view src/lrecord.h @ 665:fdefd0186b75

[xemacs-hg @ 2001-09-20 06:28:42 by ben] The great integral types renaming. The purpose of this is to rationalize the names used for various integral types, so that they match their intended uses and follow consist conventions, and eliminate types that were not semantically different from each other. The conventions are: -- All integral types that measure quantities of anything are signed. Some people disagree vociferously with this, but their arguments are mostly theoretical, and are vastly outweighed by the practical headaches of mixing signed and unsigned values, and more importantly by the far increased likelihood of inadvertent bugs: Because of the broken "viral" nature of unsigned quantities in C (operations involving mixed signed/unsigned are done unsigned, when exactly the opposite is nearly always wanted), even a single error in declaring a quantity unsigned that should be signed, or even the even more subtle error of comparing signed and unsigned values and forgetting the necessary cast, can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned on specifically to catch this, but this tends to result in a great number of warnings when mixing signed and unsigned, and the casts are annoying. More has been written on this elsewhere. -- All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on 32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size as Lisp objects of type `int', and (as far as I can tell) of size_t (unsigned!) and ssize_t. The only type below that is not an EMACS_INT is Hashcode, which is an unsigned value of the same size as EMACS_INT. -- Type names should be relatively short (no more than 10 characters or so), with the first letter capitalized and no underscores if they can at all be avoided. -- "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and indexes. -- "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Bytebpos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not directly correspond to the memory representation. Use "Membpos" for this. -- "Char" refers to internal-format characters, not to the C type "char", which is really a byte. -- For the actual name changes, see the script below. I ran the following script to do the conversion. (NOTE: This script is idempotent. You can safely run it multiple times and it will not screw up previous results -- in fact, it will do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle patches coming in from old workspaces, or old branches.) There are two tags, just before and just after the change: `pre-integral-type-rename' and `post-integral-type-rename'. When merging code from the main trunk into a branch, the best thing to do is first merge up to `pre-integral-type-rename', then apply the script and associated changes, then merge from `post-integral-type-change' to the present. (Alternatively, just do the merging in one operation; but you may then have a lot of conflicts needing to be resolved by hand.) Script `fixtypes.sh' follows: ----------------------------------- cut ------------------------------------ files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]" gr Memory_Count Bytecount $files gr Lstream_Data_Count Bytecount $files gr Element_Count Elemcount $files gr Hash_Code Hashcode $files gr extcount bytecount $files gr bufpos charbpos $files gr bytind bytebpos $files gr memind membpos $files gr bufbyte intbyte $files gr Extcount Bytecount $files gr Bufpos Charbpos $files gr Bytind Bytebpos $files gr Memind Membpos $files gr Bufbyte Intbyte $files gr EXTCOUNT BYTECOUNT $files gr BUFPOS CHARBPOS $files gr BYTIND BYTEBPOS $files gr MEMIND MEMBPOS $files gr BUFBYTE INTBYTE $files gr MEMORY_COUNT BYTECOUNT $files gr LSTREAM_DATA_COUNT BYTECOUNT $files gr ELEMENT_COUNT ELEMCOUNT $files gr HASH_CODE HASHCODE $files ----------------------------------- cut ------------------------------------ `fixtypes.sh' is a Bourne-shell script; it uses 'gr': ----------------------------------- cut ------------------------------------ #!/bin/sh # Usage is like this: # gr FROM TO FILES ... # globally replace FROM with TO in FILES. FROM and TO are regular expressions. # backup files are stored in the `backup' directory. from="$1" to="$2" shift 2 echo ${1+"$@"} | xargs global-replace "s/$from/$to/g" ----------------------------------- cut ------------------------------------ `gr' in turn uses a Perl script to do its real work, `global-replace', which follows: ----------------------------------- cut ------------------------------------ : #-*- Perl -*- ### global-modify --- modify the contents of a file by a Perl expression ## Copyright (C) 1999 Martin Buchholz. ## Copyright (C) 2001 Ben Wing. ## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org> ## Maintainer: Ben Wing <ben@xemacs.org> ## Current Version: 1.0, May 5, 2001 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with XEmacs; see the file COPYING. If not, write to the Free # Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA # 02111-1307, USA. eval 'exec perl -w -S $0 ${1+"$@"}' if 0; use strict; use FileHandle; use Carp; use Getopt::Long; use File::Basename; (my $myName = $0) =~ s@.