view src/emodules.c @ 665:fdefd0186b75

[xemacs-hg @ 2001-09-20 06:28:42 by ben] The great integral types renaming. The purpose of this is to rationalize the names used for various integral types, so that they match their intended uses and follow consist conventions, and eliminate types that were not semantically different from each other. The conventions are: -- All integral types that measure quantities of anything are signed. Some people disagree vociferously with this, but their arguments are mostly theoretical, and are vastly outweighed by the practical headaches of mixing signed and unsigned values, and more importantly by the far increased likelihood of inadvertent bugs: Because of the broken "viral" nature of unsigned quantities in C (operations involving mixed signed/unsigned are done unsigned, when exactly the opposite is nearly always wanted), even a single error in declaring a quantity unsigned that should be signed, or even the even more subtle error of comparing signed and unsigned values and forgetting the necessary cast, can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned on specifically to catch this, but this tends to result in a great number of warnings when mixing signed and unsigned, and the casts are annoying. More has been written on this elsewhere. -- All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on 32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size as Lisp objects of type `int', and (as far as I can tell) of size_t (unsigned!) and ssize_t. The only type below that is not an EMACS_INT is Hashcode, which is an unsigned value of the same size as EMACS_INT. -- Type names should be relatively short (no more than 10 characters or so), with the first letter capitalized and no underscores if they can at all be avoided. -- "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and indexes. -- "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Bytebpos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not directly correspond to the memory representation. Use "Membpos" for this. -- "Char" refers to internal-format characters, not to the C type "char", which is really a byte. -- For the actual name changes, see the script below. I ran the following script to do the conversion. (NOTE: This script is idempotent. You can safely run it multiple times and it will not screw up previous results -- in fact, it will do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle patches coming in from old workspaces, or old branches.) There are two tags, just before and just after the change: `pre-integral-type-rename' and `post-integral-type-rename'. When merging code from the main trunk into a branch, the best thing to do is first merge up to `pre-integral-type-rename', then apply the script and associated changes, then merge from `post-integral-type-change' to the present. (Alternatively, just do the merging in one operation; but you may then have a lot of conflicts needing to be resolved by hand.) Script `fixtypes.sh' follows: ----------------------------------- cut ------------------------------------ files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]" gr Memory_Count Bytecount $files gr Lstream_Data_Count Bytecount $files gr Element_Count Elemcount $files gr Hash_Code Hashcode $files gr extcount bytecount $files gr bufpos charbpos $files gr bytind bytebpos $files gr memind membpos $files gr bufbyte intbyte $files gr Extcount Bytecount $files gr Bufpos Charbpos $files gr Bytind Bytebpos $files gr Memind Membpos $files gr Bufbyte Intbyte $files gr EXTCOUNT BYTECOUNT $files gr BUFPOS CHARBPOS $files gr BYTIND BYTEBPOS $files gr MEMIND MEMBPOS $files gr BUFBYTE INTBYTE $files gr MEMORY_COUNT BYTECOUNT $files gr LSTREAM_DATA_COUNT BYTECOUNT $files gr ELEMENT_COUNT ELEMCOUNT $files gr HASH_CODE HASHCODE $files ----------------------------------- cut ------------------------------------ `fixtypes.sh' is a Bourne-shell script; it uses 'gr': ----------------------------------- cut ------------------------------------ #!/bin/sh # Usage is like this: # gr FROM TO FILES ... # globally replace FROM with TO in FILES. FROM and TO are regular expressions. # backup files are stored in the `backup' directory. from="$1" to="$2" shift 2 echo ${1+"$@"} | xargs global-replace "s/$from/$to/g" ----------------------------------- cut ------------------------------------ `gr' in turn uses a Perl script to do its real work, `global-replace', which follows: ----------------------------------- cut ------------------------------------ : #-*- Perl -*- ### global-modify --- modify the contents of a file by a Perl expression ## Copyright (C) 1999 Martin Buchholz. ## Copyright (C) 2001 Ben Wing. ## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org> ## Maintainer: Ben Wing <ben@xemacs.org> ## Current Version: 1.0, May 5, 2001 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with XEmacs; see the file COPYING. If not, write to the Free # Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA # 02111-1307, USA. eval 'exec perl -w -S $0 ${1+"$@"}' if 0; use strict; use FileHandle; use Carp; use Getopt::Long; use File::Basename; (my $myName = $0) =~ s@.