. More has been written on this elsewhere. -- All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on 32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size as Lisp objects of type `int', and (as far as I can tell) of size_t (unsigned!) and ssize_t. The only type below that is not an EMACS_INT is Hashcode, which is an unsigned value of the same size as EMACS_INT. -- Type names should be relatively short (no more than 10 characters or so), with the first letter capitalized and no underscores if they can at all be avoided. -- "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and indexes. -- "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Bytebpos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not directly correspond to the memory representation. Use "Membpos" for this. -- "Char" refers to internal-format characters, not to the C type "char", which is really a byte. -- For the actual name changes, see the script below. I ran the following script to do the conversion. (NOTE: This script is idempotent. You can safely run it multiple times and it will not screw up previous results -- in fact, it will do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle patches coming in from old workspaces, or old branches.) There are two tags, just before and just after the change: `pre-integral-type-rename' and `post-integral-type-rename'. When merging code from the main trunk into a branch, the best thing to do is first merge up to `pre-integral-type-rename', then apply the script and associated changes, then merge from `post-integral-type-change' to the present. (Alternatively, just do the merging in one operation; but you may then have a lot of conflicts needing to be resolved by hand.) Script `fixtypes.sh' follows: ----------------------------------- cut ------------------------------------ files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]" gr Memory_Count Bytecount $files gr Lstream_Data_Count Bytecount $files gr Element_Count Elemcount $files gr Hash_Code Hashcode $files gr extcount bytecount $files gr bufpos charbpos $files gr bytind bytebpos $files gr memind membpos $files gr bufbyte intbyte $files gr Extcount Bytecount $files gr Bufpos Charbpos $files gr Bytind Bytebpos $files gr Memind Membpos $files gr Bufbyte Intbyte $files gr EXTCOUNT BYTECOUNT $files gr BUFPOS CHARBPOS $files gr BYTIND BYTEBPOS $files gr MEMIND MEMBPOS $files gr BUFBYTE INTBYTE $files gr MEMORY_COUNT BYTECOUNT $files gr LSTREAM_DATA_COUNT BYTECOUNT $files gr ELEMENT_COUNT ELEMCOUNT $files gr HASH_CODE HASHCODE $files ----------------------------------- cut ------------------------------------ `fixtypes.sh' is a Bourne-shell script; it uses 'gr': ----------------------------------- cut ------------------------------------ #!/bin/sh # Usage is like this: # gr FROM TO FILES ... # globally replace FROM with TO in FILES. FROM and TO are regular expressions. # backup files are stored in the `backup' directory. from="$1" to="$2" shift 2 echo ${1+"$@"} | xargs global-replace "s/$from/$to/g" ----------------------------------- cut ------------------------------------ `gr' in turn uses a Perl script to do its real work, `global-replace', which follows: ----------------------------------- cut ------------------------------------ : #-*- Perl -*- ### global-modify --- modify the contents of a file by a Perl expression ## Copyright (C) 1999 Martin Buchholz. ## Copyright (C) 2001 Ben Wing. ## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org> ## Maintainer: Ben Wing <ben@xemacs.org> ## Current Version: 1.0, May 5, 2001 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with XEmacs; see the file COPYING. If not, write to the Free # Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA # 02111-1307, USA. eval 'exec perl -w -S $0 ${1+"$@"}' if 0; use strict; use FileHandle; use Carp; use Getopt::Long; use File::Basename; (my $myName = $0) =~ s@.*/@@; my $usage=" Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode] PERLEXPR FILE ... Globally modify a file, either line by line or in one big hunk. Typical usage is like this: [with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc. in file names] find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n [with non-GNU print, xargs] find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n The file is read in, either line by line (with --line-mode specified) or in one big hunk (with --hunk-mode specified; it's the default), and the Perl expression is then evalled with \$_ set to the line or hunk of text, including the terminating newline if there is one. It should destructively modify the value there, storing the changed result in \$_. Files in which any modifications are made are backed up to the directory specified using --backup-dir, or to `backup' by default. To disable this, use --backup-dir= with no argument. Hunk mode is the default because it is MUCH MUCH faster than line-by-line. Use line-by-line only when it matters, e.g. you want to do a replacement only once per line (the default without the `g' argument). Conversely, when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one replacement in the entire file! "; my %options = (); $Getopt::Long::ignorecase = 0; &GetOptions ( \%options, 'help', 'backup-dir=s', 'line-mode', 'hunk-mode', ); die $usage if $options{"help"} or @ARGV <= 1; my $code = shift; die $usage if grep (-d || ! -w, @ARGV); sub SafeOpen { open ((my $fh = new FileHandle), $_[0]); confess "Can't open $_[0]: $!" if ! defined $fh; return $fh; } sub SafeClose { close $_[0] or confess "Can't close $_[0]: $!"; } sub FileContents { my $fh = SafeOpen ("< $_[0]"); my $olddollarslash = $/; local $/ = undef; my $contents = <$fh>; $/ = $olddollarslash; return $contents; } sub WriteStringToFile { my $fh = SafeOpen ("> $_[0]"); binmode $fh; print $fh $_[1] or confess "$_[0]: $!