view src/device.c @ 665:fdefd0186b75

[xemacs-hg @ 2001-09-20 06:28:42 by ben] The great integral types renaming. The purpose of this is to rationalize the names used for various integral types, so that they match their intended uses and follow consist conventions, and eliminate types that were not semantically different from each other. The conventions are: -- All integral types that measure quantities of anything are signed. Some people disagree vociferously with this, but their arguments are mostly theoretical, and are vastly outweighed by the practical headaches of mixing signed and unsigned values, and more importantly by the far increased likelihood of inadvertent bugs: Because of the broken "viral" nature of unsigned quantities in C (operations involving mixed signed/unsigned are done unsigned, when exactly the opposite is nearly always wanted), even a single error in declaring a quantity unsigned that should be signed, or even the even more subtle error of comparing signed and unsigned values and forgetting the necessary cast, can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned on specifically to catch this, but this tends to result in a great number of warnings when mixing signed and unsigned, and the casts are annoying. More has been written on this elsewhere. -- All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on 32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size as Lisp objects of type `int', and (as far as I can tell) of size_t (unsigned!) and ssize_t. The only type below that is not an EMACS_INT is Hashcode, which is an unsigned value of the same size as EMACS_INT. -- Type names should be relatively short (no more than 10 characters or so), with the first letter capitalized and no underscores if they can at all be avoided. -- "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and indexes. -- "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Bytebpos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not directly correspond to the memory representation. Use "Membpos" for this. -- "Char" refers to internal-format characters, not to the C type "char", which is really a byte. -- For the actual name changes, see the script below. I ran the following script to do the conversion. (NOTE: This script is idempotent. You can safely run it multiple times and it will not screw up previous results -- in fact, it will do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle patches coming in from old workspaces, or old branches.) There are two tags, just before and just after the change: `pre-integral-type-rename' and `post-integral-type-rename'. When merging code from the main trunk into a branch, the best thing to do is first merge up to `pre-integral-type-rename', then apply the script and associated changes, then merge from `post-integral-type-change' to the present. (Alternatively, just do the merging in one operation; but you may then have a lot of conflicts needing to be resolved by hand.) Script `fixtypes.sh' follows: ----------------------------------- cut ------------------------------------ files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]" gr Memory_Count Bytecount $files gr Lstream_Data_Count Bytecount $files gr Element_Count Elemcount $files gr Hash_Code Hashcode $files gr extcount bytecount $files gr bufpos charbpos $files gr bytind bytebpos $files gr memind membpos $files gr bufbyte intbyte $files gr Extcount Bytecount $files gr Bufpos Charbpos $files gr Bytind Bytebpos $files gr Memind Membpos $files gr Bufbyte Intbyte $files gr EXTCOUNT BYTECOUNT $files gr BUFPOS CHARBPOS $files gr BYTIND BYTEBPOS $files gr MEMIND MEMBPOS $files gr BUFBYTE INTBYTE $files gr MEMORY_COUNT BYTECOUNT $files gr LSTREAM_DATA_COUNT BYTECOUNT $files gr ELEMENT_COUNT ELEMCOUNT $files gr HASH_CODE HASHCODE $files ----------------------------------- cut ------------------------------------ `fixtypes.sh' is a Bourne-shell script; it uses 'gr': ----------------------------------- cut ------------------------------------ #!/bin/sh # Usage is like this: # gr FROM TO FILES ... # globally replace FROM with TO in FILES. FROM and TO are regular expressions. # backup files are stored in the `backup' directory. from="$1" to="$2" shift 2 echo ${1+"$@"} | xargs global-replace "s/$from/$to/g" ----------------------------------- cut ------------------------------------ `gr' in turn uses a Perl script to do its real work, `global-replace', which follows: ----------------------------------- cut ------------------------------------ : #-*- Perl -*- ### global-modify --- modify the contents of a file by a Perl expression ## Copyright (C) 1999 Martin Buchholz. ## Copyright (C) 2001 Ben Wing. ## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org> ## Maintainer: Ben Wing <ben@xemacs.org> ## Current Version: 1.0, May 5, 2001 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with XEmacs; see the file COPYING. If not, write to the Free # Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA # 02111-1307, USA. eval 'exec perl -w -S $0 ${1+"$@"}' if 0; use strict; use FileHandle; use Carp; use Getopt::Long; use File::Basename; (my $myName = $0) =~ s@.*/@@; my $usage=" Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode] PERLEXPR FILE ... Globally modify a file, either line by line or in one big hunk. Typical usage is like this: [with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc. in file names] find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n [with non-GNU print, xargs] find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n The file is read in, either line by line (with --line-mode specified) or in one big hunk (with --hunk-mode specified; it's the default), and the Perl expression is then evalled with \$_ set to the line or hunk of text, including the terminating newline if there is one. It should destructively modify the value there, storing the changed result in \$_. Files in which any modifications are made are backed up to the directory specified using --backup-dir, or to `backup' by default. To disable this, use --backup-dir= with no argument. Hunk mode is the default because it is MUCH MUCH faster than line-by-line. Use line-by-line only when it matters, e.g. you want to do a replacement only once per line (the default without the `g' argument). Conversely, when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one replacement in the entire file! "; my %options = (); $Getopt::Long::ignorecase = 0; &GetOptions ( \%options, 'help', 'backup-dir=s', 'line-mode', 'hunk-mode', ); die $usage if $options{"help"} or @ARGV <= 1; my $code = shift; die $usage if grep (-d || ! -w, @ARGV); sub SafeOpen { open ((my $fh = new FileHandle), $_[0]); confess "Can't open $_[0]: $!" if ! defined $fh; return $fh; } sub SafeClose { close $_[0] or confess "Can't close $_[0]: $!"; } sub FileContents { my $fh = SafeOpen ("< $_[0]"); my $olddollarslash = $/; local $/ = undef; my $contents = <$fh>; $/ = $olddollarslash; return $contents; } sub WriteStringToFile { my $fh = SafeOpen ("> $_[0]"); binmode $fh; print $fh $_[1] or confess "$_[0]: $!\n"; SafeClose $fh; } foreach my $file (@ARGV) { my $changed_p = 0; my $new_contents = ""; if ($options{"line-mode"}) { my $fh = SafeOpen $file; while (<$fh>) { my $save_line = $_; eval $code; $changed_p = 1 if $save_line ne $_; $new_contents .= $_; } } else { my $orig_contents = $_ = FileContents $file; eval $code; if ($_ ne $orig_contents) { $changed_p = 1; $new_contents = $_; } } if ($changed_p) { my $backdir = $options{"backup-dir"}; $backdir = "backup" if !defined ($backdir); if ($backdir) { my ($name, $path, $suffix) = fileparse ($file, ""); my $backfulldir = $path . $backdir; my $backfile = "$backfulldir/$name"; mkdir $backfulldir, 0755 unless -d $backfulldir; print "modifying $file (original saved in $backfile)\n"; rename $file, $backfile; } WriteStringToFile ($file, $new_contents); } } ----------------------------------- cut ------------------------------------ In addition to those programs, I needed to fix up a few other things, particularly relating to the duplicate definitions of types, now that some types merged with others. Specifically: 1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now look like this: (In each code snippet below, the first and last lines are the same as the original, as are all lines outside of those lines. That allows you to locate the section to be replaced, and replace the stuff in that section, verifying that there isn't anything new added that would need to be kept.) --------------------------------- snip ------------------------------------- /* Counts of bytes or chars */ typedef EMACS_INT Bytecount; typedef EMACS_INT Charcount; /* Counts of elements */ typedef EMACS_INT Elemcount; /* Hash codes */ typedef unsigned long Hashcode; /* ------------------------ dynamic arrays ------------------- */ --------------------------------- snip ------------------------------------- 2. in lstream.h, removed duplicate declaration of Bytecount. Rewrote the comment about this type. The changed code should now look like this: --------------------------------- snip ------------------------------------- #endif /* The have been some arguments over the what the type should be that specifies a count of bytes in a data block to be written out or read in, using Lstream_read(), Lstream_write(), and related functions. Originally it was long, which worked fine; Martin "corrected" these to size_t and ssize_t on the grounds that this is theoretically cleaner and is in keeping with the C standards. Unfortunately, this practice is horribly error-prone due to design flaws in the way that mixed signed/unsigned arithmetic happens. In fact, by doing this change, Martin introduced a subtle but fatal error that caused the operation of sending large mail messages to the SMTP server under Windows to fail. By putting all values back to be signed, avoiding any signed/unsigned mixing, the bug immediately went away. The type then in use was Lstream_Data_Count, so that it be reverted cleanly if a vote came to that. Now it is Bytecount. Some earlier comments about why the type must be signed: This MUST BE SIGNED, since it also is used in functions that return the number of bytes actually read to or written from in an operation, and these functions can return -1 to signal error. Note that the standard Unix read() and write() functions define the count going in as a size_t, which is UNSIGNED, and the count going out as an ssize_t, which is SIGNED. This is a horrible design flaw. Not only is it highly likely to lead to logic errors when a -1 gets interpreted as a large positive number, but operations are bound to fail in all sorts of horrible ways when a number in the upper-half of the size_t range is passed in -- this number is unrepresentable as an ssize_t, so code that checks to see how many bytes are actually written (which is mandatory if you are dealing with certain types of devices) will get completely screwed up. --ben */ typedef enum lstream_buffering --------------------------------- snip ------------------------------------- 3. in dumper.c, there are four places, all inside of switch() statements, where XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks contain identical code, and you should *REMOVE THE SECOND* and leave the first.
author ben
date Thu, 20 Sep 2001 06:31:11 +0000
parents af57a77cbc92
children 943eaba38521
line wrap: on
line source