*/@@; my $usage=" Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode] PERLEXPR FILE ... Globally modify a file, either line by line or in one big hunk. Typical usage is like this: [with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc. in file names] find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n [with non-GNU print, xargs] find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n The file is read in, either line by line (with --line-mode specified) or in one big hunk (with --hunk-mode specified; it's the default), and the Perl expression is then evalled with \$_ set to the line or hunk of text, including the terminating newline if there is one. It should destructively modify the value there, storing the changed result in \$_. Files in which any modifications are made are backed up to the directory specified using --backup-dir, or to `backup' by default. To disable this, use --backup-dir= with no argument. Hunk mode is the default because it is MUCH MUCH faster than line-by-line. Use line-by-line only when it matters, e.g. you want to do a replacement only once per line (the default without the `g' argument). Conversely, when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one replacement in the entire file! "; my %options = (); $Getopt::Long::ignorecase = 0; &GetOptions ( \%options, 'help', 'backup-dir=s', 'line-mode', 'hunk-mode', ); die $usage if $options{"help"} or @ARGV <= 1; my $code = shift; die $usage if grep (-d || ! -w, @ARGV); sub SafeOpen { open ((my $fh = new FileHandle), $_[0]); confess "Can't open $_[0]: $!" if ! defined $fh; return $fh; } sub SafeClose { close $_[0] or confess "Can't close $_[0]: $!"; } sub FileContents { my $fh = SafeOpen ("< $_[0]"); my $olddollarslash = $/; local $/ = undef; my $contents = <$fh>; $/ = $olddollarslash; return $contents; } sub WriteStringToFile { my $fh = SafeOpen ("> $_[0]"); binmode $fh; print $fh $_[1] or confess "$_[0]: $!\n"; SafeClose $fh; } foreach my $file (@ARGV) { my $changed_p = 0; my $new_contents = ""; if ($options{"line-mode"}) { my $fh = SafeOpen $file; while (<$fh>) { my $save_line = $_; eval $code; $changed_p = 1 if $save_line ne $_; $new_contents .= $_; } } else { my $orig_contents = $_ = FileContents $file; eval $code; if ($_ ne $orig_contents) { $changed_p = 1; $new_contents = $_; } } if ($changed_p) { my $backdir = $options{"backup-dir"}; $backdir = "backup" if !defined ($backdir); if ($backdir) { my ($name, $path, $suffix) = fileparse ($file, ""); my $backfulldir = $path . $backdir; my $backfile = "$backfulldir/$name"; mkdir $backfulldir, 0755 unless -d $backfulldir; print "modifying $file (original saved in $backfile)\n"; rename $file, $backfile; } WriteStringToFile ($file, $new_contents); } } ----------------------------------- cut ------------------------------------ In addition to those programs, I needed to fix up a few other things, particularly relating to the duplicate definitions of types, now that some types merged with others. Specifically: 1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now look like this: (In each code snippet below, the first and last lines are the same as the original, as are all lines outside of those lines. That allows you to locate the section to be replaced, and replace the stuff in that section, verifying that there isn't anything new added that would need to be kept.) --------------------------------- snip ------------------------------------- /* Counts of bytes or chars */ typedef EMACS_INT Bytecount; typedef EMACS_INT Charcount; /* Counts of elements */ typedef EMACS_INT Elemcount; /* Hash codes */ typedef unsigned long Hashcode; /* ------------------------ dynamic arrays ------------------- */ --------------------------------- snip ------------------------------------- 2. in lstream.h, removed duplicate declaration of Bytecount. Rewrote the comment about this type. The changed code should now look like this: --------------------------------- snip ------------------------------------- #endif /* The have been some arguments over the what the type should be that specifies a count of bytes in a data block to be written out or read in, using Lstream_read(), Lstream_write(), and related functions. Originally it was long, which worked fine; Martin "corrected" these to size_t and ssize_t on the grounds that this is theoretically cleaner and is in keeping with the C standards. Unfortunately, this practice is horribly error-prone due to design flaws in the way that mixed signed/unsigned arithmetic happens. In fact, by doing this change, Martin introduced a subtle but fatal error that caused the operation of sending large mail messages to the SMTP server under Windows to fail. By putting all values back to be signed, avoiding any signed/unsigned mixing, the bug immediately went away. The type then in use was Lstream_Data_Count, so that it be reverted cleanly if a vote came to that. Now it is Bytecount. Some earlier comments about why the type must be signed: This MUST BE SIGNED, since it also is used in functions that return the number of bytes actually read to or written from in an operation, and these functions can return -1 to signal error. Note that the standard Unix read() and write() functions define the count going in as a size_t, which is UNSIGNED, and the count going out as an ssize_t, which is SIGNED. This is a horrible design flaw. Not only is it highly likely to lead to logic errors when a -1 gets interpreted as a large positive number, but operations are bound to fail in all sorts of horrible ways when a number in the upper-half of the size_t range is passed in -- this number is unrepresentable as an ssize_t, so code that checks to see how many bytes are actually written (which is mandatory if you are dealing with certain types of devices) will get completely screwed up. --ben */ typedef enum lstream_buffering --------------------------------- snip ------------------------------------- 3. in dumper.c, there are four places, all inside of switch() statements, where XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks contain identical code, and you should *REMOVE THE SECOND* and leave the first.
author ben
date Thu, 20 Sep 2001 06:31:11 +0000
parents b39c14581166
children 943eaba38521
line wrap: on
line source