\n"; SafeClose $fh; } foreach my $file (@ARGV) { my $changed_p = 0; my $new_contents = ""; if ($options{"line-mode"}) { my $fh = SafeOpen $file; while (<$fh>) { my $save_line = $_; eval $code; $changed_p = 1 if $save_line ne $_; $new_contents .= $_; } } else { my $orig_contents = $_ = FileContents $file; eval $code; if ($_ ne $orig_contents) { $changed_p = 1; $new_contents = $_; } } if ($changed_p) { my $backdir = $options{"backup-dir"}; $backdir = "backup" if !defined ($backdir); if ($backdir) { my ($name, $path, $suffix) = fileparse ($file, ""); my $backfulldir = $path . $backdir; my $backfile = "$backfulldir/$name"; mkdir $backfulldir, 0755 unless -d $backfulldir; print "modifying $file (original saved in $backfile)\n"; rename $file, $backfile; } WriteStringToFile ($file, $new_contents); } } ----------------------------------- cut ------------------------------------ In addition to those programs, I needed to fix up a few other things, particularly relating to the duplicate definitions of types, now that some types merged with others. Specifically: 1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now look like this: (In each code snippet below, the first and last lines are the same as the original, as are all lines outside of those lines. That allows you to locate the section to be replaced, and replace the stuff in that section, verifying that there isn't anything new added that would need to be kept.) --------------------------------- snip ------------------------------------- /* Counts of bytes or chars */ typedef EMACS_INT Bytecount; typedef EMACS_INT Charcount; /* Counts of elements */ typedef EMACS_INT Elemcount; /* Hash codes */ typedef unsigned long Hashcode; /* ------------------------ dynamic arrays ------------------- */ --------------------------------- snip ------------------------------------- 2. in lstream.h, removed duplicate declaration of Bytecount. Rewrote the comment about this type. The changed code should now look like this: --------------------------------- snip ------------------------------------- #endif /* The have been some arguments over the what the type should be that specifies a count of bytes in a data block to be written out or read in, using Lstream_read(), Lstream_write(), and related functions. Originally it was long, which worked fine; Martin "corrected" these to size_t and ssize_t on the grounds that this is theoretically cleaner and is in keeping with the C standards. Unfortunately, this practice is horribly error-prone due to design flaws in the way that mixed signed/unsigned arithmetic happens. In fact, by doing this change, Martin introduced a subtle but fatal error that caused the operation of sending large mail messages to the SMTP server under Windows to fail. By putting all values back to be signed, avoiding any signed/unsigned mixing, the bug immediately went away. The type then in use was Lstream_Data_Count, so that it be reverted cleanly if a vote came to that. Now it is Bytecount. Some earlier comments about why the type must be signed: This MUST BE SIGNED, since it also is used in functions that return the number of bytes actually read to or written from in an operation, and these functions can return -1 to signal error. Note that the standard Unix read() and write() functions define the count going in as a size_t, which is UNSIGNED, and the count going out as an ssize_t, which is SIGNED. This is a horrible design flaw. Not only is it highly likely to lead to logic errors when a -1 gets interpreted as a large positive number, but operations are bound to fail in all sorts of horrible ways when a number in the upper-half of the size_t range is passed in -- this number is unrepresentable as an ssize_t, so code that checks to see how many bytes are actually written (which is mandatory if you are dealing with certain types of devices) will get completely screwed up. --ben */ typedef enum lstream_buffering --------------------------------- snip ------------------------------------- 3. in dumper.c, there are four places, all inside of switch() statements, where XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks contain identical code, and you should *REMOVE THE SECOND* and leave the first.
author ben
date Thu, 20 Sep 2001 06:31:11 +0000
parents 183866b06e0b
children e38acbeb1cae
line wrap: on
line source