/* Generic device functions.
   Copyright (C) 1994, 1995 Board of Trustees, University of Illinois.
   Copyright (C) 1994, 1995 Free Software Foundation, Inc.
   Copyright (C) 1995, 1996 Ben Wing

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

/* Original version by Chuck Thompson;
   rewritten and expanded by Ben Wing. */

#include <config.h>
#include "lisp.h"

#include "buffer.h"
#include "console.h"
#include "device.h"
#include "elhash.h"
#include "events.h"
#include "faces.h"
#include "frame.h"
#include "keymap.h"
#include "redisplay.h"
#include "specifier.h"
#include "sysdep.h"
#include "window.h"

#ifdef HAVE_SCROLLBARS
#include "scrollbar.h"
#endif

#include "syssignal.h"

/* Vdefault_device is the firstly-created non-stream device that's still
   around.  We don't really use it anywhere currently, but it might
   be used for resourcing at some point.  (Currently we use
   Vdefault_x_device.) */
Lisp_Object Vdefault_device;

Lisp_Object Vcreate_device_hook, Vdelete_device_hook;

/* Device classes */
/* Qcolor defined in general.c */
Lisp_Object Qgrayscale, Qmono;

/* Device metrics symbols */
Lisp_Object
  Qcolor_default, Qcolor_select, Qcolor_balloon, Qcolor_3d_face,
  Qcolor_3d_light, Qcolor_3d_dark, Qcolor_menu, Qcolor_menu_highlight,
  Qcolor_menu_button, Qcolor_menu_disabled, Qcolor_toolbar,
  Qcolor_scrollbar, Qcolor_desktop, Qcolor_workspace, Qfont_default,
  Qfont_menubar, Qfont_dialog, Qsize_cursor, Qsize_scrollbar,
  Qsize_menu, Qsize_toolbar, Qsize_toolbar_button,
  Qsize_toolbar_border, Qsize_icon, Qsize_icon_small, Qsize_device,
  Qsize_workspace, Qoffset_workspace, Qsize_device_mm, Qdevice_dpi,
  Qnum_bit_planes, Qnum_color_cells, Qmouse_buttons, Qswap_buttons,
  Qshow_sounds, Qslow_device, Qsecurity;

Lisp_Object Qdevicep, Qdevice_live_p;
Lisp_Object Qcreate_device_hook;
Lisp_Object Qdelete_device_hook;
Lisp_Object Vdevice_class_list;


static Lisp_Object
mark_device (Lisp_Object obj)
{
  struct device *d = XDEVICE (obj);

#define MARKED_SLOT(x) mark_object (d->x)
#include "devslots.h"

  if (d->devmeths)
    {
      mark_object (d->devmeths->symbol);
      MAYBE_DEVMETH (d, mark_device, (d));
    }

  return (d->frame_list);
}

static void
print_device (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
{
  struct device *d = XDEVICE (obj);
  char buf[256];

  if (print_readably)
    printing_unreadable_object ("#<device %s 0x%x>",
				XSTRING_DATA (d->name), d->header.uid);

  sprintf (buf, "#<%s-device", !DEVICE_LIVE_P (d) ? "dead" :
	   DEVICE_TYPE_NAME (d));
  write_c_string (buf, printcharfun);
  if (DEVICE_LIVE_P (d) && !NILP (DEVICE_CONNECTION (d)))
    {
      write_c_string (" on ", printcharfun);
      print_internal (DEVICE_CONNECTION (d), printcharfun, 1);
    }
  sprintf (buf, " 0x%x>", d->header.uid);
  write_c_string (buf, printcharfun);
}

DEFINE_LRECORD_IMPLEMENTATION ("device", device,
			       mark_device, print_device, 0, 0, 0, 0,
			       struct device);

int
valid_device_class_p (Lisp_Object class)
{
  return !NILP (memq_no_quit (class, Vdevice_class_list));
}