/* The "lrecord" structure (header of a compound lisp object).
   Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
   Copyright (C) 1996 Ben Wing.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

#ifndef INCLUDED_lrecord_h_
#define INCLUDED_lrecord_h_

/* The "lrecord" type of Lisp object is used for all object types
   other than a few simple ones.  This allows many types to be
   implemented but only a few bits required in a Lisp object for type
   information. (The tradeoff is that each object has its type marked
   in it, thereby increasing its size.) All lrecords begin with a
   `struct lrecord_header', which identifies the lisp object type, by
   providing an index into a table of `struct lrecord_implementation',
   which describes the behavior of the lisp object.  It also contains
   some other data bits.

   Lrecords are of two types: straight lrecords, and lcrecords.
   Straight lrecords are used for those types of objects that have
   their own allocation routines (typically allocated out of 2K chunks
   of memory called `frob blocks').  These objects have a `struct
   lrecord_header' at the top, containing only the bits needed to find
   the lrecord_implementation for the object.  There are special
   routines in alloc.c to deal with each such object type.

   Lcrecords are used for less common sorts of objects that don't do
   their own allocation.  Each such object is malloc()ed individually,
   and the objects are chained together through a `next' pointer.
   Lcrecords have a `struct lcrecord_header' at the top, which
   contains a `struct lrecord_header' and a `next' pointer, and are
   allocated using alloc_lcrecord().

   Creating a new lcrecord type is fairly easy; just follow the
   lead of some existing type (e.g. hash tables).  Note that you
   do not need to supply all the methods (see below); reasonable
   defaults are provided for many of them.  Alternatively, if you're
   just looking for a way of encapsulating data (which possibly
   could contain Lisp_Objects in it), you may well be able to use
   the opaque type. */

struct lrecord_header
{
  /* index into lrecord_implementations_table[] */
  unsigned int type :8;

  /* If `mark' is 0 after the GC mark phase, the object will be freed
     during the GC sweep phase.  There are 2 ways that `mark' can be 1:
     - by being referenced from other objects during the GC mark phase
     - because it is permanently on, for c_readonly objects */
  unsigned int mark :1;

  /* 1 if the object resides in logically read-only space, and does not
     reference other non-c_readonly objects.
     Invariant: if (c_readonly == 1), then (mark == 1 && lisp_readonly == 1) */
  unsigned int c_readonly :1;

  /* 1 if the object is readonly from lisp */
  unsigned int lisp_readonly :1;
};

struct lrecord_implementation;
int lrecord_type_index (const struct lrecord_implementation *implementation);

#define set_lheader_implementation(header,imp) do {	\
  struct lrecord_header* SLI_header = (header);		\
  SLI_header->type = (imp)->lrecord_type_index;		\
  SLI_header->mark = 0;					\
  SLI_header->c_readonly = 0;				\
  SLI_header->lisp_readonly = 0;			\
} while (0)

struct lcrecord_header
{
  struct lrecord_header lheader;

  /* The `next' field is normally used to chain all lcrecords together
     so that the GC can find (and free) all of them.
     `alloc_lcrecord' threads lcrecords together.

     The `next' field may be used for other purposes as long as some
     other mechanism is provided for letting the GC do its work.

     For example, the event and marker object types allocate members
     out of memory chunks, and are able to find all unmarked members
     by sweeping through the elements of the list of chunks.  */
  struct lcrecord_header *next;

  /* The `uid' field is just for debugging/printing convenience.
     Having this slot doesn't hurt us much spacewise, since an
     lcrecord already has the above slots plus malloc overhead. */
  unsigned int uid :31;

  /* The `free' field is a flag that indicates whether this lcrecord
     is on a "free list".  Free lists are used to minimize the number
     of calls to malloc() when we're repeatedly allocating and freeing
     a number of the same sort of lcrecord.  Lcrecords on a free list
     always get marked in a different fashion, so we can use this flag
     as a sanity check to make sure that free lists only have freed
     lcrecords and there are no freed lcrecords elsewhere. */
  unsigned int free :1;
};

/* Used for lcrecords in an lcrecord-list. */
struct free_lcrecord_header
{
  struct lcrecord_header lcheader;
  Lisp_Object chain;
};

enum lrecord_type
{
  /* Symbol value magic types come first to make SYMBOL_VALUE_MAGIC_P fast.
     #### This should be replaced by a symbol_value_magic_p flag
     in the Lisp_Symbol lrecord_header. */
  lrecord_type_symbol_value_forward,
  lrecord_type_symbol_value_varalias,
  lrecord_type_symbol_value_lisp_magic,
  lrecord_type_symbol_value_buffer_local,
  lrecord_type_max_symbol_value_magic = lrecord_type_symbol_value_buffer_local,