/* Markers: examining, setting and killing.
   Copyright (C) 1985, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: FSF 19.30. */

/* This file has been Mule-ized. */

/* Note that markers are currently kept in an unordered list.
   This means that marker operations may be inefficient if
   there are a bunch of markers in the buffer.  This probably
   won't have a significant impact on redisplay (which uses
   markers), but if it does, it wouldn't be too hard to change
   to an ordered gap array. (Just copy the code from extents.c.)
   */

#include <config.h>
#include "lisp.h"

#include "buffer.h"

static Lisp_Object
mark_marker (Lisp_Object obj)
{
  Lisp_Marker *marker = XMARKER (obj);
  Lisp_Object buf;
  /* DO NOT mark through the marker's chain.
     The buffer's markers chain does not preserve markers from gc;
     Instead, markers are removed from the chain when they are freed
     by gc.
   */
  if (!marker->buffer)
    return (Qnil);

  XSETBUFFER (buf, marker->buffer);
  return (buf);
}

static void
print_marker (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
{
  Lisp_Marker *marker = XMARKER (obj);
  char buf[200];

  if (print_readably)
    printing_unreadable_object ("#<marker 0x%lx>", (long) marker);

  write_c_string (GETTEXT ("#<marker "), printcharfun);
  if (!marker->buffer)
    write_c_string (GETTEXT ("in no buffer"), printcharfun);
  else
    {
      sprintf (buf, "at %ld in ", (long) marker_position (obj));
      write_c_string (buf, printcharfun);
      print_internal (marker->buffer->name, printcharfun, 0);
    }
  sprintf (buf, " 0x%lx>", (long) marker);
  write_c_string (buf, printcharfun);
}

static int
marker_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
{
  Lisp_Marker *marker1 = XMARKER (obj1);
  Lisp_Marker *marker2 = XMARKER (obj2);

  return ((marker1->buffer == marker2->buffer) &&
	  (marker1->membpos == marker2->membpos ||
	  /* All markers pointing nowhere are equal */
	   !marker1->buffer));
}

static unsigned long
marker_hash (Lisp_Object obj, int depth)
{
  unsigned long hash = (unsigned long) XMARKER (obj)->buffer;
  if (hash)
    hash = HASH2 (hash, XMARKER (obj)->membpos);
  return hash;
}

static const struct lrecord_description marker_description[] = {
  { XD_LISP_OBJECT, offsetof (Lisp_Marker, next) },
  { XD_LISP_OBJECT, offsetof (Lisp_Marker, prev) },
  { XD_LISP_OBJECT, offsetof (Lisp_Marker, buffer) },
  { XD_END }
};

DEFINE_BASIC_LRECORD_IMPLEMENTATION ("marker", marker,
				     mark_marker, print_marker, 0,
				     marker_equal, marker_hash, marker_description,
				     Lisp_Marker);

/* Operations on markers. */

DEFUN ("marker-buffer", Fmarker_buffer, 1, 1, 0, /*
Return the buffer that MARKER points into, or nil if none.
Return nil if MARKER points into a dead buffer or doesn't point anywhere.
*/
       (marker))
{
  struct buffer *buf;
  CHECK_MARKER (marker);
  /* Return marker's buffer only if it is not dead.  */
  if ((buf = XMARKER (marker)->buffer) && BUFFER_LIVE_P (buf))
    {
      Lisp_Object buffer;
      XSETBUFFER (buffer, buf);
      return buffer;
    }
  return Qnil;
}

DEFUN ("marker-position", Fmarker_position, 1, 1, 0, /*
Return the position MARKER points at, as a character number.
Return `nil' if marker doesn't point anywhere.
*/
       (marker))
{
  CHECK_MARKER (marker);
  return XMARKER (marker)->buffer ? make_int (marker_position (marker)) : Qnil;
}