DEFUN ("valid-device-class-p", Fvalid_device_class_p, 1, 1, 0, /*
Given a DEVICE-CLASS, return t if it is valid.
Valid classes are 'color, 'grayscale, and 'mono.
*/
       (device_class))
{
  return valid_device_class_p (device_class) ? Qt : Qnil;
}

DEFUN ("device-class-list", Fdevice_class_list, 0, 0, 0, /*
Return a list of valid device classes.
*/
       ())
{
  return Fcopy_sequence (Vdevice_class_list);
}

static void
nuke_all_device_slots (struct device *d, Lisp_Object zap)
{
  zero_lcrecord (d);

#define MARKED_SLOT(x)	d->x = zap
#include "devslots.h"
}

static struct device *
allocate_device (Lisp_Object console)
{
  Lisp_Object device;
  struct device *d = alloc_lcrecord_type (struct device, &lrecord_device);
  struct gcpro gcpro1;

  XSETDEVICE (device, d);
  GCPRO1 (device);

  nuke_all_device_slots (d, Qnil);

  d->console = console;
  d->infd = d->outfd = -1;

  /* #### is 20 reasonable? */
  d->color_instance_cache =
    make_lisp_hash_table (20, HASH_TABLE_KEY_WEAK, HASH_TABLE_EQUAL);
  d->font_instance_cache =
    make_lisp_hash_table (20, HASH_TABLE_KEY_WEAK, HASH_TABLE_EQUAL);
#ifdef MULE
  /* Note that the following table is bi-level. */
  d->charset_font_cache =
    make_lisp_hash_table (20, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ);
#endif
  /*
     Note that the image instance cache is actually bi-level.
     See device.h.  We use a low number here because most of the
     time there aren't very many different masks that will be used.
     */
  d->image_instance_cache =
    make_lisp_hash_table (5, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ);

  UNGCPRO;
  return d;
}

struct device *
decode_device (Lisp_Object device)
{
  if (NILP (device))
    device = Fselected_device (Qnil);
  /* quietly accept frames for the device arg */
  else if (FRAMEP (device))
    device = FRAME_DEVICE (decode_frame (device));
  CHECK_LIVE_DEVICE (device);
  return XDEVICE (device);
}

DEFUN ("dfw-device", Fdfw_device, 1, 1, 0, /*
Given a device, frame, or window, return the associated device.
Return nil otherwise.
*/
       (object))
{
  return DFW_DEVICE (object);
}


DEFUN ("selected-device", Fselected_device, 0, 1, 0, /*
Return the device which is currently active.
If optional CONSOLE is non-nil, return the device that would be currently
active if CONSOLE were the selected console.
*/
       (console))
{
  if (NILP (console) && NILP (Vselected_console))
    return Qnil; /* happens early in temacs */
  return CONSOLE_SELECTED_DEVICE (decode_console (console));
}

/* Called from selected_frame_1(), called from Fselect_window() */
void
select_device_1 (Lisp_Object device)
{
  struct device *dev = XDEVICE (device);
  Lisp_Object old_selected_device = Fselected_device (Qnil);

  if (EQ (device, old_selected_device))
    return;

  /* now select the device's console */
  CONSOLE_SELECTED_DEVICE (XCONSOLE (DEVICE_CONSOLE (dev))) = device;
  select_console_1 (DEVICE_CONSOLE (dev));
}

DEFUN ("select-device", Fselect_device, 1, 1, 0, /*
Select the device DEVICE.
Subsequent editing commands apply to its console, selected frame,
and selected window.
The selection of DEVICE lasts until the next time the user does
something to select a different device, or until the next time this
function is called.
*/
       (device))
{
  CHECK_LIVE_DEVICE (device);

  /* select the device's selected frame's selected window.  This will call
     selected_frame_1()->selected_device_1()->selected_console_1(). */
  if (!NILP (DEVICE_SELECTED_FRAME (XDEVICE (device))))
    Fselect_window (FRAME_SELECTED_WINDOW
		    (XFRAME (DEVICE_SELECTED_FRAME (XDEVICE (device)))),
                    Qnil);
  else
    invalid_operation ("Can't select a device with no frames", Qunbound);
  return Qnil;
}

void
set_device_selected_frame (struct device *d, Lisp_Object frame)
{
  if (!NILP (frame) && !FRAME_MINIBUF_ONLY_P (XFRAME (frame)))
    set_console_last_nonminibuf_frame (XCONSOLE (DEVICE_CONSOLE (d)), frame);
  d->selected_frame = frame;
}

DEFUN ("set-device-selected-frame", Fset_device_selected_frame, 2, 2, 0, /*
Set the selected frame of device object DEVICE to FRAME.
If DEVICE is nil, the selected device is used.
If DEVICE is the selected device, this makes FRAME the selected frame.
*/
       (device, frame))
{
  XSETDEVICE (device, decode_device (device));
  CHECK_LIVE_FRAME (frame);

  if (! EQ (device, FRAME_DEVICE (XFRAME (frame))))
    invalid_argument ("In `set-device-selected-frame', FRAME is not on DEVICE",
		      Qunbound);

  if (EQ (device, Fselected_device (Qnil)))
    return Fselect_frame (frame);

  set_device_selected_frame (XDEVICE (device), frame);
  return frame;
}

DEFUN ("devicep", Fdevicep, 1, 1, 0, /*
Return non-nil if OBJECT is a device.
*/
       (object))
{
  return DEVICEP (object) ? Qt : Qnil;
}

DEFUN ("device-live-p", Fdevice_live_p, 1, 1, 0, /*
Return non-nil if OBJECT is a device that has not been deleted.
*/
       (object))
{
  return DEVICEP (object) && DEVICE_LIVE_P (XDEVICE (object)) ? Qt : Qnil;
}

DEFUN ("device-name", Fdevice_name, 0, 1, 0, /*
Return the name of the specified device.
DEVICE defaults to the selected device if omitted.
*/
       (device))
{
  return DEVICE_NAME (decode_device (device));
}

DEFUN ("device-connection", Fdevice_connection, 0, 1, 0, /*
Return the connection of the specified device.
DEVICE defaults to the selected device if omitted.
*/
       (device))
{
  return DEVICE_CONNECTION (decode_device (device));
}

DEFUN ("device-console", Fdevice_console, 0, 1, 0, /*
Return the console of the specified device.
DEVICE defaults to the selected device if omitted.
*/
       (device))
{
  return DEVICE_CONSOLE (decode_device (device));
}

#ifdef HAVE_WINDOW_SYSTEM

static void
init_global_resources (struct device *d)
{
  init_global_faces (d);
#ifdef HAVE_SCROLLBARS
  init_global_scrollbars (d);
#endif
#ifdef HAVE_TOOLBARS
  init_global_toolbars (d);
#endif
}