  lrecord_type_symbol,
  lrecord_type_subr,
  lrecord_type_cons,
  lrecord_type_vector,
  lrecord_type_string,
  lrecord_type_lcrecord_list,
  lrecord_type_compiled_function,
  lrecord_type_weak_list,
  lrecord_type_bit_vector,
  lrecord_type_float,
  lrecord_type_hash_table,
  lrecord_type_lstream,
  lrecord_type_process,
  lrecord_type_charset,
  lrecord_type_coding_system,
  lrecord_type_char_table,
  lrecord_type_char_table_entry,
  lrecord_type_range_table,
  lrecord_type_opaque,
  lrecord_type_opaque_ptr,
  lrecord_type_buffer,
  lrecord_type_extent,
  lrecord_type_extent_info,
  lrecord_type_extent_auxiliary,
  lrecord_type_marker,
  lrecord_type_event,
  lrecord_type_keymap,
  lrecord_type_command_builder,
  lrecord_type_timeout,
  lrecord_type_specifier,
  lrecord_type_console,
  lrecord_type_device,
  lrecord_type_frame,
  lrecord_type_window,
  lrecord_type_window_mirror,
  lrecord_type_window_configuration,
  lrecord_type_gui_item,
  lrecord_type_popup_data,
  lrecord_type_toolbar_button,
  lrecord_type_scrollbar_instance,
  lrecord_type_color_instance,
  lrecord_type_font_instance,
  lrecord_type_image_instance,
  lrecord_type_glyph,
  lrecord_type_face,
  lrecord_type_database,
  lrecord_type_tooltalk_message,
  lrecord_type_tooltalk_pattern,
  lrecord_type_ldap,
  lrecord_type_pgconn,
  lrecord_type_pgresult,
  lrecord_type_devmode,
  lrecord_type_mswindows_dialog_id,
  lrecord_type_case_table,
  lrecord_type_emacs_ffi,
  lrecord_type_emacs_gtk_object,
  lrecord_type_emacs_gtk_boxed,
  lrecord_type_free, /* only used for "free" lrecords */
  lrecord_type_undefined, /* only used for debugging */
  lrecord_type_last_built_in_type /* must be last */
};

extern int lrecord_type_count;

struct lrecord_implementation
{
  const char *name;

  /* `marker' is called at GC time, to make sure that all Lisp_Objects
     pointed to by this object get properly marked.  It should call
     the mark_object function on all Lisp_Objects in the object.  If
     the return value is non-nil, it should be a Lisp_Object to be
     marked (don't call the mark_object function explicitly on it,
     because the GC routines will do this).  Doing it this way reduces
     recursion, so the object returned should preferably be the one
     with the deepest level of Lisp_Object pointers.  This function
     can be NULL, meaning no GC marking is necessary. */
  Lisp_Object (*marker) (Lisp_Object);

  /* `printer' converts the object to a printed representation.
     This can be NULL; in this case default_object_printer() will be
     used instead. */
  void (*printer) (Lisp_Object, Lisp_Object printcharfun, int escapeflag);

  /* `finalizer' is called at GC time when the object is about to
     be freed, and at dump time (FOR_DISKSAVE will be non-zero in this
     case).  It should perform any necessary cleanup (e.g. freeing
     malloc()ed memory).  This can be NULL, meaning no special
     finalization is necessary.

     WARNING: remember that `finalizer' is called at dump time even
     though the object is not being freed. */
  void (*finalizer) (void *header, int for_disksave);

  /* This can be NULL, meaning compare objects with EQ(). */
  int (*equal) (Lisp_Object obj1, Lisp_Object obj2, int depth);

  /* `hash' generates hash values for use with hash tables that have
     `equal' as their test function.  This can be NULL, meaning use
     the Lisp_Object itself as the hash.  But, you must still satisfy
     the constraint that if two objects are `equal', then they *must*
     hash to the same value in order for hash tables to work properly.
     This means that `hash' can be NULL only if the `equal' method is
     also NULL. */
  unsigned long (*hash) (Lisp_Object, int);

  /* External data layout description */
  const struct lrecord_description *description;

  /* These functions allow any object type to have builtin property
     lists that can be manipulated from the lisp level with
     `get', `put', `remprop', and `object-plist'. */
  Lisp_Object (*getprop) (Lisp_Object obj, Lisp_Object prop);
  int (*putprop) (Lisp_Object obj, Lisp_Object prop, Lisp_Object val);
  int (*remprop) (Lisp_Object obj, Lisp_Object prop);
  Lisp_Object (*plist) (Lisp_Object obj);

  /* Only one of `static_size' and `size_in_bytes_method' is non-0.
     If both are 0, this type is not instantiable by alloc_lcrecord(). */
  Bytecount static_size;
  Bytecount (*size_in_bytes_method) (const void *header);

  /* The (constant) index into lrecord_implementations_table */
  enum lrecord_type lrecord_type_index;