#if 0 /* useful debugging function */

static void
check_marker_circularities (struct buffer *buf)
{
  Lisp_Marker *tortoise, *hare;

  tortoise = BUF_MARKERS (buf);
  hare = tortoise;

  if (!tortoise)
    return;

  while (1)
    {
      assert (hare->buffer == buf);
      hare = hare->next;
      if (!hare)
        return;
      assert (hare->buffer == buf);
      hare = hare->next;
      if (!hare)
        return;
      tortoise = tortoise->next;
      assert (tortoise != hare);
    }
}

#endif

static Lisp_Object
set_marker_internal (Lisp_Object marker, Lisp_Object position,
		     Lisp_Object buffer, int restricted_p)
{
  Charbpos charno;
  struct buffer *b;
  Lisp_Marker *m;
  int point_p;

  CHECK_MARKER (marker);

  point_p = POINT_MARKER_P (marker);

  /* If position is nil or a marker that points nowhere,
     make this marker point nowhere.  */
  if (NILP (position) ||
      (MARKERP (position) && !XMARKER (position)->buffer))
    {
      if (point_p)
	invalid_operation ("Can't make point-marker point nowhere",
			   marker);
      if (XMARKER (marker)->buffer)
	unchain_marker (marker);
      return marker;
    }

  CHECK_INT_COERCE_MARKER (position);
  if (NILP (buffer))
    b = current_buffer;
  else
    {
      CHECK_BUFFER (buffer);
      b = XBUFFER (buffer);
      /* If buffer is dead, set marker to point nowhere.  */
      if (!BUFFER_LIVE_P (XBUFFER (buffer)))
	{
	  if (point_p)
	    invalid_operation
	      ("Can't move point-marker in a killed buffer", marker);
	  if (XMARKER (marker)->buffer)
	    unchain_marker (marker);
	  return marker;
	}
    }

  charno = XINT (position);
  m = XMARKER (marker);

  if (restricted_p)
    {
      if (charno < BUF_BEGV (b)) charno = BUF_BEGV (b);
      if (charno > BUF_ZV (b)) charno = BUF_ZV (b);
    }
  else
    {
      if (charno < BUF_BEG (b)) charno = BUF_BEG (b);
      if (charno > BUF_Z (b)) charno = BUF_Z (b);
    }

  if (point_p)
    {
#ifndef moving_point_by_moving_its_marker_is_a_bug
      BUF_SET_PT (b, charno);	/* this will move the marker */
#else  /* It's not a feature, so it must be a bug */
      invalid_operation ("DEBUG: attempt to move point via point-marker",
			 marker);
#endif
    }
  else
    {
      m->membpos = charbpos_to_membpos (b, charno);
    }

  if (m->buffer != b)
    {
      if (point_p)
	invalid_operation ("Can't change buffer of point-marker", marker);
      if (m->buffer != 0)
	unchain_marker (marker);
      m->buffer = b;
      marker_next (m) = BUF_MARKERS (b);
      marker_prev (m) = 0;
      if (BUF_MARKERS (b))
        marker_prev (BUF_MARKERS (b)) = m;
      BUF_MARKERS (b) = m;
    }

  return marker;
}


DEFUN ("set-marker", Fset_marker, 2, 3, 0, /*
Move MARKER to position POSITION in BUFFER.
POSITION can be a marker, an integer or nil.  If POSITION is an
integer, make MARKER point before the POSITIONth character in BUFFER.
If POSITION is nil, makes MARKER point nowhere.  Then it no longer
slows down editing in any buffer.  If POSITION is less than 1, move
MARKER to the beginning of BUFFER.  If POSITION is greater than the
size of BUFFER, move MARKER to the end of BUFFER.
BUFFER defaults to the current buffer.
If this marker was returned by (point-marker t), then changing its
position moves point.  You cannot change its buffer or make it point
nowhere.
The return value is MARKER.
*/
       (marker, position, buffer))
{
  return set_marker_internal (marker, position, buffer, 0);
}


/* This version of Fset_marker won't let the position
   be outside the visible part.  */
Lisp_Object
set_marker_restricted (Lisp_Object marker, Lisp_Object position,
		       Lisp_Object buffer)
{
  return set_marker_internal (marker, position, buffer, 1);
}