*/@@; my $usage=" Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode] PERLEXPR FILE ... Globally modify a file, either line by line or in one big hunk. Typical usage is like this: [with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc. in file names] find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n [with non-GNU print, xargs] find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n The file is read in, either line by line (with --line-mode specified) or in one big hunk (with --hunk-mode specified; it's the default), and the Perl expression is then evalled with \$_ set to the line or hunk of text, including the terminating newline if there is one. It should destructively modify the value there, storing the changed result in \$_. Files in which any modifications are made are backed up to the directory specified using --backup-dir, or to `backup' by default. To disable this, use --backup-dir= with no argument. Hunk mode is the default because it is MUCH MUCH faster than line-by-line. Use line-by-line only when it matters, e.g. you want to do a replacement only once per line (the default without the `g' argument). Conversely, when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one replacement in the entire file! "; my %options = (); $Getopt::Long::ignorecase = 0; &GetOptions ( \%options, 'help', 'backup-dir=s', 'line-mode', 'hunk-mode', ); die $usage if $options{"help"} or @ARGV <= 1; my $code = shift; die $usage if grep (-d || ! -w, @ARGV); sub SafeOpen { open ((my $fh = new FileHandle), $_[0]); confess "Can't open $_[0]: $!" if ! defined $fh; return $fh; } sub SafeClose { close $_[0] or confess "Can't close $_[0]: $!"; } sub FileContents { my $fh = SafeOpen ("< $_[0]"); my $olddollarslash = $/; local $/ = undef; my $contents = <$fh>; $/ = $olddollarslash; return $contents; } sub WriteStringToFile { my $fh = SafeOpen ("> $_[0]"); binmode $fh; print $fh $_[1] or confess "$_[0]: $!\n"; SafeClose $fh; } foreach my $file (@ARGV) { my $changed_p = 0; my $new_contents = ""; if ($options{"line-mode"}) { my $fh = SafeOpen $file; while (<$fh>) { my $save_line = $_; eval $code; $changed_p = 1 if $save_line ne $_; $new_contents .= $_; } } else { my $orig_contents = $_ = FileContents $file; eval $code; if ($_ ne $orig_contents) { $changed_p = 1; $new_contents = $_; } } if ($changed_p) { my $backdir = $options{"backup-dir"}; $backdir = "backup" if !defined ($backdir); if ($backdir) { my ($name, $path, $suffix) = fileparse ($file, ""); my $backfulldir = $path . $backdir; my $backfile = "$backfulldir/$name"; mkdir $backfulldir, 0755 unless -d $backfulldir; print "modifying $file (original saved in $backfile)\n"; rename $file, $backfile; } WriteStringToFile ($file, $new_contents); } } ----------------------------------- cut ------------------------------------ In addition to those programs, I needed to fix up a few other things, particularly relating to the duplicate definitions of types, now that some types merged with others. Specifically: 1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now look like this: (In each code snippet below, the first and last lines are the same as the original, as are all lines outside of those lines. That allows you to locate the section to be replaced, and replace the stuff in that section, verifying that there isn't anything new added that would need to be kept.) --------------------------------- snip ------------------------------------- /* Counts of bytes or chars */ typedef EMACS_INT Bytecount; typedef EMACS_INT Charcount; /* Counts of elements */ typedef EMACS_INT Elemcount; /* Hash codes */ typedef unsigned long Hashcode; /* ------------------------ dynamic arrays ------------------- */ --------------------------------- snip ------------------------------------- 2. in lstream.h, removed duplicate declaration of Bytecount. Rewrote the comment about this type. The changed code should now look like this: --------------------------------- snip ------------------------------------- #endif /* The have been some arguments over the what the type should be that specifies a count of bytes in a data block to be written out or read in, using Lstream_read(), Lstream_write(), and related functions. Originally it was long, which worked fine; Martin "corrected" these to size_t and ssize_t on the grounds that this is theoretically cleaner and is in keeping with the C standards. Unfortunately, this practice is horribly error-prone due to design flaws in the way that mixed signed/unsigned arithmetic happens. In fact, by doing this change, Martin introduced a subtle but fatal error that caused the operation of sending large mail messages to the SMTP server under Windows to fail. By putting all values back to be signed, avoiding any signed/unsigned mixing, the bug immediately went away. The type then in use was Lstream_Data_Count, so that it be reverted cleanly if a vote came to that. Now it is Bytecount. Some earlier comments about why the type must be signed: This MUST BE SIGNED, since it also is used in functions that return the number of bytes actually read to or written from in an operation, and these functions can return -1 to signal error. Note that the standard Unix read() and write() functions define the count going in as a size_t, which is UNSIGNED, and the count going out as an ssize_t, which is SIGNED. This is a horrible design flaw. Not only is it highly likely to lead to logic errors when a -1 gets interpreted as a large positive number, but operations are bound to fail in all sorts of horrible ways when a number in the upper-half of the size_t range is passed in -- this number is unrepresentable as an ssize_t, so code that checks to see how many bytes are actually written (which is mandatory if you are dealing with certain types of devices) will get completely screwed up. --ben */ typedef enum lstream_buffering --------------------------------- snip ------------------------------------- 3. in dumper.c, there are four places, all inside of switch() statements, where XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks contain identical code, and you should *REMOVE THE SECOND* and leave the first.
author ben
date Thu, 20 Sep 2001 06:31:11 +0000
parents 13e3d7ae7155
children 943eaba38521
line wrap: on
line source