#endif

static void
init_device_resources (struct device *d)
{
  init_device_faces (d);
#ifdef HAVE_SCROLLBARS
  init_device_scrollbars (d);
#endif
#ifdef HAVE_TOOLBARS
  init_device_toolbars (d);
#endif
}

static Lisp_Object
semi_canonicalize_device_connection (struct console_methods *meths,
				     Lisp_Object name, Error_Behavior errb)
{
  if (HAS_CONTYPE_METH_P (meths, semi_canonicalize_device_connection))
    return CONTYPE_METH (meths, semi_canonicalize_device_connection,
			 (name, errb));
  else
    return CONTYPE_METH_OR_GIVEN (meths, canonicalize_device_connection,
				  (name, errb), name);
}

static Lisp_Object
canonicalize_device_connection (struct console_methods *meths,
				Lisp_Object name, Error_Behavior errb)
{
  if (HAS_CONTYPE_METH_P (meths, canonicalize_device_connection))
    return CONTYPE_METH (meths, canonicalize_device_connection,
			 (name, errb));
  else
    return CONTYPE_METH_OR_GIVEN (meths, semi_canonicalize_device_connection,
				  (name, errb), name);
}

static Lisp_Object
find_device_of_type (struct console_methods *meths, Lisp_Object canon)
{
  Lisp_Object devcons, concons;

  DEVICE_LOOP_NO_BREAK (devcons, concons)
    {
      Lisp_Object device = XCAR (devcons);

      if (EQ (CONMETH_TYPE (meths), DEVICE_TYPE (XDEVICE (device)))
	  && internal_equal (DEVICE_CANON_CONNECTION (XDEVICE (device)),
			     canon, 0))
	return device;
    }

  return Qnil;
}

DEFUN ("find-device", Ffind_device, 1, 2, 0, /*
Look for an existing device attached to connection CONNECTION.
Return the device if found; otherwise, return nil.

If TYPE is specified, only return devices of that type; otherwise,
return devices of any type. (It is possible, although unlikely,
that two devices of different types could have the same connection
name; in such a case, the first device found is returned.)
*/
       (connection, type))
{
  Lisp_Object canon = Qnil;
  struct gcpro gcpro1;

  GCPRO1 (canon);

  if (!NILP (type))
    {
      struct console_methods *conmeths = decode_console_type (type, ERROR_ME);
      canon = canonicalize_device_connection (conmeths, connection,
					      ERROR_ME_NOT);
      if (UNBOUNDP (canon))
	RETURN_UNGCPRO (Qnil);

      RETURN_UNGCPRO (find_device_of_type (conmeths, canon));
    }
  else
    {
      int i;

      for (i = 0; i < Dynarr_length (the_console_type_entry_dynarr); i++)
	{
	  struct console_methods *conmeths =
	    Dynarr_at (the_console_type_entry_dynarr, i).meths;
	  canon = canonicalize_device_connection (conmeths, connection,
						  ERROR_ME_NOT);
	  if (!UNBOUNDP (canon))
	    {
	      Lisp_Object device = find_device_of_type (conmeths, canon);
	      if (!NILP (device))
		RETURN_UNGCPRO (device);
	    }
	}

      RETURN_UNGCPRO (Qnil);
    }
}

DEFUN ("get-device", Fget_device, 1, 2, 0, /*
Look for an existing device attached to connection CONNECTION.
Return the device if found; otherwise, signal an error.

If TYPE is specified, only return devices of that type; otherwise,
return devices of any type. (It is possible, although unlikely,
that two devices of different types could have the same connection
name; in such a case, the first device found is returned.)
*/
       (connection, type))
{
  Lisp_Object device = Ffind_device (connection, type);
  if (NILP (device))
    {
      if (NILP (type))
	invalid_argument ("No such device", connection);
      else
	invalid_argument_2 ("No such device", type, connection);
    }
  return device;
}

static Lisp_Object
delete_deviceless_console (Lisp_Object console)
{
  if (NILP (XCONSOLE (console)->device_list))
    Fdelete_console (console, Qnil);
  return Qnil;
}

DEFUN ("make-device", Fmake_device, 2, 3, 0, /*
Return a new device of type TYPE, attached to connection CONNECTION.

The valid values for CONNECTION are device-specific; however,
CONNECTION is generally a string. (Specifically, for X devices,
CONNECTION should be a display specification such as "foo:0", and
for TTY devices, CONNECTION should be the filename of a TTY device
file, such as "/dev/ttyp4", or nil to refer to XEmacs' standard
input/output.)

PROPS, if specified, should be a plist of properties controlling
device creation.

If CONNECTION specifies an already-existing device connection, that
device is simply returned; no new device is created, and PROPS
have no effect.
*/
       (type, connection, props))
{
  /* This function can GC */
  struct device *d;
  struct console *con;
  Lisp_Object device = Qnil;
  Lisp_Object console = Qnil;
  Lisp_Object name = Qnil;
  struct console_methods *conmeths;
  int speccount = specpdl_depth();

  struct gcpro gcpro1, gcpro2, gcpro3;
#ifdef HAVE_X_WINDOWS
  /* #### icky-poo.  If this is the first X device we are creating,
     then retrieve the global face resources.  We have to do it
     here, at the same time as (or just before) the device face
     resources are retrieved; specifically, it needs to be done
     after the device has been created but before any frames have
     been popped up or much anything else has been done.  It's
     possible for other devices to specify different global
     resources (there's a property on each X server's root window
     that holds some resources); tough luck for the moment.

     This is a nasty violation of device independence, but
     there's not a whole lot I can figure out to do about it.
     The real problem is that the concept of resources is not
     generalized away from X.  Similar resource-related
     device-independence violations occur in faces.el. */
  int first_x_device = NILP (Vdefault_x_device) && EQ (type, Qx);
#endif
#ifdef HAVE_GTK
  int first_gtk_device = NILP (Vdefault_gtk_device) && EQ (type, Qgtk);
#endif

  GCPRO3 (device, console, name);

  conmeths = decode_console_type (type, ERROR_ME_NOT);
  if (!conmeths)
    invalid_constant ("Invalid device type", type);

  device = Ffind_device (connection, type);
  if (!NILP (device))
    RETURN_UNGCPRO (device);

  name = Fplist_get (props, Qname, Qnil);

  {
    Lisp_Object conconnect =
      (HAS_CONTYPE_METH_P (conmeths, device_to_console_connection)) ?
      CONTYPE_METH (conmeths, device_to_console_connection,
		    (connection, ERROR_ME)) :
      connection;
    console = create_console (name, type, conconnect, props);
  }

  record_unwind_protect(delete_deviceless_console, console);

  con = XCONSOLE (console);
  d = allocate_device (console);
  XSETDEVICE (device, d);

  d->devmeths = con->conmeths;

  DEVICE_NAME (d) = name;
  DEVICE_CONNECTION (d) =
    semi_canonicalize_device_connection (conmeths, connection, ERROR_ME);
  DEVICE_CANON_CONNECTION (d) =
    canonicalize_device_connection (conmeths, connection, ERROR_ME);

