Mercurial > hg > xemacs-beta
view src/chartab.c @ 665:fdefd0186b75
[xemacs-hg @ 2001-09-20 06:28:42 by ben]
The great integral types renaming.
The purpose of this is to rationalize the names used for various
integral types, so that they match their intended uses and follow
consist conventions, and eliminate types that were not semantically
different from each other.
The conventions are:
-- All integral types that measure quantities of anything are
signed. Some people disagree vociferously with this, but their
arguments are mostly theoretical, and are vastly outweighed by
the practical headaches of mixing signed and unsigned values,
and more importantly by the far increased likelihood of
inadvertent bugs: Because of the broken "viral" nature of
unsigned quantities in C (operations involving mixed
signed/unsigned are done unsigned, when exactly the opposite is
nearly always wanted), even a single error in declaring a
quantity unsigned that should be signed, or even the even more
subtle error of comparing signed and unsigned values and
forgetting the necessary cast, can be catastrophic, as
comparisons will yield wrong results. -Wsign-compare is turned
on specifically to catch this, but this tends to result in a
great number of warnings when mixing signed and unsigned, and
the casts are annoying. More has been written on this
elsewhere.
-- All such quantity types just mentioned boil down to EMACS_INT,
which is 32 bits on 32-bit machines and 64 bits on 64-bit
machines. This is guaranteed to be the same size as Lisp
objects of type `int', and (as far as I can tell) of size_t
(unsigned!) and ssize_t. The only type below that is not an
EMACS_INT is Hashcode, which is an unsigned value of the same
size as EMACS_INT.
-- Type names should be relatively short (no more than 10
characters or so), with the first letter capitalized and no
underscores if they can at all be avoided.
-- "count" == a zero-based measurement of some quantity. Includes
sizes, offsets, and indexes.
-- "bpos" == a one-based measurement of a position in a buffer.
"Charbpos" and "Bytebpos" count text in the buffer, rather than
bytes in memory; thus Bytebpos does not directly correspond to
the memory representation. Use "Membpos" for this.
-- "Char" refers to internal-format characters, not to the C type
"char", which is really a byte.
-- For the actual name changes, see the script below.
I ran the following script to do the conversion. (NOTE: This script
is idempotent. You can safely run it multiple times and it will
not screw up previous results -- in fact, it will do nothing if
nothing has changed. Thus, it can be run repeatedly as necessary
to handle patches coming in from old workspaces, or old branches.)
There are two tags, just before and just after the change:
`pre-integral-type-rename' and `post-integral-type-rename'. When
merging code from the main trunk into a branch, the best thing to
do is first merge up to `pre-integral-type-rename', then apply the
script and associated changes, then merge from
`post-integral-type-change' to the present. (Alternatively, just do
the merging in one operation; but you may then have a lot of
conflicts needing to be resolved by hand.)
Script `fixtypes.sh' follows:
----------------------------------- cut ------------------------------------
files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]"
gr Memory_Count Bytecount $files
gr Lstream_Data_Count Bytecount $files
gr Element_Count Elemcount $files
gr Hash_Code Hashcode $files
gr extcount bytecount $files
gr bufpos charbpos $files
gr bytind bytebpos $files
gr memind membpos $files
gr bufbyte intbyte $files
gr Extcount Bytecount $files
gr Bufpos Charbpos $files
gr Bytind Bytebpos $files
gr Memind Membpos $files
gr Bufbyte Intbyte $files
gr EXTCOUNT BYTECOUNT $files
gr BUFPOS CHARBPOS $files
gr BYTIND BYTEBPOS $files
gr MEMIND MEMBPOS $files
gr BUFBYTE INTBYTE $files
gr MEMORY_COUNT BYTECOUNT $files
gr LSTREAM_DATA_COUNT BYTECOUNT $files
gr ELEMENT_COUNT ELEMCOUNT $files
gr HASH_CODE HASHCODE $files
----------------------------------- cut ------------------------------------
`fixtypes.sh' is a Bourne-shell script; it uses 'gr':
----------------------------------- cut ------------------------------------
#!/bin/sh
# Usage is like this:
# gr FROM TO FILES ...
# globally replace FROM with TO in FILES. FROM and TO are regular expressions.
# backup files are stored in the `backup' directory.
from="$1"
to="$2"
shift 2
echo ${1+"$@"} | xargs global-replace "s/$from/$to/g"
----------------------------------- cut ------------------------------------
`gr' in turn uses a Perl script to do its real work,
`global-replace', which follows:
----------------------------------- cut ------------------------------------
: #-*- Perl -*-
### global-modify --- modify the contents of a file by a Perl expression
## Copyright (C) 1999 Martin Buchholz.
## Copyright (C) 2001 Ben Wing.
## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org>
## Maintainer: Ben Wing <ben@xemacs.org>
## Current Version: 1.0, May 5, 2001
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with XEmacs; see the file COPYING. If not, write to the Free
# Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
# 02111-1307, USA.
eval 'exec perl -w -S $0 ${1+"$@"}'
if 0;
use strict;
use FileHandle;
use Carp;
use Getopt::Long;
use File::Basename;
(my $myName = $0) =~ s@.*/@@; my $usage="
Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode]
PERLEXPR FILE ...
Globally modify a file, either line by line or in one big hunk.
Typical usage is like this:
[with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc.
in file names]
find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n
[with non-GNU print, xargs]
find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n
The file is read in, either line by line (with --line-mode specified)
or in one big hunk (with --hunk-mode specified; it's the default), and
the Perl expression is then evalled with \$_ set to the line or hunk of
text, including the terminating newline if there is one. It should
destructively modify the value there, storing the changed result in \$_.
Files in which any modifications are made are backed up to the directory
specified using --backup-dir, or to `backup' by default. To disable this,
use --backup-dir= with no argument.
Hunk mode is the default because it is MUCH MUCH faster than line-by-line.
Use line-by-line only when it matters, e.g. you want to do a replacement
only once per line (the default without the `g' argument). Conversely,
when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one
replacement in the entire file!
";
my %options = ();
$Getopt::Long::ignorecase = 0;
&GetOptions (
\%options,
'help', 'backup-dir=s', 'line-mode', 'hunk-mode',
);
die $usage if $options{"help"} or @ARGV <= 1;
my $code = shift;
die $usage if grep (-d || ! -w, @ARGV);
sub SafeOpen {
open ((my $fh = new FileHandle), $_[0]);
confess "Can't open $_[0]: $!" if ! defined $fh;
return $fh;
}
sub SafeClose {
close $_[0] or confess "Can't close $_[0]: $!";
}
sub FileContents {
my $fh = SafeOpen ("< $_[0]");
my $olddollarslash = $/;
local $/ = undef;
my $contents = <$fh>;
$/ = $olddollarslash;
return $contents;
}
sub WriteStringToFile {
my $fh = SafeOpen ("> $_[0]");
binmode $fh;
print $fh $_[1] or confess "$_[0]: $!\n";
SafeClose $fh;
}
foreach my $file (@ARGV) {
my $changed_p = 0;
my $new_contents = "";
if ($options{"line-mode"}) {
my $fh = SafeOpen $file;
while (<$fh>) {
my $save_line = $_;
eval $code;
$changed_p = 1 if $save_line ne $_;
$new_contents .= $_;
}
} else {
my $orig_contents = $_ = FileContents $file;
eval $code;
if ($_ ne $orig_contents) {
$changed_p = 1;
$new_contents = $_;
}
}
if ($changed_p) {
my $backdir = $options{"backup-dir"};
$backdir = "backup" if !defined ($backdir);
if ($backdir) {
my ($name, $path, $suffix) = fileparse ($file, "");
my $backfulldir = $path . $backdir;
my $backfile = "$backfulldir/$name";
mkdir $backfulldir, 0755 unless -d $backfulldir;
print "modifying $file (original saved in $backfile)\n";
rename $file, $backfile;
}
WriteStringToFile ($file, $new_contents);
}
}
----------------------------------- cut ------------------------------------
In addition to those programs, I needed to fix up a few other
things, particularly relating to the duplicate definitions of
types, now that some types merged with others. Specifically:
1. in lisp.h, removed duplicate declarations of Bytecount. The
changed code should now look like this: (In each code snippet
below, the first and last lines are the same as the original, as
are all lines outside of those lines. That allows you to locate
the section to be replaced, and replace the stuff in that
section, verifying that there isn't anything new added that
would need to be kept.)