/* This is called during garbage collection,
   so we must be careful to ignore and preserve mark bits,
   including those in chain fields of markers.  */

void
unchain_marker (Lisp_Object m)
{
  Lisp_Marker *marker = XMARKER (m);
  struct buffer *b = marker->buffer;

  if (b == 0)
    return;

#ifdef ERROR_CHECK_GC
  assert (BUFFER_LIVE_P (b));
#endif

  if (marker_next (marker))
    marker_prev (marker_next (marker)) = marker_prev (marker);
  if (marker_prev (marker))
    marker_next (marker_prev (marker)) = marker_next (marker);
  else
    BUF_MARKERS (b) = marker_next (marker);

#ifdef ERROR_CHECK_GC
  assert (marker != XMARKER (b->point_marker));
#endif

  marker->buffer = 0;
}

Bytebpos
bi_marker_position (Lisp_Object marker)
{
  Lisp_Marker *m = XMARKER (marker);
  struct buffer *buf = m->buffer;
  Bytebpos pos;

  if (!buf)
    invalid_argument ("Marker does not point anywhere", Qunbound);

  /* FSF claims that marker indices could end up denormalized, i.e.
     in the gap.  This is way bogus if it ever happens, and means
     something fucked up elsewhere.  Since I've overhauled all this
     shit, I don't think this can happen.  In any case, the following
     macro has an assert() in it that will catch these denormalized
     positions. */
  pos = membpos_to_bytebpos (buf, m->membpos);

#ifdef ERROR_CHECK_CHARBPOS
  if (pos < BI_BUF_BEG (buf) || pos > BI_BUF_Z (buf))
    abort ();
#endif

  return pos;
}

Charbpos
marker_position (Lisp_Object marker)
{
  struct buffer *buf = XMARKER (marker)->buffer;

  if (!buf)
    invalid_argument ("Marker does not point anywhere", Qunbound);

  return bytebpos_to_charbpos (buf, bi_marker_position (marker));
}

void
set_bi_marker_position (Lisp_Object marker, Bytebpos pos)
{
  Lisp_Marker *m = XMARKER (marker);
  struct buffer *buf = m->buffer;

  if (!buf)
    invalid_argument ("Marker does not point anywhere", Qunbound);

#ifdef ERROR_CHECK_CHARBPOS
  if (pos < BI_BUF_BEG (buf) || pos > BI_BUF_Z (buf))
    abort ();
#endif

  m->membpos = bytebpos_to_membpos (buf, pos);
}

void
set_marker_position (Lisp_Object marker, Charbpos pos)
{
  struct buffer *buf = XMARKER (marker)->buffer;

  if (!buf)
    invalid_argument ("Marker does not point anywhere", Qunbound);

  set_bi_marker_position (marker, charbpos_to_bytebpos (buf, pos));
}

static Lisp_Object
copy_marker_1 (Lisp_Object marker, Lisp_Object type, int noseeum)
{
  REGISTER Lisp_Object new;

  while (1)
    {
      if (INTP (marker) || MARKERP (marker))
	{
	  if (noseeum)
	    new = noseeum_make_marker ();
	  else
	    new = Fmake_marker ();
	  Fset_marker (new, marker,
		       (MARKERP (marker) ? Fmarker_buffer (marker) : Qnil));
	  XMARKER (new)->insertion_type = !NILP (type);
	  return new;
	}
      else
	marker = wrong_type_argument (Qinteger_or_marker_p, marker);
    }

  RETURN_NOT_REACHED (Qnil) /* not reached */
}

DEFUN ("copy-marker", Fcopy_marker, 1, 2, 0, /*
Return a new marker pointing at the same place as MARKER-OR-INTEGER.
If MARKER-OR-INTEGER is an integer, return a new marker pointing
at that position in the current buffer.
Optional argument MARKER-TYPE specifies the insertion type of the new
marker; see `marker-insertion-type'.
*/
       (marker_or_integer, marker_type))
{
  return copy_marker_1 (marker_or_integer, marker_type, 0);
}

Lisp_Object
noseeum_copy_marker (Lisp_Object marker, Lisp_Object marker_type)
{
  return copy_marker_1 (marker, marker_type, 1);
}