  MAYBE_DEVMETH (d, init_device, (d, props));

  /* Do it this way so that the device list is in order of creation */
  con->device_list = nconc2 (con->device_list, Fcons (device, Qnil));
  RESET_CHANGED_SET_FLAGS;
  if (NILP (Vdefault_device) || DEVICE_STREAM_P (XDEVICE (Vdefault_device)))
    Vdefault_device = device;

  init_device_sound (d);
#ifdef HAVE_X_WINDOWS
  if (first_x_device)
    init_global_resources (d);
#endif
#ifdef HAVE_GTK
  if (first_gtk_device)
    init_global_resources (d);
#endif
  init_device_resources (d);

  MAYBE_DEVMETH (d, finish_init_device, (d, props));

  /* If this is the first device on the console, make it the selected one. */
  if (NILP (CONSOLE_SELECTED_DEVICE (con)))
    CONSOLE_SELECTED_DEVICE (con) = device;

  /* #### the following should trap errors. */
  setup_device_initial_specifier_tags (d);

  UNGCPRO;
  unbind_to(speccount, Qnil);
  return device;
}

/* find a device other than the selected one.  Prefer non-stream
   devices over stream devices.  Maybe stay on the same console. */

static Lisp_Object
find_other_device (Lisp_Object device, int on_same_console)
{
  Lisp_Object devcons = Qnil, concons;
  Lisp_Object console = DEVICE_CONSOLE (XDEVICE (device));

  /* look for a non-stream device */
  DEVICE_LOOP_NO_BREAK (devcons, concons)
    {
      Lisp_Object dev = XCAR (devcons);
      if (on_same_console && !EQ (console, DEVICE_CONSOLE (XDEVICE (dev))))
	continue;
      if (!DEVICE_STREAM_P (XDEVICE (dev)) && !EQ (dev, device) &&
	  !NILP (DEVICE_SELECTED_FRAME (XDEVICE (dev))))
	goto double_break_1;
    }

 double_break_1:
  if (!NILP (devcons))
    return XCAR (devcons);

  /* OK, now look for a stream device */
  DEVICE_LOOP_NO_BREAK (devcons, concons)
    {
      Lisp_Object dev = XCAR (devcons);
      if (on_same_console && !EQ (console, DEVICE_CONSOLE (XDEVICE (dev))))
	continue;
      if (!EQ (dev, device) && !NILP (DEVICE_SELECTED_FRAME (XDEVICE (dev))))
	goto double_break_2;
    }
 double_break_2:
  if (!NILP (devcons))
    return XCAR (devcons);

  /* Sorry, there ain't none */
  return Qnil;
}

static int
find_nonminibuffer_frame_not_on_device_predicate (Lisp_Object frame,
						  void *closure)
{
  Lisp_Object device;

  VOID_TO_LISP (device, closure);
  if (FRAME_MINIBUF_ONLY_P (XFRAME (frame)))
    return 0;
  if (EQ (device, FRAME_DEVICE (XFRAME (frame))))
    return 0;
  return 1;
}

Lisp_Object
find_nonminibuffer_frame_not_on_device (Lisp_Object device)
{
  return find_some_frame (find_nonminibuffer_frame_not_on_device_predicate,
			  LISP_TO_VOID (device));
}


/* Delete device D.

   If FORCE is non-zero, allow deletion of the only frame.

   If CALLED_FROM_DELETE_CONSOLE is non-zero, then, if
   deleting the last device on a console, just delete it,
   instead of calling `delete-console'.

   If FROM_IO_ERROR is non-zero, then the device is gone due
   to an I/O error.  This affects what happens if we exit
   (we do an emergency exit instead of `save-buffers-kill-emacs'.)
*/

void
delete_device_internal (struct device *d, int force,
			int called_from_delete_console,
			int from_io_error)
{
  /* This function can GC */
  struct console *c;
  Lisp_Object device;
  struct gcpro gcpro1;

  /* OK to delete an already-deleted device. */
  if (!DEVICE_LIVE_P (d))
    return;

  XSETDEVICE (device, d);
  GCPRO1 (device);

  c = XCONSOLE (DEVICE_CONSOLE (d));

  if (!called_from_delete_console)
    {
      int delete_console = 0;
      /* If we're deleting the only device on the console,
	 delete the console. */
      if ((XINT (Flength (CONSOLE_DEVICE_LIST (c))) == 1)
	  /* if we just created the device, it might not be listed,
	     or something ... */
	  && !NILP (memq_no_quit (device, CONSOLE_DEVICE_LIST (c))))
	delete_console = 1;
      /* Or if there aren't any nonminibuffer frames that would be
	 left, delete the console (this will make XEmacs exit). */
      else if (NILP (find_nonminibuffer_frame_not_on_device (device)))
	delete_console = 1;

      if (delete_console)
	{
	  delete_console_internal (c, force, 0, from_io_error);
	  UNGCPRO;
	  return;
	}
    }

  reset_one_device (d);

  {
    Lisp_Object frmcons;

    /* First delete all frames without their own minibuffers,
       to avoid errors coming from attempting to delete a frame
       that is a surrogate for another frame. */
    DEVICE_FRAME_LOOP (frmcons, d)
      {
	struct frame *f = XFRAME (XCAR (frmcons));
	/* delete_frame_internal() might do anything such as run hooks,
	   so be defensive. */
	if (FRAME_LIVE_P (f) && !FRAME_HAS_MINIBUF_P (f))
	  delete_frame_internal (f, 1, 1, from_io_error);

	if (!DEVICE_LIVE_P (d)) /* make sure the delete-*-hook didn't
				   go ahead and delete anything */
	  {
	    UNGCPRO;
	    return;
	  }
      }

    /* #### This should probably be a device method but it is time for
       19.14 to go out the door. */
    /* #### BILL!!! Should this deal with HAVE_MSWINDOWS as well? */
#if defined (HAVE_X_WINDOWS) || defined (HAVE_GTK)
    /* Next delete all frames which have the popup property to avoid
       deleting a child after its parent. */
    DEVICE_FRAME_LOOP (frmcons, d)
      {
	struct frame *f = XFRAME (XCAR (frmcons));

	if (FRAME_LIVE_P (f))
	  {
	    Lisp_Object popup = Fframe_property (XCAR (frmcons), Qpopup, Qnil);
	    if (!NILP (popup))
	      delete_frame_internal (f, 1, 1, from_io_error);

	    if (!DEVICE_LIVE_P (d)) /* make sure the delete-*-hook didn't
				       go ahead and delete anything */
	      {
		UNGCPRO;
		return;
	      }
	  }
      }
#endif /* HAVE_X_WINDOWS */