/* emodules.c - Support routines for dynamic module loading
(C) Copyright 1998, 1999 J. Kean Johnston. All rights reserved.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "emodules.h"
#include "sysdll.h"

#ifdef HAVE_SHLIB

/* CE-Emacs version number */
Lisp_Object Vmodule_version;

/* Do we do our work quietly? */
int load_modules_quietly;

/* Load path */
Lisp_Object Vmodule_load_path;

Lisp_Object Qdll_error;

typedef struct _emodules_list
{
  int used;             /* Is this slot used?                           */
  char *soname;         /* Name of the shared object loaded (full path) */
  char *modname;        /* The name of the module                       */
  char *modver;         /* The version that the module is at            */
  char *modtitle;       /* How the module announces itself              */
  dll_handle dlhandle;  /* Dynamic lib handle                           */
} emodules_list;

static Lisp_Object Vmodule_extensions;

static int emodules_depth;
static dll_handle dlhandle;
static emodules_list *modules;
static int modnum;

static int find_make_module (const char *mod, const char *name, const char *ver, int make_or_find);
static Lisp_Object module_load_unwind (Lisp_Object);
static void attempt_module_delete (int mod);

DEFUN ("load-module", Fload_module, 1, 3, "FLoad dynamic module: ", /*
Load in a C Emacs Extension module named FILE.
The optional NAME and VERSION are used to identify specific modules.

This function is similar in intent to `load' except that it loads in
pre-compiled C or C++ code, using dynamic shared objects.  If NAME is
specified, then the module is only loaded if its internal name matches
the NAME specified.  If VERSION is specified, then the module is only
loaded if it matches that VERSION.  This function will check to make
sure that the same module is not loaded twice.  Modules are searched
for in the same way as Lisp files, except that the valid file
extensions are `.so', `.dll' or `.ell'.

All symbols in the shared module must be completely resolved in order
for this function to be successful.  Any modules which the specified
FILE depends on will be automatically loaded.  You can determine which
modules have been loaded as dynamic shared objects by examining the
return value of the function `list-modules'.

It is possible, although unwise, to unload modules using `unload-module'.
The preferred mechanism for unloading or reloading modules is to quit
XEmacs, and then reload those new or changed modules that are required.