--------------------------------- snip -------------------------------------
/* Counts of bytes or chars */
typedef EMACS_INT Bytecount;
typedef EMACS_INT Charcount;
/* Counts of elements */
typedef EMACS_INT Elemcount;
/* Hash codes */
typedef unsigned long Hashcode;
/* ------------------------ dynamic arrays ------------------- */
--------------------------------- snip -------------------------------------
2. in lstream.h, removed duplicate declaration of Bytecount.
Rewrote the comment about this type. The changed code should
now look like this:
--------------------------------- snip -------------------------------------
#endif
/* The have been some arguments over the what the type should be that
specifies a count of bytes in a data block to be written out or read in,
using Lstream_read(), Lstream_write(), and related functions.
Originally it was long, which worked fine; Martin "corrected" these to
size_t and ssize_t on the grounds that this is theoretically cleaner and
is in keeping with the C standards. Unfortunately, this practice is
horribly error-prone due to design flaws in the way that mixed
signed/unsigned arithmetic happens. In fact, by doing this change,
Martin introduced a subtle but fatal error that caused the operation of
sending large mail messages to the SMTP server under Windows to fail.
By putting all values back to be signed, avoiding any signed/unsigned
mixing, the bug immediately went away. The type then in use was
Lstream_Data_Count, so that it be reverted cleanly if a vote came to
that. Now it is Bytecount.
Some earlier comments about why the type must be signed: This MUST BE
SIGNED, since it also is used in functions that return the number of
bytes actually read to or written from in an operation, and these
functions can return -1 to signal error.
Note that the standard Unix read() and write() functions define the
count going in as a size_t, which is UNSIGNED, and the count going
out as an ssize_t, which is SIGNED. This is a horrible design
flaw. Not only is it highly likely to lead to logic errors when a
-1 gets interpreted as a large positive number, but operations are
bound to fail in all sorts of horrible ways when a number in the
upper-half of the size_t range is passed in -- this number is
unrepresentable as an ssize_t, so code that checks to see how many
bytes are actually written (which is mandatory if you are dealing
with certain types of devices) will get completely screwed up.
--ben
*/
typedef enum lstream_buffering
--------------------------------- snip -------------------------------------
3. in dumper.c, there are four places, all inside of switch()
statements, where XD_BYTECOUNT appears twice as a case tag. In
each case, the two case blocks contain identical code, and you
should *REMOVE THE SECOND* and leave the first.
author | ben |
---|---|
date | Thu, 20 Sep 2001 06:31:11 +0000 |
parents | b39c14581166 |
children | 943eaba38521 |
line wrap: on
line source
/* XEmacs routines to deal with char tables. Copyright (C) 1992, 1995 Free Software Foundation, Inc. Copyright (C) 1995 Sun Microsystems, Inc. Copyright (C) 1995, 1996 Ben Wing. Copyright (C) 1995, 1997, 1999 Electrotechnical Laboratory, JAPAN. Licensed to the Free Software Foundation. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Mule 2.3. Not synched with FSF. This file was written independently of the FSF implementation, and is not compatible. */ /* Authorship: Ben Wing: wrote, for 19.13 (Mule). Some category table stuff loosely based on the original Mule. Jareth Hein: fixed a couple of bugs in the implementation, and added regex support for categories with check_category_at */ #include <config.h> #include "lisp.h" #include "buffer.h" #include "chartab.h" #include "syntax.h" Lisp_Object Qchar_tablep, Qchar_table; Lisp_Object Vall_syntax_tables; #ifdef MULE Lisp_Object Qcategory_table_p; Lisp_Object Qcategory_designator_p; Lisp_Object Qcategory_table_value_p; Lisp_Object Vstandard_category_table; /* Variables to determine word boundary. */ Lisp_Object Vword_combining_categories, Vword_separating_categories; #endif /* MULE */ /* A char table maps from ranges of characters to values. Implementing a general data structure that maps from arbitrary ranges of numbers to values is tricky to do efficiently. As it happens, it should suffice (and is usually more convenient, anyway) when dealing with characters to restrict the sorts of ranges that can be assigned values, as follows: 1) All characters. 2) All characters in a charset. 3) All characters in a particular row of a charset, where a "row" means all characters with the same first byte. 4) A particular character in a charset. We use char tables to generalize the 256-element vectors now littering the Emacs code. Possible uses (all should be converted at some point): 1) category tables 2) syntax tables 3) display tables 4) case tables 5) keyboard-translate-table? We provide an abstract type to generalize the Emacs vectors and Mule vectors-of-vectors goo. */ /************************************************************************/ /* Char Table object */ /************************************************************************/ #ifdef MULE static Lisp_Object mark_char_table_entry (Lisp_Object obj) { Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (obj); int i; for (i = 0; i < 96; i++) { mark_object (cte->level2[i]); } return Qnil; } static int char_table_entry_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) { Lisp_Char_Table_Entry *cte1 = XCHAR_TABLE_ENTRY (obj1); Lisp_Char_Table_Entry *cte2 = XCHAR_TABLE_ENTRY (obj2); int i; for (i = 0; i < 96; i++) if (!internal_equal (cte1->level2[i], cte2->level2[i], depth + 1)) return 0; return 1; } static Hashcode char_table_entry_hash (Lisp_Object obj, int depth) { Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (obj); return internal_array_hash (cte->level2, 96, depth); } static const struct lrecord_description char_table_entry_description[] = { { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Char_Table_Entry, level2), 96 }, { XD_END } }; DEFINE_LRECORD_IMPLEMENTATION ("char-table-entry", char_table_entry, mark_char_table_entry, internal_object_printer, 0, char_table_entry_equal, char_table_entry_hash, char_table_entry_description, Lisp_Char_Table_Entry); #endif /* MULE */ static Lisp_Object mark_char_table (Lisp_Object obj) { Lisp_Char_Table *ct = XCHAR_TABLE (obj); int i; for (i = 0; i < NUM_ASCII_CHARS; i++) mark_object (ct->ascii[i]); #ifdef MULE for (i = 0; i < NUM_LEADING_BYTES; i++) mark_object (ct->level1[i]); #endif return ct->mirror_table; } /* WARNING: All functions of this nature need to be written extremely carefully to avoid crashes during GC. Cf. prune_specifiers() and prune_weak_hash_tables(). */ void prune_syntax_tables (void) { Lisp_Object rest, prev = Qnil; for (rest = Vall_syntax_tables; !NILP (rest); rest = XCHAR_TABLE (rest)->next_table) { if (! marked_p (rest)) { /* This table is garbage. Remove it from the list. */ if (NILP (prev)) Vall_syntax_tables = XCHAR_TABLE (rest)->next_table; else XCHAR_TABLE (prev)->next_table = XCHAR_TABLE (rest)->next_table; } } } static Lisp_Object char_table_type_to_symbol (enum char_table_type type) { switch (type) { default: abort(); case CHAR_TABLE_TYPE_GENERIC: return Qgeneric; case CHAR_TABLE_TYPE_SYNTAX: return Qsyntax; case CHAR_TABLE_TYPE_DISPLAY: return Qdisplay; case CHAR_TABLE_TYPE_CHAR: return Qchar; #ifdef MULE case CHAR_TABLE_TYPE_CATEGORY: return Qcategory; #endif } } static enum char_table_type symbol_to_char_table_type (Lisp_Object symbol) { CHECK_SYMBOL (symbol); if (EQ (symbol, Qgeneric)) return CHAR_TABLE_TYPE_GENERIC; if (EQ (symbol, Qsyntax)) return CHAR_TABLE_TYPE_SYNTAX; if (EQ (symbol, Qdisplay)) return CHAR_TABLE_TYPE_DISPLAY; if (EQ (symbol, Qchar)) return CHAR_TABLE_TYPE_CHAR; #ifdef MULE if (EQ (symbol, Qcategory)) return CHAR_TABLE_TYPE_CATEGORY; #endif invalid_constant ("Unrecognized char table type", symbol); return CHAR_TABLE_TYPE_GENERIC; /* not reached */ } static void print_chartab_range (Emchar first, Emchar last, Lisp_Object val, Lisp_Object printcharfun) { if (first != last) { write_c_string (" (", printcharfun); print_internal (make_char (first), printcharfun, 0); write_c_string (" ", printcharfun); print_internal (make_char (last), printcharfun, 0); write_c_string (") ", printcharfun); } else { write_c_string (" ", printcharfun); print_internal (make_char (first), printcharfun, 0); write_c_string (" ", printcharfun); } print_internal (val, printcharfun, 1); } #ifdef MULE static void print_chartab_charset_row (Lisp_Object charset, int row, Lisp_Char_Table_Entry *cte, Lisp_Object printcharfun) { int i; Lisp_Object cat = Qunbound; int first = -1; for (i = 32; i < 128; i++) { Lisp_Object pam = cte->level2[i - 32]; if (first == -1) { first = i; cat = pam; continue; } if (!EQ (cat, pam)) { if (row == -1) print_chartab_range (MAKE_CHAR (charset, first, 0), MAKE_CHAR (charset, i - 1, 0), cat, printcharfun); else print_chartab_range (MAKE_CHAR (charset, row, first), MAKE_CHAR (charset, row, i - 1), cat, printcharfun); first = -1; i--; } } if (first != -1) { if (row == -1) print_chartab_range (MAKE_CHAR (charset, first, 0), MAKE_CHAR (charset, i - 1, 0), cat, printcharfun); else print_chartab_range (MAKE_CHAR (charset, row, first), MAKE_CHAR (charset, row, i - 1), cat, printcharfun); } } static void print_chartab_two_byte_charset (Lisp_Object charset, Lisp_Char_Table_Entry *cte, Lisp_Object printcharfun) { int i; for (i = 32; i < 128; i++) { Lisp_Object jen = cte->level2[i - 32]; if (!CHAR_TABLE_ENTRYP (jen)) { char buf[100]; write_c_string (" [", printcharfun); print_internal (XCHARSET_NAME (charset), printcharfun, 0); sprintf (buf, " %d] ", i); write_c_string (buf, printcharfun); print_internal (jen, printcharfun, 0); } else print_chartab_charset_row (charset, i, XCHAR_TABLE_ENTRY (jen), printcharfun); } } #endif /* MULE */ static void print_char_table (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag) { Lisp_Char_Table *ct = XCHAR_TABLE (obj); char buf[200]; sprintf (buf, "#s(char-table type %s data (", string_data (symbol_name (XSYMBOL (char_table_type_to_symbol (ct->type))))); write_c_string (buf, printcharfun); /* Now write out the ASCII/Control-1 stuff. */ { int i; int first = -1; Lisp_Object val = Qunbound; for (i = 0; i < NUM_ASCII_CHARS; i++) { if (first == -1) { first = i; val = ct->ascii[i]; continue; } if (!EQ (ct->ascii[i], val)) { print_chartab_range (first, i - 1, val, printcharfun); first = -1; i--; } } if (first != -1) print_chartab_range (first, i - 1, val, printcharfun); } #ifdef MULE { int i; for (i = MIN_LEADING_BYTE; i < MIN_LEADING_BYTE + NUM_LEADING_BYTES; i++) { Lisp_Object ann = ct->level1[i - MIN_LEADING_BYTE]; Lisp_Object charset = CHARSET_BY_LEADING_BYTE (i); if (!CHARSETP (charset) || i == LEADING_BYTE_ASCII || i == LEADING_BYTE_CONTROL_1) continue; if (!CHAR_TABLE_ENTRYP (ann)) { write_c_string (" ", printcharfun); print_internal (XCHARSET_NAME (charset), printcharfun, 0); write_c_string (" ", printcharfun); print_internal (ann, printcharfun, 0); } else { Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (ann); if (XCHARSET_DIMENSION (charset) == 1) print_chartab_charset_row (charset, -1, cte, printcharfun); else print_chartab_two_byte_charset (charset, cte, printcharfun); } } } #endif /* MULE */ write_c_string ("))", printcharfun); } static int char_table_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) { Lisp_Char_Table *ct1 = XCHAR_TABLE (obj1); Lisp_Char_Table *ct2 = XCHAR_TABLE (obj2); int i; if (CHAR_TABLE_TYPE (ct1) != CHAR_TABLE_TYPE (ct2)) return 0; for (i = 0; i < NUM_ASCII_CHARS; i++) if (!internal_equal (ct1->ascii[i], ct2->ascii[i], depth + 1)) return 0; #ifdef MULE for (i = 0; i < NUM_LEADING_BYTES; i++) if (!internal_equal (ct1->level1[i], ct2->level1[i], depth + 1)) return 0; #endif /* MULE */ return 1; } static Hashcode char_table_hash (Lisp_Object obj, int depth) { Lisp_Char_Table *ct = XCHAR_TABLE (obj); Hashcode hashval = internal_array_hash (ct->ascii, NUM_ASCII_CHARS, depth); #ifdef MULE hashval = HASH2 (hashval, internal_array_hash (ct->level1, NUM_LEADING_BYTES, depth)); #endif /* MULE */ return hashval; } static const struct lrecord_description char_table_description[] = { { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Char_Table, ascii), NUM_ASCII_CHARS }, #ifdef MULE { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Char_Table, level1), NUM_LEADING_BYTES }, #endif { XD_LISP_OBJECT, offsetof (Lisp_Char_Table, mirror_table) }, { XD_LO_LINK, offsetof (Lisp_Char_Table, next_table) }, { XD_END } }; DEFINE_LRECORD_IMPLEMENTATION ("char-table", char_table, mark_char_table, print_char_table, 0, char_table_equal, char_table_hash, char_table_description, Lisp_Char_Table); DEFUN ("char-table-p", Fchar_table_p, 1, 1, 0, /* Return non-nil if OBJECT is a char table. A char table is a table that maps characters (or ranges of characters) to values. Char tables are specialized for characters, only allowing particular sorts of ranges to be assigned values. Although this loses in generality, it makes for extremely fast (constant-time) lookups, and thus is feasible for applications that do an extremely large number of lookups (e.g. scanning a buffer for a character in a particular syntax, where a lookup in the syntax table must occur once per character). When Mule support exists, the types of ranges that can be assigned values are -- all characters -- an entire charset -- a single row in a two-octet charset -- a single character When Mule support is not present, the types of ranges that can be assigned values are -- all characters -- a single character To create a char table, use `make-char-table'. To