    DEVICE_FRAME_LOOP (frmcons, d)
      {
	struct frame *f = XFRAME (XCAR (frmcons));
	/* delete_frame_internal() might do anything such as run hooks,
	   so be defensive. */
	if (FRAME_LIVE_P (f))
	  delete_frame_internal (f, 1, 1, from_io_error);

	if (!DEVICE_LIVE_P (d)) /* make sure the delete-*-hook didn't
				   go ahead and delete anything */
	  {
	    UNGCPRO;
	    return;
	  }
      }
  }

  set_device_selected_frame (d, Qnil);

  /* try to select another device */

  if (EQ (device, Fselected_device (DEVICE_CONSOLE (d))))
    {
      Lisp_Object other_dev = find_other_device (device, 1);
      if (!NILP (other_dev))
	Fselect_device (other_dev);
    }

  if (EQ (device, Vdefault_device))
    Vdefault_device = find_other_device (device, 0);

  MAYBE_DEVMETH (d, delete_device, (d));

  CONSOLE_DEVICE_LIST (c) = delq_no_quit (device, CONSOLE_DEVICE_LIST (c));

  RESET_CHANGED_SET_FLAGS;

  /* Nobody should be accessing anything in this object any more, and
     making all Lisp_Objects Qnil allows for better GC'ing in case a
     pointer to the dead device continues to hang around.  Zero all
     other structs in case someone tries to access something through
     them. */
  nuke_all_device_slots (d, Qnil);
  d->devmeths = dead_console_methods;

  UNGCPRO;
}

/* delete a device as a result of an I/O error.  Called from
   an enqueued magic-eval event. */

void
io_error_delete_device (Lisp_Object device)
{
  /* Note: it's the console that should get deleted, but
     delete_device_internal() contains a hack that also deletes the
     console when called from this function.  */
  delete_device_internal (XDEVICE (device), 1, 0, 1);
}

DEFUN ("delete-device", Fdelete_device, 1, 2, 0, /*
Delete DEVICE, permanently eliminating it from use.
Normally, you cannot delete the last non-minibuffer-only frame (you must
use `save-buffers-kill-emacs' or `kill-emacs').  However, if optional
second argument FORCE is non-nil, you can delete the last frame. (This
will automatically call `save-buffers-kill-emacs'.)
*/
       (device, force))
{
  CHECK_DEVICE (device);
  delete_device_internal (XDEVICE (device), !NILP (force), 0, 0);
  return Qnil;
}

DEFUN ("device-frame-list", Fdevice_frame_list, 0, 1, 0, /*
Return a list of all frames on DEVICE.
If DEVICE is nil, the selected device will be used.
*/
       (device))
{
  return Fcopy_sequence (DEVICE_FRAME_LIST (decode_device (device)));
}

DEFUN ("device-class", Fdevice_class, 0, 1, 0, /*
Return the class (color behavior) of DEVICE.
This will be one of 'color, 'grayscale, or 'mono.
*/
       (device))
{
  return DEVICE_CLASS (decode_device (device));
}

DEFUN ("set-device-class", Fset_device_class, 2, 2, 0, /*
Set the class (color behavior) of DEVICE.
CLASS should be one of 'color, 'grayscale, or 'mono.
This is only allowed on device such as TTY devices, where the color
behavior cannot necessarily be determined automatically.
*/
       (device, class))
{
  struct device *d = decode_device (device);
  XSETDEVICE (device, d);
  if (!DEVICE_TTY_P (d))
    gui_error ("Cannot change the class of this device", device);
  if (!EQ (class, Qcolor) && !EQ (class, Qmono) && !EQ (class, Qgrayscale))
    invalid_constant ("Must be color, mono, or grayscale", class);
  if (! EQ (DEVICE_CLASS (d), class))
    {
      Lisp_Object frmcons;
      DEVICE_CLASS (d) = class;
      DEVICE_FRAME_LOOP (frmcons, d)
	{
	  struct frame *f = XFRAME (XCAR (frmcons));

	  recompute_all_cached_specifiers_in_frame (f);
	  MARK_FRAME_FACES_CHANGED (f);
	  MARK_FRAME_GLYPHS_CHANGED (f);
	  MARK_FRAME_SUBWINDOWS_CHANGED (f);
	  MARK_FRAME_TOOLBARS_CHANGED (f);
	  MARK_FRAME_GUTTERS_CHANGED (f);
	  f->menubar_changed = 1;
	}
    }
  return Qnil;
}

DEFUN ("set-device-baud-rate", Fset_device_baud_rate, 2, 2, 0, /*
Set the output baud rate of DEVICE to RATE.
On most systems, changing this value will affect the amount of padding
and other strategic decisions made during redisplay.
*/
       (device, rate))
{
  CHECK_INT (rate);

  DEVICE_BAUD_RATE (decode_device (device)) = XINT (rate);

  return rate;
}

DEFUN ("device-baud-rate", Fdevice_baud_rate, 0, 1, 0, /*
Return the output baud rate of DEVICE.
*/
       (device))
{
  return make_int (DEVICE_BAUD_RATE (decode_device (device)));
}

DEFUN ("device-printer-p", Fdevice_printer_p, 0, 1, 0, /*
Return t if DEVICE is a printer, nil if it is a display. DEVICE defaults
to selected device if omitted, and must be live if specified.
*/
       (device))
{
  return DEVICE_PRINTER_P (decode_device (device)) ? Qt : Qnil;
}

DEFUN ("device-system-metric", Fdevice_system_metric, 1, 3, 0, /*
Get a metric for DEVICE as provided by the system.

METRIC must be a symbol specifying requested metric.  Note that the metrics
returned are these provided by the system internally, not read from resources,
so obtained from the most internal level.

If a metric is not provided by the system, then DEFAULT is returned.

When DEVICE is nil, selected device is assumed

Metrics, by group, are:

COLORS.  Colors are returned as valid color instantiators.  No other assumption
on the returned value should be made (i.e. it can be a string on one system but
a color instance on another).  For colors, returned value is a cons of
foreground and background colors.  Note that if the system provides only one
color of the pair, the second one may be nil.

color-default         Standard window text foreground and background.
color-select          Selection highlight text and background colors.
color-balloon         Balloon popup text and background colors.
color-3d-face         3-D object (button, modeline) text and surface colors.
color-3d-light        Fore and back colors for 3-D edges facing light source.
color-3d-dark         Fore and back colors for 3-D edges facing away from
                      light source.
color-menu            Text and background for menus
color-menu-highlight  Selected menu item colors
color-menu-button     Menu button colors
color-menu-disabled   Unselectable menu item colors
color-toolbar         Toolbar foreground and background colors
color-scrollbar       Scrollbar foreground and background colors
color-desktop         Desktop window colors
color-workspace       Workspace window colors

FONTS. Fonts are returned as valid font instantiators.  No other assumption on
the returned value should be made (i.e. it can be a string on one system but
font instance on another).