Messages informing you of the progress of the load are displayed unless
the variable `load-modules-quietly' is non-NIL.
*/
       (file, name, version))
{
  char *mod, *mname, *mver;
  int speccount = specpdl_depth();

  CHECK_STRING(file);

  mod = (char *)XSTRING_DATA (file);

  if (NILP (name))
    mname = "";
  else
    mname = (char *)XSTRING_DATA (name);

  if (NILP (version))
    mver = "";
  else
    mver = (char *)XSTRING_DATA (version);

  dlhandle = 0;
  record_unwind_protect (module_load_unwind, make_int(modnum));
  emodules_load (mod, mname, mver);
  unbind_to (speccount, Qnil);

  return Qt;
}

#ifdef DANGEROUS_NASTY_SCARY_MONSTER

DEFUN ("unload-module", Fmodule_unload, 1, 3, 0, /*
Unload a module previously loaded with load-module.

As with load-module, this function requires at least the module FILE, and
optionally the module NAME and VERSION to unload.  It may not be possible
for the module to be unloaded from memory, as there may be Lisp objects
referring to variables inside the module code.  However, once you have
requested a module to be unloaded, it will be unloaded from memory as
soon as the last reference to symbols within the module is destroyed.
*/
       (file, name, version))
{
  int x;
  char *mod, *mname, *mver;

  CHECK_STRING(file);

  mod = (char *)XSTRING_DATA (file);

  if (NILP (name))
    mname = "";
  else
    mname = (char *)XSTRING_DATA (name);

  if (NILP (version))
    mver = "";
  else
    mver = (char *)XSTRING_DATA (version);

  x = find_make_module (mod, mname, mver, 1);
  if (x != -1)
    attempt_module_delete (x);
  return Qt;
}
#endif /* DANGEROUS_NASTY_SCARY_MONSTER */

DEFUN ("list-modules", Flist_modules, 0, 0, "", /*
Produce a list of loaded dynamic modules.

This function will return a list of all the loaded dynamic modules.
Each element in the list is a list in the form (SONAME NAME VER DESC),
where SONAME is the name of the shared object that was loaded, NAME
is the internal module name, VER is the version of the module, and DESC
is how the module describes itself.

This function returns a list, so you will need to assign the return value
to a variable and then examine the variable with `describe-variable'.
For example:

  (setq mylist (list-modules))
  (describe-variable 'mylist)


NOTE: It is possible for the same module to be loaded more than once,
at different versions.  However, you should never see the same module,
with the same name and version, loaded more than once.  If you do, this
is a bug, and you are encouraged to report it.
*/
       ())
{
  Lisp_Object mlist = Qnil;
  int i;

  for (i = 0; i < modnum; i++)
    {
      if (modules[i].used == 1)
        mlist = Fcons (list4 (build_string (modules[i].soname),
                              build_string (modules[i].modname),
                              build_string (modules[i].modver),
                              build_string (modules[i].modtitle)), mlist);
    }

  return mlist;
}

static int
find_make_module (const char *mod, const char *name, const char *ver, int mof)
{
  int i, fs = -1;

  for (i = 0; i < modnum; i++)
    {
      if (fs == -1 && modules[i].used == 0)
        fs = i;
      if (strcmp (modules[i].soname, mod) == 0)
        {
          if (name && name[0] && strcmp (modules[i].modname, name))
            continue;
          if (ver && ver[0] && strcmp (modules[i].modver, ver))
            continue;
          return i; /* Found a match */
        }
    }

  if (mof)
    return fs;

  if (fs != -1)
    return fs; /* First free slot */

  /*
   * We only get here if we haven't found a free slot and the module was
   * not previously loaded.
   */
  if (modules == (emodules_list *)0)
    modules = (emodules_list *) xmalloc (sizeof (emodules_list));
  modnum++;
  modules = (emodules_list *) xrealloc (modules, modnum * sizeof (emodules_list));

  fs = modnum - 1;
  memset (&modules[fs], 0, sizeof(emodules_list));
  return fs;
}

static void
attempt_module_delete (int mod)
{
  if (dll_close (modules[mod].dlhandle) == 0)
    {
      xfree (modules[mod].soname);
      xfree (modules[mod].modname);
      xfree (modules[mod].modver);
      xfree (modules[mod].modtitle);
      modules[mod].dlhandle = 0;
      modules[mod].used = 0;
    }
  else if (modules[mod].used > 1)
    modules[mod].used = 1; /* We couldn't delete it - it stays */
}

static Lisp_Object
module_load_unwind (Lisp_Object upto)
{
  int x,l=0;