  /* A "basic" lrecord is any lrecord that's not an lcrecord, i.e.
     one that does not have an lcrecord_header at the front and which
     is (usually) allocated in frob blocks.  We only use this flag for
     some consistency checking, and that only when error-checking is
     enabled. */
  unsigned int basic_p :1;
};

/* All the built-in lisp object types are enumerated in `enum lrecord_type'.
   Additional ones may be defined by a module (none yet).  We leave some
   room in `lrecord_implementations_table' for such new lisp object types. */
#define MODULE_DEFINABLE_TYPE_COUNT 32

extern const struct lrecord_implementation *lrecord_implementations_table[lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT];

#define XRECORD_LHEADER_IMPLEMENTATION(obj) \
   LHEADER_IMPLEMENTATION (XRECORD_LHEADER (obj))
#define LHEADER_IMPLEMENTATION(lh) lrecord_implementations_table[(lh)->type]

extern int gc_in_progress;

#define MARKED_RECORD_P(obj) (XRECORD_LHEADER (obj)->mark)
#define MARKED_RECORD_HEADER_P(lheader) ((lheader)->mark)
#define MARK_RECORD_HEADER(lheader)   ((void) ((lheader)->mark = 1))
#define UNMARK_RECORD_HEADER(lheader) ((void) ((lheader)->mark = 0))

#define C_READONLY_RECORD_HEADER_P(lheader)  ((lheader)->c_readonly)
#define LISP_READONLY_RECORD_HEADER_P(lheader)  ((lheader)->lisp_readonly)
#define SET_C_READONLY_RECORD_HEADER(lheader) do {	\
  struct lrecord_header *SCRRH_lheader = (lheader);	\
  SCRRH_lheader->c_readonly = 1;			\
  SCRRH_lheader->lisp_readonly = 1;			\
  SCRRH_lheader->mark = 1;				\
} while (0)
#define SET_LISP_READONLY_RECORD_HEADER(lheader) \
  ((void) ((lheader)->lisp_readonly = 1))
#define RECORD_MARKER(lheader) lrecord_markers[(lheader)->type]

/* External description stuff

   A lrecord external description  is an array  of values.  The  first
   value of each line is a type, the second  the offset in the lrecord
   structure.  Following values  are parameters, their  presence, type
   and number is type-dependent.

   The description ends with a "XD_END" or "XD_SPECIFIER_END" record.

   Some example descriptions :

   static const struct lrecord_description cons_description[] = {
     { XD_LISP_OBJECT, offsetof (Lisp_Cons, car) },
     { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr) },
     { XD_END }
   };

   Which means "two lisp objects starting at the 'car' and 'cdr' elements"

  static const struct lrecord_description string_description[] = {
    { XD_BYTECOUNT,       offsetof (Lisp_String, size) },
    { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data), XD_INDIRECT(0, 1) },
    { XD_LISP_OBJECT,     offsetof (Lisp_String, plist) },
    { XD_END }
  };
  "A pointer to string data at 'data', the size of the pointed array being the value
   of the size variable plus 1, and one lisp object at 'plist'"

  The existing types :
    XD_LISP_OBJECT
  A Lisp object.  This is also the type to use for pointers to other lrecords.

    XD_LISP_OBJECT_ARRAY
  An array of Lisp objects or pointers to lrecords.
  The third element is the count.

    XD_LO_LINK
  Link in a linked list of objects of the same type.

    XD_OPAQUE_PTR
  Pointer to undumpable data.  Must be NULL when dumping.

    XD_STRUCT_PTR
  Pointer to described struct.  Parameters are number of structures and
  struct_description.

    XD_OPAQUE_DATA_PTR
  Pointer to dumpable opaque data.  Parameter is the size of the data.
  Pointed data must be relocatable without changes.

    XD_C_STRING
  Pointer to a C string.

    XD_DOC_STRING
  Pointer to a doc string (C string if positive, opaque value if negative)

    XD_INT_RESET
  An integer which will be reset to a given value in the dump file.

  
    XD_CHARCOUNT
  Charcount value.  Used for counts.
  
    XD_ELEMCOUNT
  Elemcount value.  Used for counts.

    XD_BYTECOUNT
  Bytecount value.  Used for counts.

    XD_HASHCODE
  Hashcode value.  Used for the results of hashing functions.

    XD_INT
  int value.  Used for counts.

    XD_LONG
  long value.  Used for counts.

    XD_END
  Special type indicating the end of the array.

    XD_SPECIFIER_END
  Special type indicating the end of the array for a specifier.  Extra
  description is going to be fetched from the specifier methods.