font-default          Default fixed width font.
font-menubar          Menubar font
font-dialog           Dialog boxes font

GEOMETRY. These metrics are returned as conses of (X . Y).  As with colors,
either car or cdr of the cons may be nil if the system does not provide one
of the corresponding dimensions.

size-cursor           Mouse cursor size.
size-scrollbar        Scrollbars (WIDTH . HEIGHT)
size-menu             Menubar height, as (nil . HEIGHT)
size-toolbar          Toolbar width and height.
size-toolbar-button   Toolbar button size.
size-toolbar-border   Toolbar border width and height.
size-icon             Icon dimensions.
size-icon-small       Small icon dimensions.
size-device           Device screen or paper size in pixels.
size-workspace        Workspace size in pixels. This can be less than or
                      equal to the above. For displays, this is the area
                      available to applications less window manager
                      decorations. For printers, this is the size of
                      printable area.
offset-workspace      Offset of workspace area from the top left corner
                      of screen or paper, in pixels.
size-device-mm        Device screen size in millimeters.
device-dpi            Device resolution, in dots per inch.
num-bit-planes        Integer, number of device bit planes.
num-color-cells       Integer, number of device color cells.

FEATURES.  This group reports various device features.  If a feature is
present, integer 1 (one) is returned, if it is not present, then integer
0 (zero) is returned.  If the system is unaware of the feature, then
DEFAULT is returned.

mouse-buttons         Integer, number of mouse buttons, or zero if no mouse.
swap-buttons          Non-zero if left and right mouse buttons are swapped.
show-sounds           User preference for visual over audible bell.
slow-device           Device is slow, avoid animation.
security              Non-zero if user environment is secure.
*/
       (device, metric, default_))
{
  struct device *d = decode_device (device);
  enum device_metrics m;
  Lisp_Object res;

  /* Decode metric */
#define FROB(met)				\
  else if (EQ (metric, Q##met))			\
    m = DM_##met

  if (0)
    ;
  FROB (color_default);
  FROB (color_select);
  FROB (color_balloon);
  FROB (color_3d_face);
  FROB (color_3d_light);
  FROB (color_3d_dark);
  FROB (color_menu);
  FROB (color_menu_highlight);
  FROB (color_menu_button);
  FROB (color_menu_disabled);
  FROB (color_toolbar);
  FROB (color_scrollbar);
  FROB (color_desktop);
  FROB (color_workspace);
  FROB (font_default);
  FROB (font_menubar);
  FROB (font_dialog);
  FROB (size_cursor);
  FROB (size_scrollbar);
  FROB (size_menu);
  FROB (size_toolbar);
  FROB (size_toolbar_button);
  FROB (size_toolbar_border);
  FROB (size_icon);
  FROB (size_icon_small);
  FROB (size_device);
  FROB (size_workspace);
  FROB (offset_workspace);
  FROB (size_device_mm);
  FROB (device_dpi);
  FROB (num_bit_planes);
  FROB (num_color_cells);
  FROB (mouse_buttons);
  FROB (swap_buttons);
  FROB (show_sounds);
  FROB (slow_device);
  FROB (security);
  else
    invalid_constant ("Invalid device metric symbol", metric);

  res = DEVMETH_OR_GIVEN (d, device_system_metrics, (d, m), Qunbound);
  return UNBOUNDP(res) ? default_ : res;

#undef FROB
}

DEFUN ("device-system-metrics", Fdevice_system_metrics, 0, 1, 0, /*
Get a property list of device metric for DEVICE.

See `device-system-metric' for the description of available metrics.
DEVICE defaults to selected device when omitted.
*/
       (device))
{
  struct device *d = decode_device (device);
  Lisp_Object plist = Qnil, one_metric;

#define FROB(m)								\
  if (!UNBOUNDP ((one_metric =						\
		  DEVMETH_OR_GIVEN (d, device_system_metrics,     	\
				    (d, DM_##m), Qunbound))))		\
    plist = Fcons (Q##m, Fcons (one_metric, plist));

  FROB (color_default);
  FROB (color_select);
  FROB (color_balloon);
  FROB (color_3d_face);
  FROB (color_3d_light);
  FROB (color_3d_dark);
  FROB (color_menu);
  FROB (color_menu_highlight);
  FROB (color_menu_button);
  FROB (color_menu_disabled);
  FROB (color_toolbar);
  FROB (color_scrollbar);
  FROB (color_desktop);
  FROB (color_workspace);
  FROB (font_default);
  FROB (font_menubar);
  FROB (font_dialog);
  FROB (size_cursor);
  FROB (size_scrollbar);
  FROB (size_menu);
  FROB (size_toolbar);
  FROB (size_toolbar_button);
  FROB (size_toolbar_border);
  FROB (size_icon);
  FROB (size_icon_small);
  FROB (size_device);
  FROB (size_workspace);
  FROB (offset_workspace);
  FROB (size_device_mm);
  FROB (device_dpi);
  FROB (num_bit_planes);
  FROB (num_color_cells);
  FROB (mouse_buttons);
  FROB (swap_buttons);
  FROB (show_sounds);
  FROB (slow_device);
  FROB (security);

  return plist;

#undef FROB
}

Lisp_Object
domain_device_type (Lisp_Object domain)
{
  /* This cannot GC */
  assert (WINDOWP (domain) || FRAMEP (domain)
	  || DEVICEP (domain) || CONSOLEP (domain));

  if (WINDOWP (domain))
    {
      if (!WINDOW_LIVE_P (XWINDOW (domain)))
	return Qdead;
      domain = WINDOW_FRAME (XWINDOW (domain));
    }
  if (FRAMEP (domain))
    {
      if (!FRAME_LIVE_P (XFRAME (domain)))
	return Qdead;
      domain = FRAME_DEVICE (XFRAME (domain));
    }
  if (DEVICEP (domain))
    {
      if (!DEVICE_LIVE_P (XDEVICE (domain)))
	return Qdead;
      domain = DEVICE_CONSOLE (XDEVICE (domain));
    }
  return CONSOLE_TYPE (XCONSOLE (domain));
}

/*
 * Determine whether window system bases window geometry on character
 * or pixel counts.
 * Return non-zero for pixel-based geometry, zero for character-based.
 */
int
window_system_pixelated_geometry (Lisp_Object domain)
{
  /* This cannot GC */
  Lisp_Object winsy = domain_device_type (domain);
  struct console_methods *meth = decode_console_type (winsy, ERROR_ME_NOT);
  assert (meth);
  return CONMETH_IMPL_FLAG (meth, XDEVIMPF_PIXEL_GEOMETRY);
}