  /*
   * First close off the current handle if it is open.
   */
  if (dlhandle != 0)
    dll_close (dlhandle);
  dlhandle = 0;

  if (CONSP (upto))
    {
      if (INTP (XCAR (upto)))
        l = XINT (XCAR (upto));
      free_cons (XCONS (upto));
    }
  else
    l = XINT (upto);

  /*
   * Here we need to go through and dlclose() (IN REVERSE ORDER!) any
   * modules that were loaded as part of this load chain. We only mark
   * the slots as closed if the dlclose() succeeds.
   */
  for (x = modnum-1; x >= l; x--)
    {
      if (modules[x].used > 1)
        attempt_module_delete (x);
    }
  emodules_depth = 0;

  return Qnil;
}

/*
 * Do the actual grunt-work of loading in a module. We first try and
 * dlopen() the module. If that fails, we have an error and we bail
 * out immediately. If the dlopen() succeeds, we need to check for the
 * existence of certain special symbols.
 *
 * All modules will have complete access to the variables and functions
 * defined within XEmacs itself.  It is up to the module to declare any
 * variables or functions it uses, however.  Modules will also have access
 * to other functions and variables in other loaded modules, unless they
 * are defined as STATIC.
 *
 * We need to be very careful with how we load modules. If we encounter an
 * error along the way, we need to back out completely to the point at
 * which the user started. Since we can be called recursively, we need to
 * take care with marking modules as loaded. When we first start loading
 * modules, we set the counter to zero. As we enter the function each time,
 * we increment the counter, and before we leave we decrement it. When
 * we get back down to 0, we know we are at the end of the chain and we
 * can mark all the modules in the list as loaded.
 *
 * When we signal an error, we need to be sure to unwind all modules loaded
 * thus far (but only for this module chain). It is assumed that if any
 * modules in a chain fail, then they all do. This is logical, considering
 * that the only time we recurse is when we have dependent modules. So in
 * the error handler we take great care to close off the module chain before
 * we call "error" and let the Fmodule_load unwind_protect() function handle
 * the cleaning up.
 */
void
emodules_load(const char *module, const char *modname, const char *modver)
{
  Lisp_Object filename;
  Lisp_Object foundname;
  int fd, x, mpx;
  char *soname, *tmod;
  const char **f;
  const long *ellcc_rev;
  char *mver, *mname, *mtitle, *symname;
  void (*modload)(void) = 0;
  void (*modsyms)(void) = 0;
  void (*modvars)(void) = 0;
  void (*moddocs)(void) = 0;
  emodules_list *mp;
  struct gcpro gcpro1,gcpro2;

  filename = Qnil;
  foundname = Qnil;

  emodules_depth++;
  dlhandle = 0;

  if ((module == (const char *)0) || (module[0] == '\0'))
    invalid_argument ("Empty module name", Qunbound);

  /* This is to get around the fact that build_string() is not declared
     as taking a const char * as an argument. I HATE compiler warnings. */
  tmod = (char *)alloca (strlen (module) + 1);
  strcpy (tmod, module);

  GCPRO2(filename, foundname);
  filename = build_string (tmod);
  fd = locate_file (Vmodule_load_path, filename, Vmodule_extensions,
		    &foundname, -1);
  UNGCPRO;

  if (fd < 0)
    signal_error (Qdll_error, "Cannot open dynamic module", filename);

  soname = (char *)alloca (XSTRING_LENGTH (foundname) + 1);
  strcpy (soname, (char *)XSTRING_DATA (foundname));

  dlhandle = dll_open (soname);
  if (dlhandle == (dll_handle)0)
    {
      CIntbyte *dllerrint;