  Special macros:
    XD_INDIRECT(line, delta)
  Usable where  a "count" or "size"  is requested.  Gives the value of
  the element which is at line number 'line' in the description (count
  starts at zero) and adds delta to it.
*/

enum lrecord_description_type
{
  XD_LISP_OBJECT_ARRAY,
  XD_LISP_OBJECT,
  XD_LO_LINK,
  XD_OPAQUE_PTR,
  XD_STRUCT_PTR,
  XD_OPAQUE_DATA_PTR,
  XD_C_STRING,
  XD_DOC_STRING,
  XD_INT_RESET,
  XD_CHARCOUNT,
  XD_BYTECOUNT,
  XD_ELEMCOUNT,
  XD_HASHCODE,
  XD_INT,
  XD_LONG,
  XD_END,
  XD_SPECIFIER_END
};

struct lrecord_description
{
  enum lrecord_description_type type;
  int offset;
  EMACS_INT data1;
  const struct struct_description *data2;
};

struct struct_description
{
  Bytecount size;
  const struct lrecord_description *description;
};

#define XD_INDIRECT(val, delta) (-1-((val)|(delta<<8)))

#define XD_IS_INDIRECT(code) (code<0)
#define XD_INDIRECT_VAL(code) ((-1-code) & 255)
#define XD_INDIRECT_DELTA(code) (((-1-code)>>8) & 255)

#define XD_DYNARR_DESC(base_type, sub_desc) \
  { XD_STRUCT_PTR, offsetof (base_type, base), XD_INDIRECT(1, 0), sub_desc }, \
  { XD_INT,        offsetof (base_type, cur) }, \
  { XD_INT_RESET,  offsetof (base_type, max), XD_INDIRECT(1, 0) }

/* DEFINE_LRECORD_IMPLEMENTATION is for objects with constant size.
   DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION is for objects whose size varies.
 */

#if defined (ERROR_CHECK_TYPECHECK)
# define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)
#else
# define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)
#endif

#define DEFINE_BASIC_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \
DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype)

#define DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,structtype) \
MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizeof(structtype),0,1,structtype)

#define DEFINE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \
DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype)

#define DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,structtype) \
MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizeof (structtype),0,0,structtype)

#define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,sizer,structtype) \
DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,sizer,structtype)

#define DEFINE_BASIC_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,sizer,structtype) \
MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,0,sizer,1,structtype)

#define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizer,structtype) \
MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,0,sizer,0,structtype) \

#define MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,size,sizer,basic_p,structtype) \
DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)			\
const struct lrecord_implementation lrecord_##c_name =			\
  { name, marker, printer, nuker, equal, hash, desc,			\
    getprop, putprop, remprop, plist, size, sizer,			\
    lrecord_type_##c_name, basic_p }

#define DEFINE_EXTERNAL_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \
DEFINE_EXTERNAL_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype)

#define DEFINE_EXTERNAL_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,structtype) \
MAKE_EXTERNAL_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizeof (structtype),0,0,structtype)

#define DEFINE_EXTERNAL_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,sizer,structtype) \
DEFINE_EXTERNAL_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,sizer,structtype)

#define DEFINE_EXTERNAL_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizer,structtype) \
MAKE_EXTERNAL_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,0,sizer,0,structtype)

#define MAKE_EXTERNAL_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,size,sizer,basic_p,structtype) \
DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)			\
int lrecord_type_##c_name;						\
struct lrecord_implementation lrecord_##c_name =			\
  { name, marker, printer, nuker, equal, hash, desc,			\
    getprop, putprop, remprop, plist, size, sizer,			\
    lrecord_type_last_built_in_type, basic_p }


extern Lisp_Object (*lrecord_markers[]) (Lisp_Object);

#define INIT_LRECORD_IMPLEMENTATION(type) do {				\
  lrecord_implementations_table[lrecord_type_##type] = &lrecord_##type;	\
  lrecord_markers[lrecord_type_##type] =				\
    lrecord_implementations_table[lrecord_type_##type]->marker;		\
} while (0)

#define INIT_EXTERNAL_LRECORD_IMPLEMENTATION(type) do {			\
  lrecord_type_##type = lrecord_type_count++;				\
  lrecord_##type.lrecord_type_index = lrecord_type_##type;		\
  INIT_LRECORD_IMPLEMENTATION(type);					\
} while (0)

#define LRECORDP(a) (XTYPE (a) == Lisp_Type_Record)
#define XRECORD_LHEADER(a) ((struct lrecord_header *) XPNTR (a))

#define RECORD_TYPEP(x, ty) \
  (LRECORDP (x) && (XRECORD_LHEADER (x)->type == (unsigned int) (ty)))

/* Steps to create a new object:

   1. Declare the struct for your object in a header file somewhere.
   Remember that it must begin with

   struct lcrecord_header header;

   2. Put the "standard junk" (DECLARE_RECORD()/XFOO/XSETFOO/etc.) below the
      struct definition -- see below.

   3. Add this header file to inline.c.

   4. Create the methods for your object.  Note that technically you don't
   need any, but you will almost always want at least a mark method.