DEFUN ("marker-insertion-type", Fmarker_insertion_type, 1, 1, 0, /*
Return insertion type of MARKER: t if it stays after inserted text.
nil means the marker stays before text inserted there.
*/
       (marker))
{
  CHECK_MARKER (marker);
  return XMARKER (marker)->insertion_type ? Qt : Qnil;
}

DEFUN ("set-marker-insertion-type", Fset_marker_insertion_type, 2, 2, 0, /*
Set the insertion-type of MARKER to TYPE.
If TYPE is t, it means the marker advances when you insert text at it.
If TYPE is nil, it means the marker stays behind when you insert text at it.
*/
       (marker, type))
{
  CHECK_MARKER (marker);

  XMARKER (marker)->insertion_type = ! NILP (type);
  return type;
}

/* #### What is the possible use of this?  It looks quite useless to
   me, because there is no way to find *which* markers are positioned
   at POSITION.  Additional bogosity bonus: (buffer-has-markers-at
   (point)) will always return t because of the `point-marker'.  The
   same goes for the position of mark.  Bletch!

   Someone should discuss this with Stallman, but I don't have the
   stomach.  In fact, this function sucks so badly that I'm disabling
   it by default (although I've debugged it).  If you want to use it,
   use extents instead.  --hniksic */
#if 0
xxDEFUN ("buffer-has-markers-at", Fbuffer_has_markers_at, 1, 1, 0, /*
Return t if there are markers pointing at POSITION in the current buffer.
*/
       (position))
{
  Lisp_Marker *marker;
  Membpos pos;

  /* A small optimization trick: convert POS to membpos now, rather
     than converting every marker's memory index to charbpos.  */
  pos = bytebpos_to_membpos (current_buffer,
			  get_buffer_pos_byte (current_buffer, position,
					       GB_COERCE_RANGE));

  for (marker = BUF_MARKERS (current_buffer);
       marker;
       marker = marker_next (marker))
    {
      /* We use marker->membpos, so we don't have to go through the
         unwieldy operation of creating a Lisp_Object for
         marker_position() every time around.  */
      if (marker->membpos == pos)
	return Qt;
    }

  return Qnil;
}
#endif /* 0 */

#ifdef MEMORY_USAGE_STATS

int
compute_buffer_marker_usage (struct buffer *b, struct overhead_stats *ovstats)
{
  Lisp_Marker *m;
  int total = 0;
  int overhead;

  for (m = BUF_MARKERS (b); m; m = m->next)
    total += sizeof (Lisp_Marker);
  ovstats->was_requested += total;
  overhead = fixed_type_block_overhead (total);
  /* #### claiming this is all malloc overhead is not really right,
     but it has to go somewhere. */
  ovstats->malloc_overhead += overhead;
  return total + overhead;
}

#endif /* MEMORY_USAGE_STATS */


void
syms_of_marker (void)
{
  INIT_LRECORD_IMPLEMENTATION (marker);

  DEFSUBR (Fmarker_position);
  DEFSUBR (Fmarker_buffer);
  DEFSUBR (Fset_marker);
  DEFSUBR (Fcopy_marker);
  DEFSUBR (Fmarker_insertion_type);
  DEFSUBR (Fset_marker_insertion_type);
#if 0 /* FSFmacs crock */
  DEFSUBR (Fbuffer_has_markers_at);
#endif
}

void
init_buffer_markers (struct buffer *b)
{
  Lisp_Object buf;

  XSETBUFFER (buf, b);
  b->mark = Fmake_marker ();
  BUF_MARKERS (b) = 0;
  b->point_marker = Fmake_marker ();
  Fset_marker (b->point_marker,
	       /* For indirect buffers, point is already set.  */
	       b->base_buffer ? make_int (BUF_PT (b)) : make_int (1),
	       buf);
}

void
uninit_buffer_markers (struct buffer *b)
{
  /* Unchain all markers of this buffer
     and leave them pointing nowhere.  */
  REGISTER Lisp_Marker *m, *next;
  for (m = BUF_MARKERS (b); m; m = next)
    {
      m->buffer = 0;
      next = marker_next (m);
      marker_next (m) = 0;
      marker_prev (m) = 0;
    }
  BUF_MARKERS (b) = 0;
}