      EXTERNAL_TO_C_STRING (dll_error (dlhandle), dllerrint, Qnative);
      signal_error (Qdll_error, "Opening dynamic module",
		    build_string (dllerrint));
    }

  ellcc_rev = (const long *)dll_variable (dlhandle, "emodule_compiler");
  if ((ellcc_rev == (const long *)0) || (*ellcc_rev <= 0))
    signal_error (Qdll_error, "Invalid dynamic module: Missing symbol `emodule_compiler'", Qunbound);
  if (*ellcc_rev > EMODULES_REVISION)
    signal_ferror (Qdll_error, "Invalid dynamic module: Unsupported version `%ld(%ld)'", *ellcc_rev, EMODULES_REVISION);

  f = (const char **)dll_variable (dlhandle, "emodule_name");
  if ((f == (const char **)0) || (*f == (const char *)0))
    signal_error (Qdll_error, "Invalid dynamic module: Missing symbol `emodule_name'", Qunbound);

  mname = (char *)alloca (strlen (*f) + 1);
  strcpy (mname, *f);
  if (mname[0] == '\0')
    signal_error (Qdll_error, "Invalid dynamic module: Empty value for `emodule_name'", Qunbound);

  f = (const char **)dll_variable (dlhandle, "emodule_version");
  if ((f == (const char **)0) || (*f == (const char *)0))
    signal_error (Qdll_error, "Missing symbol `emodule_version': Invalid dynamic module", Qunbound);

  mver = (char *)alloca (strlen (*f) + 1);
  strcpy (mver, *f);

  f = (const char **)dll_variable (dlhandle, "emodule_title");
  if ((f == (const char **)0) || (*f == (const char *)0))
    signal_error (Qdll_error, "Invalid dynamic module: Missing symbol `emodule_title'", Qunbound);

  mtitle = (char *)alloca (strlen (*f) + 1);
  strcpy (mtitle, *f);

  symname = (char *)alloca (strlen (mname) + 15);

  strcpy (symname, "modules_of_");
  strcat (symname, mname);
  modload = (void (*)(void))dll_function (dlhandle, symname);
  /*
   * modload is optional. If the module doesn't require other modules it can
   * be left out.
   */

  strcpy (symname, "syms_of_");
  strcat (symname, mname);
  modsyms = (void (*)(void))dll_function (dlhandle, symname);
  if (modsyms == (void (*)(void))0)
    {
    missing_symbol:
      signal_error (Qdll_error, "Invalid dynamic module: Missing symbol",
		    build_string (symname));
    }

  strcpy (symname, "vars_of_");
  strcat (symname, mname);
  modvars = (void (*)(void))dll_function (dlhandle, symname);
  if (modvars == (void (*)(void))0)
    goto missing_symbol;

  strcpy (symname, "docs_of_");
  strcat (symname, mname);
  moddocs = (void (*)(void))dll_function (dlhandle, symname);
  if (moddocs == (void (*)(void))0)
    goto missing_symbol;

  if (modname && modname[0] && strcmp (modname, mname))
    signal_error (Qdll_error, "Module name mismatch", Qunbound);

  if (modver && modver[0] && strcmp (modver, mver))
    signal_error (Qdll_error, "Module version mismatch", Qunbound);

  /*
   * Attempt to make a new slot for this module. If this really is the
   * first time we are loading this module, the used member will be 0.
   * If that is non-zero, we know that we have a previously loaded module
   * of the same name and version, and we don't need to go any further.
   */
  mpx = find_make_module (soname, mname, mver, 0);
  mp = &modules[mpx];
  if (mp->used > 0)
    {
      emodules_depth--;
      dll_close (dlhandle);
      return;
    }

  if (!load_modules_quietly)
    message ("Loading %s v%s (%s)", mname, mver, mtitle);

  /*
   * We have passed the basic initialization, and can now add this
   * module to the list of modules.
   */
  mp->used = emodules_depth + 1;
  mp->soname = xstrdup (soname);
  mp->modname = xstrdup (mname);
  mp->modver = xstrdup (mver);
  mp->modtitle = xstrdup (mtitle);
  mp->dlhandle = dlhandle;
  dlhandle = 0;

  /*
   * Now we need to call the module init function and perform the various
   * startup tasks.
   */
  if (modload != 0)
    (*modload)();