   5. Define your object with DEFINE_LRECORD_IMPLEMENTATION() or some
   variant.

   6. Include the header file in the .c file where you defined the object.

   7. Put a call to INIT_LRECORD_IMPLEMENTATION() for the object in the
   .c file's syms_of_foo() function.

   8. Add a type enum for the object to enum lrecord_type, earlier in this
   file.

An example:

------------------------------ in toolbar.h -----------------------------

struct toolbar_button
{
  struct lcrecord_header header;

  Lisp_Object next;
  Lisp_Object frame;

  Lisp_Object up_glyph;
  Lisp_Object down_glyph;
  Lisp_Object disabled_glyph;

  Lisp_Object cap_up_glyph;
  Lisp_Object cap_down_glyph;
  Lisp_Object cap_disabled_glyph;

  Lisp_Object callback;
  Lisp_Object enabled_p;
  Lisp_Object help_string;

  char enabled;
  char down;
  char pushright;
  char blank;

  int x, y;
  int width, height;
  int dirty;
  int vertical;
  int border_width;
};

[[ the standard junk: ]]

DECLARE_LRECORD (toolbar_button, struct toolbar_button);
#define XTOOLBAR_BUTTON(x) XRECORD (x, toolbar_button, struct toolbar_button)
#define XSETTOOLBAR_BUTTON(x, p) XSETRECORD (x, p, toolbar_button)
#define wrap_toolbar_button(p) wrap_record (p, toolbar_button)
#define TOOLBAR_BUTTONP(x) RECORDP (x, toolbar_button)
#define CHECK_TOOLBAR_BUTTON(x) CHECK_RECORD (x, toolbar_button)
#define CONCHECK_TOOLBAR_BUTTON(x) CONCHECK_RECORD (x, toolbar_button)

------------------------------ in toolbar.c -----------------------------

#include "toolbar.h"

...

static Lisp_Object
mark_toolbar_button (Lisp_Object obj)
{
  struct toolbar_button *data = XTOOLBAR_BUTTON (obj);
  mark_object (data->next);
  mark_object (data->frame);
  mark_object (data->up_glyph);
  mark_object (data->down_glyph);
  mark_object (data->disabled_glyph);
  mark_object (data->cap_up_glyph);
  mark_object (data->cap_down_glyph);
  mark_object (data->cap_disabled_glyph);
  mark_object (data->callback);
  mark_object (data->enabled_p);
  return data->help_string;
}

[[ If your object should never escape to Lisp, declare its print method
   as internal_object_printer instead of 0. ]]

DEFINE_LRECORD_IMPLEMENTATION ("toolbar-button", toolbar_button,
			       mark_toolbar_button, 0,
			       0, 0, 0, 0, struct toolbar_button);

...

void
syms_of_toolbar (void)
{
  INIT_LRECORD_IMPLEMENTATION (toolbar_button);

  ...;
}

------------------------------ in inline.c -----------------------------

#ifdef HAVE_TOOLBARS
#include "toolbar.h"
#endif

------------------------------ in lrecord.h -----------------------------

enum lrecord_type
{
  ...
  lrecord_type_toolbar_button,
  ...
};

*/

/*

Note: Object types defined in external dynamically-loaded modules (not
part of the XEmacs main source code) should use DECLARE_EXTERNAL_LRECORD
and DEFINE_EXTERNAL_LRECORD_IMPLEMENTATION rather than DECLARE_LRECORD
and DEFINE_LRECORD_IMPLEMENTATION.

*/


#ifdef ERROR_CHECK_TYPECHECK

# define DECLARE_LRECORD(c_name, structtype)			\
extern const struct lrecord_implementation lrecord_##c_name;	\
INLINE_HEADER structtype *					\
error_check_##c_name (Lisp_Object obj);				\
INLINE_HEADER structtype *					\
error_check_##c_name (Lisp_Object obj)				\
{								\
  assert (RECORD_TYPEP (obj, lrecord_type_##c_name));		\
  return (structtype *) XPNTR (obj);				\
}								\
extern Lisp_Object Q##c_name##p

# define DECLARE_EXTERNAL_LRECORD(c_name, structtype)	       	\
extern int lrecord_type_##c_name;				\
extern struct lrecord_implementation lrecord_##c_name;		\
INLINE_HEADER structtype *					\
error_check_##c_name (Lisp_Object obj);				\
INLINE_HEADER structtype *					\
error_check_##c_name (Lisp_Object obj)				\
{								\
  assert (RECORD_TYPEP (obj, lrecord_type_##c_name));		\
  return (structtype *) XPNTR (obj);				\
}								\
extern Lisp_Object Q##c_name##p

# define DECLARE_NONRECORD(c_name, type_enum, structtype)	\
INLINE_HEADER structtype *					\
error_check_##c_name (Lisp_Object obj);				\
INLINE_HEADER structtype *					\
error_check_##c_name (Lisp_Object obj)				\
{								\
  assert (XTYPE (obj) == type_enum);				\
  return (structtype *) XPNTR (obj);				\
}								\
extern Lisp_Object Q##c_name##p