modify a char table, use `put-char-table' or `remove-char-table'. To retrieve the value for a particular character, use `get-char-table'. See also `map-char-table', `clear-char-table', `copy-char-table', `valid-char-table-type-p', `char-table-type-list', `valid-char-table-value-p', and `check-char-table-value'. */ (object)) { return CHAR_TABLEP (object) ? Qt : Qnil; } DEFUN ("char-table-type-list", Fchar_table_type_list, 0, 0, 0, /* Return a list of the recognized char table types. See `valid-char-table-type-p'. */ ()) { #ifdef MULE return list5 (Qchar, Qcategory, Qdisplay, Qgeneric, Qsyntax); #else return list4 (Qchar, Qdisplay, Qgeneric, Qsyntax); #endif } DEFUN ("valid-char-table-type-p", Fvalid_char_table_type_p, 1, 1, 0, /* Return t if TYPE if a recognized char table type. Each char table type is used for a different purpose and allows different sorts of values. The different char table types are `category' Used for category tables, which specify the regexp categories that a character is in. The valid values are nil or a bit vector of 95 elements. Higher-level Lisp functions are provided for working with category tables. Currently categories and category tables only exist when Mule support is present. `char' A generalized char table, for mapping from one character to another. Used for case tables, syntax matching tables, `keyboard-translate-table', etc. The valid values are characters. `generic' An even more generalized char table, for mapping from a character to anything. `display' Used for display tables, which specify how a particular character is to appear when displayed. #### Not yet implemented. `syntax' Used for syntax tables, which specify the syntax of a particular character. Higher-level Lisp functions are provided for working with syntax tables. The valid values are integers. */ (type)) { return (EQ (type, Qchar) || #ifdef MULE EQ (type, Qcategory) || #endif EQ (type, Qdisplay) || EQ (type, Qgeneric) || EQ (type, Qsyntax)) ? Qt : Qnil; } DEFUN ("char-table-type", Fchar_table_type, 1, 1, 0, /* Return the type of CHAR-TABLE. See `valid-char-table-type-p'. */ (char_table)) { CHECK_CHAR_TABLE (char_table); return char_table_type_to_symbol (XCHAR_TABLE (char_table)->type); } void fill_char_table (Lisp_Char_Table *ct, Lisp_Object value) { int i; for (i = 0; i < NUM_ASCII_CHARS; i++) ct->ascii[i] = value; #ifdef MULE for (i = 0; i < NUM_LEADING_BYTES; i++) ct->level1[i] = value; #endif /* MULE */ if (ct->type == CHAR_TABLE_TYPE_SYNTAX) update_syntax_table (ct); } DEFUN ("reset-char-table", Freset_char_table, 1, 1, 0, /* Reset CHAR-TABLE to its default state. */ (char_table)) { Lisp_Char_Table *ct; CHECK_CHAR_TABLE (char_table); ct = XCHAR_TABLE (char_table); switch (ct->type) { case CHAR_TABLE_TYPE_CHAR: fill_char_table (ct, make_char (0)); break; case CHAR_TABLE_TYPE_DISPLAY: case CHAR_TABLE_TYPE_GENERIC: #ifdef MULE case CHAR_TABLE_TYPE_CATEGORY: #endif /* MULE */ fill_char_table (ct, Qnil); break; case CHAR_TABLE_TYPE_SYNTAX: fill_char_table (ct, make_int (Sinherit)); break; default: abort (); } return Qnil; } DEFUN ("make-char-table", Fmake_char_table, 1, 1, 0, /* Return a new, empty char table of type TYPE. Currently recognized types are 'char, 'category, 'display, 'generic, and 'syntax. See `valid-char-table-type-p'. */ (type)) { Lisp_Char_Table *ct; Lisp_Object obj; enum char_table_type ty = symbol_to_char_table_type (type); ct = alloc_lcrecord_type (Lisp_Char_Table, &lrecord_char_table); ct->type = ty; if (ty == CHAR_TABLE_TYPE_SYNTAX) { ct->mirror_table = Fmake_char_table (Qgeneric); fill_char_table (XCHAR_TABLE (ct->mirror_table), make_int (Spunct)); } else ct->mirror_table = Qnil; ct->next_table = Qnil; XSETCHAR_TABLE (obj, ct); if (ty == CHAR_TABLE_TYPE_SYNTAX) { ct->next_table = Vall_syntax_tables; Vall_syntax_tables = obj; } Freset_char_table (obj); return obj; } #ifdef MULE static Lisp_Object make_char_table_entry (Lisp_Object initval) { Lisp_Object obj; int i; Lisp_Char_Table_Entry *cte = alloc_lcrecord_type (Lisp_Char_Table_Entry, &lrecord_char_table_entry); for (i = 0; i < 96; i++) cte->level2[i] = initval; XSETCHAR_TABLE_ENTRY (obj, cte); return obj; } static Lisp_Object copy_char_table_entry (Lisp_Object entry) { Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (entry); Lisp_Object obj; int i; Lisp_Char_Table_Entry *ctenew = alloc_lcrecord_type (Lisp_Char_Table_Entry, &lrecord_char_table_entry); for (i = 0; i < 96; i++) { Lisp_Object new = cte->level2[i]; if (CHAR_TABLE_ENTRYP (new)) ctenew->level2[i] = copy_char_table_entry (new); else ctenew->level2[i] = new; } XSETCHAR_TABLE_ENTRY (obj, ctenew); return obj; } #endif /* MULE */ DEFUN ("copy-char-table", Fcopy_char_table, 1, 1, 0, /* Return a new char table which is a copy of CHAR-TABLE. It will contain the same values for the same characters and ranges as CHAR-TABLE. The values will not themselves be copied. */ (char_table)) { Lisp_Char_Table *ct, *ctnew; Lisp_Object obj; int i; CHECK_CHAR_TABLE (char_table); ct = XCHAR_TABLE (char_table); ctnew = alloc_lcrecord_type (Lisp_Char_Table, &lrecord_char_table); ctnew->type = ct->type; for (i = 0; i < NUM_ASCII_CHARS; i++) { Lisp_Object new = ct->ascii[i]; #ifdef MULE assert (! (CHAR_TABLE_ENTRYP (new))); #endif /* MULE */ ctnew->ascii[i] = new; } #ifdef MULE for (i = 0; i < NUM_LEADING_BYTES; i++) { Lisp_Object new = ct->level1[i]; if (CHAR_TABLE_ENTRYP (new)) ctnew->level1[i] = copy_char_table_entry (new); else ctnew->level1[i] = new; } #endif /* MULE */ if (CHAR_TABLEP (ct->mirror_table)) ctnew->mirror_table = Fcopy_char_table (ct->mirror_table); else ctnew->mirror_table = ct->mirror_table; ctnew->next_table = Qnil; XSETCHAR_TABLE (obj, ctnew); if (ctnew->type == CHAR_TABLE_TYPE_SYNTAX) { ctnew->next_table = Vall_syntax_tables; Vall_syntax_tables = obj; } return obj; } static void decode_char_table_range (Lisp_Object range, struct chartab_range *outrange) { if (EQ (range, Qt)) outrange->type = CHARTAB_RANGE_ALL; else if (CHAR_OR_CHAR_INTP (range)) { outrange->type = CHARTAB_RANGE_CHAR; outrange->ch = XCHAR_OR_CHAR_INT (range); } #ifndef MULE else sferror ("Range must be t or a character", range); #else /* MULE */ else if (VECTORP (range)) { Lisp_Vector *vec = XVECTOR (range); Lisp_Object *elts = vector_data (vec); if (vector_length (vec) != 2) sferror ("Length of charset row vector must be 2", range); outrange->type = CHARTAB_RANGE_ROW; outrange->charset = Fget_charset (elts[0]); CHECK_INT (elts[1]); outrange->row = XINT (elts[1]); switch (XCHARSET_TYPE (outrange->charset)) { case CHARSET_TYPE_94: case CHARSET_TYPE_96: sferror ("Charset in row vector must be multi-byte", outrange->charset); case CHARSET_TYPE_94X94: check_int_range (outrange->row, 33, 126); break; case CHARSET_TYPE_96X96: check_int_range (outrange->row, 32, 127); break; default: abort (); } } else { if (!CHARSETP (range) && !SYMBOLP (range)) sferror ("Char table range must be t, charset, char, or vector", range); outrange->type = CHARTAB_RANGE_CHARSET; outrange->charset = Fget_charset (range); } #endif /* MULE */ } #ifdef MULE /* called from CHAR_TABLE_VALUE(). */ Lisp_Object get_non_ascii_char_table_value (Lisp_Char_Table *ct, int leading_byte, Emchar c) { Lisp_Object val; Lisp_Object charset = CHARSET_BY_LEADING_BYTE (leading_byte); int byte1, byte2; BREAKUP_CHAR_1_UNSAFE (c, charset, byte1, byte2); val = ct->level1[leading_byte - MIN_LEADING_BYTE]; if (CHAR_TABLE_ENTRYP (val)) { Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (val); val = cte->level2[byte1 - 32]; if (CHAR_TABLE_ENTRYP (val)) { cte = XCHAR_TABLE_ENTRY (val); assert (byte2 >= 32); val = cte->level2[byte2 - 32]; assert (!CHAR_TABLE_ENTRYP (val)); } } return val; } #endif /* MULE */ Lisp_Object get_char_table (Emchar ch, Lisp_Char_Table *ct) { #ifdef MULE { Lisp_Object charset; int byte1, byte2; Lisp_Object val; BREAKUP_CHAR (ch, charset, byte1, byte2); if (EQ (charset, Vcharset_ascii)) val = ct->ascii[byte1]; else if (EQ (charset, Vcharset_control_1)) val = ct->ascii[byte1 + 128]; else { int lb = XCHARSET_LEADING_BYTE (charset) - MIN_LEADING_BYTE; val = ct->level1[lb]; if (CHAR_TABLE_ENTRYP (val)) { Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (val); val = cte->level2[byte1 - 32]; if (CHAR_TABLE_ENTRYP (val)) { cte = XCHAR_TABLE_ENTRY (val); assert (byte2 >= 32); val = cte->level2[byte2 - 32]; assert (!CHAR_TABLE_ENTRYP (val)); } } } return val; } #else /* not MULE */ return ct->ascii[(unsigned char)ch]; #endif /* not MULE */ } DEFUN ("get-char-table", Fget_char_table, 2, 2, 0, /* Find value for CHARACTER in CHAR-TABLE. */ (character, char_table)) { CHECK_CHAR_TABLE (char_table); CHECK_CHAR_COERCE_INT (character); return get_char_table (XCHAR (character), XCHAR_TABLE (char_table)); } DEFUN ("get-range-char-table", Fget_range_char_table, 2, 3, 0, /* Find value for a range in CHAR-TABLE. If there is more than one value, return MULTI (defaults to nil). */ (range, char_table, multi)) { Lisp_Char_Table *ct; struct chartab_range rainj; if (CHAR_OR_CHAR_INTP (range)) return Fget_char_table (range, char_table); CHECK_CHAR_TABLE (char_table); ct = XCHAR_TABLE (char_table); decode_char_table_range (range, &rainj); switch (rainj.type) { case CHARTAB_RANGE_ALL: { int i; Lisp_Object first = ct->ascii[0]; for (i = 1; i < NUM_ASCII_CHARS; i++) if (!EQ (first, ct->ascii[i])) return multi; #ifdef MULE for (i = MIN_LEADING_BYTE; i < MIN_LEADING_BYTE + NUM_LEADING_BYTES; i++) { if (!CHARSETP (CHARSET_BY_LEADING_BYTE (i)) || i == LEADING_BYTE_ASCII || i == LEADING_BYTE_CONTROL_1) continue; if (!EQ (first, ct->level1[i - MIN_LEADING_BYTE])) return multi; } #endif /* MULE */ return first; } #ifdef MULE case CHARTAB_RANGE_CHARSET: if (EQ (rainj.charset, Vcharset_ascii)) { int i; Lisp_Object first = ct->ascii[0]; for (i = 1; i < 128; i++) if (!EQ (first, ct->ascii[i])) return multi; return first; } if (EQ (rainj.charset, Vcharset_control_1)) { int i; Lisp_Object first = ct->ascii[128]; for (i = 129; i < 160; i++) if (!EQ (first, ct->ascii[i])) return multi; return first; } { Lisp_Object val = ct->level1[XCHARSET_LEADING_BYTE (rainj.charset) - MIN_LEADING_BYTE]; if (CHAR_TABLE_ENTRYP (val)) return multi; return val; } case CHARTAB_RANGE_ROW: { Lisp_Object val = ct->level1[XCHARSET_LEADING_BYTE (rainj.charset) - MIN_LEADING_BYTE]; if (!CHAR_TABLE_ENTRYP (val)) return val; val = XCHAR_TABLE_ENTRY (val)->level2[rainj.row - 32]; if (CHAR_TABLE_ENTRYP (val)) return multi; return val; } #endif /* not MULE */ default: abort (); } return Qnil; /* not reached */ } static int check_valid_char_table_value (Lisp_Object value, enum char_table_type type, Error_Behavior errb) { switch (type) { case CHAR_TABLE_TYPE_SYNTAX: if (!ERRB_EQ (errb, ERROR_ME)) return INTP (value) || (CONSP (value) && INTP (XCAR (value)) && CHAR_OR_CHAR_INTP (XCDR (value))); if (CONSP (value)) { Lisp_Object cdr = XCDR (value); CHECK_INT (XCAR (value)); CHECK_CHAR_COERCE_INT (cdr); } else CHECK_INT (value); break; #ifdef MULE case CHAR_TABLE_TYPE_CATEGORY: if (!ERRB_EQ (errb, ERROR_ME)) return CATEGORY_TABLE_VALUEP (value); CHECK_CATEGORY_TABLE_VALUE (value); break; #endif /* MULE */ case CHAR_TABLE_TYPE_GENERIC: return 1; case CHAR_TABLE_TYPE_DISPLAY: /* #### fix this */ maybe_signal_error (Qunimplemented, "Display char tables not yet implemented", value, Qchar_table, errb); return 0; case CHAR_TABLE_TYPE_CHAR: if (!ERRB_EQ (errb, ERROR_ME)) return CHAR_OR_CHAR_INTP (value); CHECK_CHAR_COERCE_INT (value); break; default: abort (); } return 0; /* not reached */ } static Lisp_Object canonicalize_char_table_value (Lisp_Object value, enum char_table_type type) { switch (type) { case CHAR_TABLE_TYPE_SYNTAX: if (CONSP (value)) { Lisp_Object car = XCAR (value); Lisp_Object cdr = XCDR (value); CHECK_CHAR_COERCE_INT (cdr); return Fcons (car, cdr); } break; case CHAR_TABLE_TYPE_CHAR: CHECK_CHAR_COERCE_INT (value); break; default: break; } return value; } DEFUN ("valid-char-table-value-p", Fvalid_char_table_value_p, 2, 2, 0, /* Return non-nil if VALUE is a valid value for CHAR-TABLE-TYPE. */ (value, char_table_type)) { enum char_table_type type = symbol_to_char_table_type (char_table_type); return check_valid_char_table_value (value, type, ERROR_ME_NOT) ? Qt : Qnil; } DEFUN ("check-valid-char-table-value", Fcheck_valid_char_table_value, 2, 2, 0, /* Signal an error if VALUE is not a valid value for CHAR-TABLE-TYPE. */ (value, char_table_type)) { enum char_table_type type = symbol_to_char_table_type (char_table_type); check_valid_char_table_value (value, type, ERROR_ME); return Qnil; } /* Assign VAL to all characters in RANGE in char table CT. */ void put_char_table (Lisp_Char_Table *ct, struct chartab_range *range, Lisp_Object val) { switch (range->type) { case CHARTAB_RANGE_ALL: fill_char_table (ct, val); return; /* avoid the duplicate call to update_syntax_table() below, since fill_char_table() also did that. */ #ifdef MULE case CHARTAB_RANGE_CHARSET: if (EQ (range->charset, Vcharset_ascii)) { int i; for (i = 0; i < 128; i++) ct->ascii[i] = val; } else if (EQ (range->charset, Vcharset_control_1)) { int i; for (i = 128; i < 160; i++) ct->ascii[i] = val; } else { int lb = XCHARSET_LEADING_BYTE (range->charset) - MIN_LEADING_BYTE; ct->level1[lb] = val; } break; case CHARTAB_RANGE_ROW: { Lisp_Char_Table_Entry *cte; int lb = XCHARSET_LEADING_BYTE (range->charset) - MIN_LEADING_BYTE; /* make sure that there is a separate entry for the row. */ if (!CHAR_TABLE_ENTRYP (ct->level1[lb])) ct->level1[lb] = make_char_table_entry (ct->level1[lb]); cte = XCHAR_TABLE_ENTRY (ct->level1[lb]); cte->level2[range->row - 32] = val; } break; #endif /* MULE */ case CHARTAB_RANGE_CHAR: #ifdef MULE { Lisp_Object charset; int byte1, byte2; BREAKUP_CHAR (range->ch, charset, byte1, byte2); if (EQ (charset, Vcharset_ascii)) ct->ascii[byte1] = val; else if (EQ (charset, Vcharset_control_1)) ct->ascii[byte1 + 128] = val; else { Lisp_Char_Table_Entry *cte; int lb = XCHARSET_LEADING_BYTE (charset) - MIN_LEADING_BYTE; /* make sure that there is a separate entry for the row. */ if (!CHAR_TABLE_ENTRYP (ct->level1[lb])) ct->level1[lb] = make_char_table_entry (ct->level1[lb]); cte = XCHAR_TABLE_ENTRY (ct->level1[lb]); /* now CTE is a char table entry for the charset; each entry is for a single row (or character of a one-octet charset). */ if (XCHARSET_DIMENSION (charset) == 1) cte->level2[byte1 - 32] = val; else { /* assigning to one character in a two-octet charset. */ /* make sure that the charset row contains a separate entry for each character. */ if (!CHAR_TABLE_ENTRYP (cte->level2[byte1 - 32])) cte->level2[byte1 - 32] = make_char_table_entry (cte->level2[byte1 - 32]); cte = XCHAR_TABLE_ENTRY (cte->level2[byte1 - 32]); cte->level2[byte2 - 32] = val; } } } #else /* not MULE */ ct->ascii[(unsigned char) (range->ch)] = val; break; #endif /* not MULE */ } if (ct->type == CHAR_TABLE_TYPE_SYNTAX) update_syntax_table (ct); } DEFUN ("put-char-table", Fput_char_table, 3, 3, 0, /* Set the value for chars in RANGE to be VALUE in CHAR-TABLE. RANGE specifies one or more characters to be affected and should be one of the following: -- t (all characters are affected) -- A charset (only allowed when Mule support is present) -- A vector of two elements: a two-octet charset and a row number (only allowed when Mule support is present) -- A single character VALUE must be a value appropriate for the type of CHAR-TABLE. See `valid-char-table-type-p'. */ (range, value, char_table)) { Lisp_Char_Table *ct; struct chartab_range rainj; CHECK_CHAR_TABLE (char_table); ct = XCHAR_TABLE (char_table); check_valid_char_table_value (value, ct->type, ERROR_ME); decode_char_table_range (range, &rainj); value = canonicalize_char_table_value (value, ct->type); put_char_table (ct, &rainj, value); return Qnil; } /* Map FN over the ASCII chars in CT. */ static int map_over_charset_ascii (Lisp_Char_Table *ct, int (*fn) (struct chartab_range *range, Lisp_Object val, void *arg), void *arg) { struct chartab_range rainj; int i, retval; int start = 0; #ifdef MULE int stop = 128; #else int stop = 256; #endif rainj.type = CHARTAB_RANGE_CHAR; for (i = start, retval = 0; i < stop && retval == 0; i++) { rainj.ch = (Emchar) i; retval = (fn) (&rainj, ct->ascii[i], arg); } return retval; } #ifdef MULE /* Map FN over the Control-1 chars in CT. */ static int map_over_charset_control_1 (Lisp_Char_Table *ct, int (*fn) (struct chartab_range *range, Lisp_Object val, void *arg), void *arg) { struct chartab_range rainj; int i, retval; int start = 128; int stop = start + 32; rainj.type = CHARTAB_RANGE_CHAR; for (i = start, retval = 0; i < stop && retval == 0; i++) { rainj.ch = (Emchar) (i); retval = (fn) (&rainj, ct->ascii[i], arg); } return retval; } /* Map FN over the row ROW of two-byte charset CHARSET. There must be a separate value for that row in the char table. CTE specifies the char table entry for CHARSET. */ static int map_over_charset_row (Lisp_Char_Table_Entry *cte, Lisp_Object charset, int row, int (*fn) (struct chartab_range *range, Lisp_Object val, void *arg), void *arg) { Lisp_Object val = cte->level2[row - 32]; if (!CHAR_TABLE_ENTRYP (val)) { struct chartab_range rainj; rainj.type = CHARTAB_RANGE_ROW; rainj.charset = charset; rainj.row = row; return (fn) (&rainj, val, arg); } else { struct chartab_range rainj; int i, retval; int charset94_p = (XCHARSET_CHARS (charset) == 94); int start = charset94_p ? 33 : 32; int stop = charset94_p ? 127 : 128; cte = XCHAR_TABLE_ENTRY (val); rainj.type = CHARTAB_RANGE_CHAR; for (i = start, retval = 0; i < stop && retval == 0; i++) { rainj.ch = MAKE_CHAR (charset, row, i); retval = (fn) (&rainj, cte->level2[i - 32], arg); } return retval; } } static int map_over_other_charset (Lisp_Char_Table *ct, int lb, int (*fn) (struct chartab_range *range, Lisp_Object val, void *arg), void *arg) { Lisp_Object val = ct->level1[lb - MIN_LEADING_BYTE]; Lisp_Object charset = CHARSET_BY_LEADING_BYTE (lb); if (!CHARSETP (charset) || lb == LEADING_BYTE_ASCII || lb == LEADING_BYTE_CONTROL_1) return 0; if (!CHAR_TABLE_ENTRYP (val)) { struct chartab_range rainj; rainj.type = CHARTAB_RANGE_CHARSET; rainj.charset = charset; return (fn) (&rainj, val, arg); } { Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (val); int charset94_p = (XCHARSET_CHARS (charset) == 94); int start = charset94_p ? 33 : 32; int stop = charset94_p ? 127 : 128; int i, retval; if (XCHARSET_DIMENSION (charset) == 1) { struct chartab_range rainj; rainj.type = CHARTAB_RANGE_CHAR; for (i = start, retval = 0; i < stop && retval == 0; i++) { rainj.ch = MAKE_CHAR (charset, i, 0); retval = (fn) (&rainj, cte->level2[i - 32], arg); } } else { for (i = start, retval = 0; i < stop && retval == 0; i++) retval = map_over_charset_row (cte, charset, i, fn, arg); } return retval; } } #endif /* MULE */ /* Map FN (with client data ARG) over range RANGE in char table CT. Mapping stops the first time FN returns non-zero, and that value becomes the return value of map_char_table(). */ int map_char_table (Lisp_Char_Table *ct, struct chartab_range *range, int (*fn) (struct chartab_range *range, Lisp_Object val, void *arg), void *arg) { switch (range->type) { case CHARTAB_RANGE_ALL: { int retval; retval = map_over_charset_ascii (ct, fn, arg); if (retval) return retval; #ifdef MULE retval = map_over_charset_control_1 (ct, fn, arg); if (retval) return retval; { int i; int start = MIN_LEADING_BYTE; int stop = start + NUM_LEADING_BYTES; for (i = start, retval = 0; i < stop && retval == 0; i++) { retval = map_over_other_charset (ct, i, fn, arg); } } #endif /* MULE */ return retval; } #ifdef MULE case CHARTAB_RANGE_CHARSET: return map_over_other_charset (ct, XCHARSET_LEADING_BYTE (range->charset), fn, arg); case CHARTAB_RANGE_ROW: { Lisp_Object val = ct->level1[XCHARSET_LEADING_BYTE (range->charset) - MIN_LEADING_BYTE]; if (!CHAR_TABLE_ENTRYP (val)) { struct chartab_range rainj; rainj.type = CHARTAB_RANGE_ROW; rainj.charset = range->charset; rainj.row = range->row; return (fn) (&rainj, val, arg); } else return map_over_charset_row (XCHAR_TABLE_ENTRY (val), range->charset, range->row, fn, arg); } #endif /* MULE */ case CHARTAB_RANGE_CHAR: { Emchar ch = range->ch; Lisp_Object val = CHAR_TABLE_VALUE_UNSAFE (ct, ch); struct chartab_range rainj; rainj.type = CHARTAB_RANGE_CHAR; rainj.ch = ch; return (fn) (&rainj, val, arg); } default: abort (); } return 0; } struct slow_map_char_table_arg { Lisp_Object function; Lisp_Object retval; }; static int slow_map_char_table_fun (struct chartab_range *range, Lisp_Object val, void *arg) { Lisp_Object ranjarg = Qnil; struct slow_map_char_table_arg *closure = (struct