DEFUN ("domain-device-type", Fdomain_device_type, 0, 1, 0, /*
Return the device type symbol for a DOMAIN, e.g. 'x or 'tty.
DOMAIN can be either a window, frame, device or console.
*/
       (domain))
{
  if (!WINDOWP (domain) && !FRAMEP (domain)
      && !DEVICEP (domain) && !CONSOLEP (domain))
    invalid_argument
      ("Domain must be either a window, frame, device or console", domain);

  return domain_device_type (domain);
}

void
handle_asynch_device_change (void)
{
  int i;
  int old_asynch_device_change_pending = asynch_device_change_pending;
  for (i = 0; i < Dynarr_length (the_console_type_entry_dynarr); i++)
    {
      if (Dynarr_at (the_console_type_entry_dynarr, i).meths->
	  asynch_device_change_method)
	(Dynarr_at (the_console_type_entry_dynarr, i).meths->
	 asynch_device_change_method) ();
    }
  /* reset the flag to 0 unless another notification occurred while
     we were processing this one.  Block SIGWINCH during this
     check to prevent a possible race condition. */
#ifdef SIGWINCH
  EMACS_BLOCK_SIGNAL (SIGWINCH);
#endif
  if (old_asynch_device_change_pending == asynch_device_change_pending)
    asynch_device_change_pending = 0;
#ifdef SIGWINCH
  EMACS_UNBLOCK_SIGNAL (SIGWINCH);
#endif
}

void
call_critical_lisp_code (struct device *d, Lisp_Object function,
			 Lisp_Object object)
{
  int old_gc_currently_forbidden = gc_currently_forbidden;
  Lisp_Object old_inhibit_quit = Vinhibit_quit;

  /* There's no reason to bother doing specbinds here, because if
     initialize-*-faces signals an error, emacs is going to crash
     immediately.
     */
  gc_currently_forbidden = 1;
  Vinhibit_quit = Qt;
  LOCK_DEVICE (d);

  /* But it's useful to have an error handler; otherwise an infinite
     loop may result. */
  if (!NILP (object))
    call1_with_handler (Qreally_early_error_handler, function, object);
  else
    call0_with_handler (Qreally_early_error_handler, function);

  UNLOCK_DEVICE (d);
  Vinhibit_quit = old_inhibit_quit;
  gc_currently_forbidden = old_gc_currently_forbidden;
}


/************************************************************************/
/*                            initialization                            */
/************************************************************************/

void
syms_of_device (void)
{
  INIT_LRECORD_IMPLEMENTATION (device);

  DEFSUBR (Fvalid_device_class_p);
  DEFSUBR (Fdevice_class_list);

  DEFSUBR (Fdfw_device);
  DEFSUBR (Fselected_device);
  DEFSUBR (Fselect_device);
  DEFSUBR (Fset_device_selected_frame);
  DEFSUBR (Fdevicep);
  DEFSUBR (Fdevice_live_p);
  DEFSUBR (Fdevice_name);
  DEFSUBR (Fdevice_connection);
  DEFSUBR (Fdevice_console);
  DEFSUBR (Ffind_device);
  DEFSUBR (Fget_device);
  DEFSUBR (Fmake_device);
  DEFSUBR (Fdelete_device);
  DEFSUBR (Fdevice_frame_list);
  DEFSUBR (Fdevice_class);
  DEFSUBR (Fset_device_class);
  DEFSUBR (Fdevice_system_metrics);
  DEFSUBR (Fdevice_system_metric);
  DEFSUBR (Fset_device_baud_rate);
  DEFSUBR (Fdevice_baud_rate);
  DEFSUBR (Fdomain_device_type);
  DEFSUBR (Fdevice_printer_p);

  DEFSYMBOL (Qdevicep);
  DEFSYMBOL (Qdevice_live_p);

  DEFSYMBOL (Qcreate_device_hook);
  DEFSYMBOL (Qdelete_device_hook);

  /* Qcolor defined in general.c */
  DEFSYMBOL (Qgrayscale);
  DEFSYMBOL (Qmono);

  /* Device metrics symbols */
  DEFSYMBOL (Qcolor_default);
  DEFSYMBOL (Qcolor_select);
  DEFSYMBOL (Qcolor_balloon);
  DEFSYMBOL (Qcolor_3d_face);
  DEFSYMBOL (Qcolor_3d_light);
  DEFSYMBOL (Qcolor_3d_dark);
  DEFSYMBOL (Qcolor_menu);
  DEFSYMBOL (Qcolor_menu_highlight);
  DEFSYMBOL (Qcolor_menu_button);
  DEFSYMBOL (Qcolor_menu_disabled);
  DEFSYMBOL (Qcolor_toolbar);
  DEFSYMBOL (Qcolor_scrollbar);
  DEFSYMBOL (Qcolor_desktop);
  DEFSYMBOL (Qcolor_workspace);
  DEFSYMBOL (Qfont_default);
  DEFSYMBOL (Qfont_menubar);
  DEFSYMBOL (Qfont_dialog);
  DEFSYMBOL (Qsize_cursor);
  DEFSYMBOL (Qsize_scrollbar);
  DEFSYMBOL (Qsize_menu);
  DEFSYMBOL (Qsize_toolbar);
  DEFSYMBOL (Qsize_toolbar_button);
  DEFSYMBOL (Qsize_toolbar_border);
  DEFSYMBOL (Qsize_icon);
  DEFSYMBOL (Qsize_icon_small);
  DEFSYMBOL (Qsize_device);
  DEFSYMBOL (Qsize_workspace);
  DEFSYMBOL (Qoffset_workspace);
  DEFSYMBOL (Qsize_device_mm);
  DEFSYMBOL (Qnum_bit_planes);
  DEFSYMBOL (Qnum_color_cells);
  DEFSYMBOL (Qdevice_dpi);
  DEFSYMBOL (Qmouse_buttons);
  DEFSYMBOL (Qswap_buttons);
  DEFSYMBOL (Qshow_sounds);
  DEFSYMBOL (Qslow_device);
  DEFSYMBOL (Qsecurity);
}

void
reinit_vars_of_device (void)
{
  staticpro_nodump (&Vdefault_device);
  Vdefault_device = Qnil;
  asynch_device_change_pending = 0;
}

void
vars_of_device (void)
{
  reinit_vars_of_device ();

  DEFVAR_LISP ("create-device-hook", &Vcreate_device_hook /*
Function or functions to call when a device is created.
One argument, the newly-created device.
This is called after the first frame has been created, but before
  calling the `create-frame-hook'.
Note that in general the device will not be selected.
*/ );
  Vcreate_device_hook = Qnil;

  DEFVAR_LISP ("delete-device-hook", &Vdelete_device_hook /*
Function or functions to call when a device is deleted.
One argument, the to-be-deleted device.
*/ );
  Vdelete_device_hook = Qnil;

  Vdevice_class_list = list3 (Qcolor, Qgrayscale, Qmono);
  staticpro (&Vdevice_class_list);

  /* Death to devices.el !!! */
  Fprovide (intern ("devices"));
}