  /*
   * Now we can get the module to initialize its symbols, and then its
   * variables, and lastly the documentation strings.
   */
  (*modsyms)();
  (*modvars)();
  (*moddocs)();

  if (!load_modules_quietly)
    message ("Loaded module %s v%s (%s)", mname, mver, mtitle);


  emodules_depth--;
  if (emodules_depth == 0)
    {
      /*
       * We have reached the end of the load chain. We now go through the
       * list of loaded modules and mark all the valid modules as just
       * that.
       */
      for (x = 0; x < modnum; x++)
        if (modules[x].used > 1)
          modules[x].used = 1;
    }
}

void
emodules_doc_subr(const char *symname, const char *doc)
{
  Bytecount len = strlen (symname);
  Lisp_Object sym = oblookup (Vobarray, (const Intbyte *)symname, len);
  Lisp_Subr *subr;

  if (SYMBOLP(sym))
    {
      subr = XSUBR( XSYMBOL(sym)->function);
      subr->doc = xstrdup (doc);
    }
  /*
   * FIXME: I wish there was some way to avoid the xstrdup(). Is it
   * possible to just set a pointer to the string, or somehow create a
   * symbol whose value we can point to the constant string? Can someone
   * look into this?
   */
}

void
emodules_doc_sym (const char *symname, const char *doc)
{
  Bytecount len = strlen (symname);
  Lisp_Object sym = oblookup (Vobarray, (const Intbyte *)symname, len);
  Lisp_Object docstr;
  struct gcpro gcpro1;

  if (SYMBOLP(sym))
    {
      docstr = build_string (doc);
      GCPRO1(docstr);
      Fput (sym, Qvariable_documentation, docstr);
      UNGCPRO;
    }
}


void
syms_of_module (void)
{
  DEFERROR_STANDARD (Qdll_error, Qerror);
  DEFSUBR(Fload_module);
  DEFSUBR(Flist_modules);
#ifdef DANGEROUS_NASTY_SCARY_MONSTER
  DEFSUBR(Funload_module);
#endif
}

void
reinit_vars_of_module (void)
{
  emodules_depth = 0;
  modules = (emodules_list *)0;
  modnum = 0;
}

void
vars_of_module (void)
{
  reinit_vars_of_module ();

  DEFVAR_LISP ("module-version", &Vmodule_version /*
Emacs dynamic loading mechanism version, as a string.

This string is in the form XX.YY.ppp, where XX is the major version
number, YY is the minor version number, and ppp is the patch level.
This variable can be used to distinguish between different versions of
the dynamic loading technology used in Emacs, if required.  It is not
a given that this value will be the same as the Emacs version number.
*/ );
  Vmodule_version = build_string (EMODULES_VERSION);

  DEFVAR_BOOL ("load-modules-quietly", &load_modules_quietly /*
*Set to t if module loading is to be silent.

Normally, when loading dynamic modules, Emacs will inform you of its
progress, and will display the module name and version if the module
is loaded correctly.  Setting this variable to `t' will suppress these
messages.  This would normally only be done if `load-module' was being
called by a Lisp function.
*/);

  DEFVAR_LISP ("module-load-path", &Vmodule_load_path /*
*List of directories to search for dynamic modules to load.
Each element is a string (directory name) or nil (try default directory).

Note that elements of this list *may not* begin with "~", so you must
call `expand-file-name' on them before adding them to this list.

Initialized based on EMACSMODULEPATH environment variable, if any, otherwise
to default specified the file `paths.h' when XEmacs was built.  If there
were no paths specified in `paths.h', then XEmacs chooses a default
value for this variable by looking around in the file-system near the
directory in which the XEmacs executable resides.

Due to the nature of dynamic modules, the path names should almost always
refer to architecture-dependent directories.  It is unwise to attempt to
store dynamic modules in a heterogenous environment.  Some environments
are similar enough to each other that XEmacs will be unable to determine
the correctness of a dynamic module, which can have unpredictable results
when a dynamic module is loaded.
*/);

  /* #### Export this to Lisp */
  Vmodule_extensions = build_string (":.ell:.so:.dll");
  staticpro (&Vmodule_extensions);

  load_modules_quietly = 0;
  Vmodule_load_path = Qnil;
  Fprovide (intern ("modules"));
}

#endif /* HAVE_SHLIB */