slow_map_char_table_arg *) arg; switch (range->type) { case CHARTAB_RANGE_ALL: ranjarg = Qt; break; #ifdef MULE case CHARTAB_RANGE_CHARSET: ranjarg = XCHARSET_NAME (range->charset); break; case CHARTAB_RANGE_ROW: ranjarg = vector2 (XCHARSET_NAME (range->charset), make_int (range->row)); break; #endif /* MULE */ case CHARTAB_RANGE_CHAR: ranjarg = make_char (range->ch); break; default: abort (); } closure->retval = call2 (closure->function, ranjarg, val); return !NILP (closure->retval); } DEFUN ("map-char-table", Fmap_char_table, 2, 3, 0, /* Map FUNCTION over entries in CHAR-TABLE, calling it with two args, each key and value in the table. RANGE specifies a subrange to map over and is in the same format as the RANGE argument to `put-range-table'. If omitted or t, it defaults to the entire table. */ (function, char_table, range)) { Lisp_Char_Table *ct; struct slow_map_char_table_arg slarg; struct gcpro gcpro1, gcpro2; struct chartab_range rainj; CHECK_CHAR_TABLE (char_table); ct = XCHAR_TABLE (char_table); if (NILP (range)) range = Qt; decode_char_table_range (range, &rainj); slarg.function = function; slarg.retval = Qnil; GCPRO2 (slarg.function, slarg.retval); map_char_table (ct, &rainj, slow_map_char_table_fun, &slarg); UNGCPRO; return slarg.retval; } /************************************************************************/ /* Char table read syntax */ /************************************************************************/ static int chartab_type_validate (Lisp_Object keyword, Lisp_Object value, Error_Behavior errb) { /* #### should deal with ERRB */ symbol_to_char_table_type (value); return 1; } static int chartab_data_validate (Lisp_Object keyword, Lisp_Object value, Error_Behavior errb) { Lisp_Object rest; /* #### should deal with ERRB */ EXTERNAL_LIST_LOOP (rest, value) { Lisp_Object range = XCAR (rest); struct chartab_range dummy; rest = XCDR (rest); if (!CONSP (rest)) signal_error (Qlist_formation_error, "Invalid list format", value); if (CONSP (range)) { if (!CONSP (XCDR (range)) || !NILP (XCDR (XCDR (range)))) sferror ("Invalid range format", range); decode_char_table_range (XCAR (range), &dummy); decode_char_table_range (XCAR (XCDR (range)), &dummy); } else decode_char_table_range (range, &dummy); } return 1; } static Lisp_Object chartab_instantiate (Lisp_Object data) { Lisp_Object chartab; Lisp_Object type = Qgeneric; Lisp_Object dataval = Qnil; while (!NILP (data)) { Lisp_Object keyw = Fcar (data); Lisp_Object valw; data = Fcdr (data); valw = Fcar (data); data = Fcdr (data); if (EQ (keyw, Qtype)) type = valw; else if (EQ (keyw, Qdata)) dataval = valw; } chartab = Fmake_char_table (type); data = dataval; while (!NILP (data)) { Lisp_Object range = Fcar (data); Lisp_Object val = Fcar (Fcdr (data)); data = Fcdr (Fcdr (data)); if (CONSP (range)) { if (CHAR_OR_CHAR_INTP (XCAR (range))) { Emchar first = XCHAR_OR_CHAR_INT (Fcar (range)); Emchar last = XCHAR_OR_CHAR_INT (Fcar (Fcdr (range))); Emchar i; for (i = first; i <= last; i++) Fput_char_table (make_char (i), val, chartab); } else abort (); } else Fput_char_table (range, val, chartab); } return chartab; } #ifdef MULE /************************************************************************/ /* Category Tables, specifically */ /************************************************************************/ DEFUN ("category-table-p", Fcategory_table_p, 1, 1, 0, /* Return t if OBJECT is a category table. A category table is a type of char table used for keeping track of categories. Categories are used for classifying characters for use in regexps -- you can refer to a category rather than having to use a complicated [] expression (and category lookups are significantly faster). There are 95 different categories available, one for each printable character (including space) in the ASCII charset. Each category is designated by one such character, called a "category designator". They are specified in a regexp using the syntax "\\cX", where X is a category designator. A category table specifies, for each character, the categories that the character is in. Note that a character can be in more than one category. More specifically, a category table maps from a character to either the value nil (meaning the character is in no categories) or a 95-element bit vector, specifying for each of the 95 categories whether the character is in that category. Special Lisp functions are provided that abstract this, so you do not have to directly manipulate bit vectors. */ (object)) { return (CHAR_TABLEP (object) && XCHAR_TABLE_TYPE (object) == CHAR_TABLE_TYPE_CATEGORY) ? Qt : Qnil; } static Lisp_Object check_category_table (Lisp_Object object, Lisp_Object default_) { if (NILP (object)) object = default_; while (NILP (Fcategory_table_p (object))) object = wrong_type_argument (Qcategory_table_p, object); return object; } int check_category_char (Emchar ch, Lisp_Object table, int designator, int not_p) { REGISTER Lisp_Object temp; Lisp_Char_Table *ctbl; #ifdef ERROR_CHECK_TYPECHECK if (NILP (Fcategory_table_p (table))) wtaerror ("Expected category table", table); #endif ctbl = XCHAR_TABLE (table); temp = get_char_table (ch, ctbl); if (NILP (temp)) return not_p; designator -= ' '; return bit_vector_bit (XBIT_VECTOR (temp), designator) ? !not_p : not_p; } DEFUN ("check-category-at", Fcheck_category_at, 2, 4, 0, /* Return t if category of the character at POSITION includes DESIGNATOR. Optional third arg BUFFER specifies which buffer to use, and defaults to the current buffer. Optional fourth arg CATEGORY-TABLE specifies the category table to use, and defaults to BUFFER's category table. */ (position, designator, buffer, category_table)) { Lisp_Object ctbl; Emchar ch; int des; struct buffer *buf = decode_buffer (buffer, 0); CHECK_INT (position); CHECK_CATEGORY_DESIGNATOR (designator); des = XCHAR (designator); ctbl = check_category_table (category_table, Vstandard_category_table); ch = BUF_FETCH_CHAR (buf, XINT (position)); return check_category_char (ch, ctbl, des, 0) ? Qt : Qnil; } DEFUN ("char-in-category-p", Fchar_in_category_p, 2, 3, 0, /* Return t if category of CHARACTER includes DESIGNATOR, else nil. Optional third arg CATEGORY-TABLE specifies the category table to use, and defaults to the standard category table. */ (character, designator, category_table)) { Lisp_Object ctbl; Emchar ch; int des; CHECK_CATEGORY_DESIGNATOR (designator); des = XCHAR (designator); CHECK_CHAR (character); ch = XCHAR (character); ctbl = check_category_table (category_table, Vstandard_category_table); return check_category_char (ch, ctbl, des, 0) ? Qt : Qnil; } DEFUN ("category-table", Fcategory_table, 0, 1, 0, /* Return BUFFER's current category table. BUFFER defaults to the current buffer. */ (buffer)) { return decode_buffer (buffer, 0)->category_table; } DEFUN ("standard-category-table", Fstandard_category_table, 0, 0, 0, /* Return