# define XRECORD(x, c_name, structtype) error_check_##c_name (x)
# define XNONRECORD(x, c_name, type_enum, structtype) error_check_##c_name (x)

# define XSETRECORD(var, p, c_name) do				\
{								\
  XSETOBJ (var, p);						\
  assert (RECORD_TYPEP (var, lrecord_type_##c_name));		\
} while (0)

INLINE_HEADER Lisp_Object wrap_record_1 (void *ptr, enum lrecord_type ty);
INLINE_HEADER Lisp_Object
wrap_record_1 (void *ptr, enum lrecord_type ty)
{
  Lisp_Object obj;
  XSETOBJ (obj, ptr);
  assert (RECORD_TYPEP (obj, ty));
  return obj;
}

#define wrap_record(ptr, ty) wrap_record_1 (ptr, lrecord_type_##ty)

#else /* not ERROR_CHECK_TYPECHECK */

# define DECLARE_LRECORD(c_name, structtype)			\
extern Lisp_Object Q##c_name##p;				\
extern const struct lrecord_implementation lrecord_##c_name
# define DECLARE_EXTERNAL_LRECORD(c_name, structtype)		\
extern Lisp_Object Q##c_name##p;				\
extern int lrecord_type_##c_name;				\
extern struct lrecord_implementation lrecord_##c_name
# define DECLARE_NONRECORD(c_name, type_enum, structtype)	\
extern Lisp_Object Q##c_name##p
# define XRECORD(x, c_name, structtype) ((structtype *) XPNTR (x))
# define XNONRECORD(x, c_name, type_enum, structtype)		\
  ((structtype *) XPNTR (x))
# define XSETRECORD(var, p, c_name) XSETOBJ (var, p)
/* wrap_pointer_1 is so named as a suggestion not to use it unless you
   know what you're doing. */
#define wrap_record(ptr, ty) wrap_pointer_1 (ptr)

#endif /* not ERROR_CHECK_TYPECHECK */

#define RECORDP(x, c_name) RECORD_TYPEP (x, lrecord_type_##c_name)

/* Note: we now have two different kinds of type-checking macros.
   The "old" kind has now been renamed CONCHECK_foo.  The reason for
   this is that the CONCHECK_foo macros signal a continuable error,
   allowing the user (through debug-on-error) to substitute a different
   value and return from the signal, which causes the lvalue argument
   to get changed.  Quite a lot of code would crash if that happened,
   because it did things like

   foo = XCAR (list);
   CHECK_STRING (foo);

   and later on did XSTRING (XCAR (list)), assuming that the type
   is correct (when it might be wrong, if the user substituted a
   correct value in the debugger).

   To get around this, I made all the CHECK_foo macros signal a
   non-continuable error.  Places where a continuable error is OK
   (generally only when called directly on the argument of a Lisp
   primitive) should be changed to use CONCHECK().

   FSF Emacs does not have this problem because RMS took the cheesy
   way out and disabled returning from a signal entirely. */

#define CONCHECK_RECORD(x, c_name) do {			\
 if (!RECORD_TYPEP (x, lrecord_type_##c_name))		\
   x = wrong_type_argument (Q##c_name##p, x);		\
}  while (0)
#define CONCHECK_NONRECORD(x, lisp_enum, predicate) do {\
 if (XTYPE (x) != lisp_enum)				\
   x = wrong_type_argument (predicate, x);		\
 } while (0)
#define CHECK_RECORD(x, c_name) do {			\
 if (!RECORD_TYPEP (x, lrecord_type_##c_name))		\
   dead_wrong_type_argument (Q##c_name##p, x);		\
 } while (0)
#define CHECK_NONRECORD(x, lisp_enum, predicate) do {	\
 if (XTYPE (x) != lisp_enum)				\
   dead_wrong_type_argument (predicate, x);		\
 } while (0)

void *alloc_lcrecord (Bytecount size,
		      const struct lrecord_implementation *);

#define alloc_lcrecord_type(type, lrecord_implementation) \
  ((type *) alloc_lcrecord (sizeof (type), lrecord_implementation))

/* Copy the data from one lcrecord structure into another, but don't
   overwrite the header information. */

#define copy_lcrecord(dst, src)					\
  memcpy ((char *) (dst) + sizeof (struct lcrecord_header),	\
	  (char *) (src) + sizeof (struct lcrecord_header),	\
	  sizeof (*(dst)) - sizeof (struct lcrecord_header))

#define zero_lcrecord(lcr)					\
   memset ((char *) (lcr) + sizeof (struct lcrecord_header), 0,	\
	   sizeof (*(lcr)) - sizeof (struct lcrecord_header))

#endif /* INCLUDED_lrecord_h_ */