the standard category table. This is the one used for new buffers. */ ()) { return Vstandard_category_table; } DEFUN ("copy-category-table", Fcopy_category_table, 0, 1, 0, /* Return a new category table which is a copy of CATEGORY-TABLE. CATEGORY-TABLE defaults to the standard category table. */ (category_table)) { if (NILP (Vstandard_category_table)) return Fmake_char_table (Qcategory); category_table = check_category_table (category_table, Vstandard_category_table); return Fcopy_char_table (category_table); } DEFUN ("set-category-table", Fset_category_table, 1, 2, 0, /* Select CATEGORY-TABLE as the new category table for BUFFER. BUFFER defaults to the current buffer if omitted. */ (category_table, buffer)) { struct buffer *buf = decode_buffer (buffer, 0); category_table = check_category_table (category_table, Qnil); buf->category_table = category_table; /* Indicate that this buffer now has a specified category table. */ buf->local_var_flags |= XINT (buffer_local_flags.category_table); return category_table; } DEFUN ("category-designator-p", Fcategory_designator_p, 1, 1, 0, /* Return t if OBJECT is a category designator (a char in the range ' ' to '~'). */ (object)) { return CATEGORY_DESIGNATORP (object) ? Qt : Qnil; } DEFUN ("category-table-value-p", Fcategory_table_value_p, 1, 1, 0, /* Return t if OBJECT is a category table value. Valid values are nil or a bit vector of size 95. */ (object)) { return CATEGORY_TABLE_VALUEP (object) ? Qt : Qnil; } #define CATEGORYP(x) \ (CHARP (x) && XCHAR (x) >= 0x20 && XCHAR (x) <= 0x7E) #define CATEGORY_SET(c) \ (get_char_table(c, XCHAR_TABLE(current_buffer->category_table))) /* Return 1 if CATEGORY_SET contains CATEGORY, else return 0. The faster version of `!NILP (Faref (category_set, category))'. */ #define CATEGORY_MEMBER(category, category_set) \ (bit_vector_bit(XBIT_VECTOR (category_set), category - 32)) /* Return 1 if there is a word boundary between two word-constituent characters C1 and C2 if they appear in this order, else return 0. Use the macro WORD_BOUNDARY_P instead of calling this function directly. */ int word_boundary_p (Emchar c1, Emchar c2); int word_boundary_p (Emchar c1, Emchar c2) { Lisp_Object category_set1, category_set2; Lisp_Object tail; int default_result; #if 0 if (COMPOSITE_CHAR_P (c1)) c1 = cmpchar_component (c1, 0, 1); if (COMPOSITE_CHAR_P (c2)) c2 = cmpchar_component (c2, 0, 1); #endif if (EQ (CHAR_CHARSET (c1), CHAR_CHARSET (c2))) { tail = Vword_separating_categories; default_result = 0; } else { tail = Vword_combining_categories; default_result = 1; } category_set1 = CATEGORY_SET (c1); if (NILP (category_set1)) return default_result; category_set2 = CATEGORY_SET (c2); if (NILP (category_set2)) return default_result; for (; CONSP (tail); tail = XCONS (tail)->cdr) { Lisp_Object elt = XCONS(tail)->car; if (CONSP (elt) && CATEGORYP (XCONS (elt)->car) && CATEGORYP (XCONS (elt)->cdr) && CATEGORY_MEMBER (XCHAR (XCONS (elt)->car), category_set1) && CATEGORY_MEMBER (XCHAR (XCONS (elt)->cdr), category_set2)) return !default_result; } return default_result; } #endif /* MULE */ void syms_of_chartab (void) { INIT_LRECORD_IMPLEMENTATION (char_table); #ifdef MULE INIT_LRECORD_IMPLEMENTATION (char_table_entry); DEFSYMBOL (Qcategory_table_p); DEFSYMBOL (Qcategory_designator_p); DEFSYMBOL (Qcategory_table_value_p); #endif /* MULE */ DEFSYMBOL (Qchar_table); DEFSYMBOL_MULTIWORD_PREDICATE (Qchar_tablep); DEFSUBR (Fchar_table_p); DEFSUBR (Fchar_table_type_list); DEFSUBR (Fvalid_char_table_type_p); DEFSUBR (Fchar_table_type); DEFSUBR (Freset_char_table); DEFSUBR (Fmake_char_table); DEFSUBR (Fcopy_char_table); DEFSUBR (Fget_char_table); DEFSUBR (Fget_range_char_table); DEFSUBR (Fvalid_char_table_value_p); DEFSUBR (Fcheck_valid_char_table_value); DEFSUBR (Fput_char_table); DEFSUBR (Fmap_char_table); #ifdef MULE DEFSUBR (Fcategory_table_p); DEFSUBR (Fcategory_table); DEFSUBR (Fstandard_category_table); DEFSUBR (Fcopy_category_table); DEFSUBR (Fset_category_table); DEFSUBR (Fcheck_category_at); DEFSUBR (Fchar_in_category_p); DEFSUBR (Fcategory_designator_p); DEFSUBR (Fcategory_table_value_p); #endif /* MULE */ } void vars_of_chartab (void) { /* DO NOT staticpro this. It works just like Vweak_hash_tables. */ Vall_syntax_tables = Qnil; dump_add_weak_object_chain (&Vall_syntax_tables); } void structure_type_create_chartab (void) { struct structure_type *st; st = define_structure_type (Qchar_table, 0, chartab_instantiate); define_structure_type_keyword (st, Qtype, chartab_type_validate); define_structure_type_keyword (st, Qdata, chartab_data_validate); } void complex_vars_of_chartab (void) { #ifdef MULE /* Set this now, so first buffer creation can refer to it. */ /* Make it nil before calling copy-category-table so that copy-category-table will know not to try to copy from garbage */ Vstandard_category_table = Qnil; Vstandard_category_table = Fcopy_category_table (Qnil); staticpro (&Vstandard_category_table); DEFVAR_LISP ("word-combining-categories", &Vword_combining_categories /* List of pair (cons) of categories to determine word boundary. Emacs treats a sequence of word constituent characters as a single word (i.e. finds no word boundary between them) iff they belongs to the same charset. But, exceptions are allowed in the following cases. \(1) The case that characters are in different charsets is controlled by the variable `word-combining-categories'. Emacs finds no word boundary between characters of different charsets if they have categories matching some element of this list. More precisely, if an element of this list is a cons of category CAT1 and CAT2, and a multibyte character C1 which has CAT1 is followed by C2 which has CAT2, there's no word boundary between C1 and C2. For instance, to tell that ASCII characters and Latin-1 characters can form a single word, the element `(?l . ?l)' should be in this list because both characters have the category `l' (Latin characters). \(2) The case that character are in the same charset is controlled by the variable `word-separating-categories'. Emacs find a word boundary between characters of the same charset if they have categories matching some element of this list. More precisely, if an element of this list is a cons of category CAT1 and CAT2, and a multibyte character C1 which has CAT1 is followed by C2 which has CAT2, there's a word boundary between C1 and C2. For instance, to tell that there's a word boundary between Japanese Hiragana and Japanese Kanji (both are in the same charset), the element `(?H . ?C) should be in this list. */ ); Vword_combining_categories = Qnil; DEFVAR_LISP ("word-separating-categories", &Vword_separating_categories /* List of pair (cons) of categories to determine word boundary. See the documentation of the variable `word-combining-categories'. */ ); Vword_separating_categories = Qnil; #endif /* MULE */ }