view etc/DEBUG @ 665:fdefd0186b75

[xemacs-hg @ 2001-09-20 06:28:42 by ben] The great integral types renaming. The purpose of this is to rationalize the names used for various integral types, so that they match their intended uses and follow consist conventions, and eliminate types that were not semantically different from each other. The conventions are: -- All integral types that measure quantities of anything are signed. Some people disagree vociferously with this, but their arguments are mostly theoretical, and are vastly outweighed by the practical headaches of mixing signed and unsigned values, and more importantly by the far increased likelihood of inadvertent bugs: Because of the broken "viral" nature of unsigned quantities in C (operations involving mixed signed/unsigned are done unsigned, when exactly the opposite is nearly always wanted), even a single error in declaring a quantity unsigned that should be signed, or even the even more subtle error of comparing signed and unsigned values and forgetting the necessary cast, can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned on specifically to catch this, but this tends to result in a great number of warnings when mixing signed and unsigned, and the casts are annoying. More has been written on this elsewhere. -- All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on 32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size as Lisp objects of type `int', and (as far as I can tell) of size_t (unsigned!) and ssize_t. The only type below that is not an EMACS_INT is Hashcode, which is an unsigned value of the same size as EMACS_INT. -- Type names should be relatively short (no more than 10 characters or so), with the first letter capitalized and no underscores if they can at all be avoided. -- "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and indexes. -- "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Bytebpos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not directly correspond to the memory representation. Use "Membpos" for this. -- "Char" refers to internal-format characters, not to the C type "char", which is really a byte. -- For the actual name changes, see the script below. I ran the following script to do the conversion. (NOTE: This script is idempotent. You can safely run it multiple times and it will not screw up previous results -- in fact, it will do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle patches coming in from old workspaces, or old branches.) There are two tags, just before and just after the change: `pre-integral-type-rename' and `post-integral-type-rename'. When merging code from the main trunk into a branch, the best thing to do is first merge up to `pre-integral-type-rename', then apply the script and associated changes, then merge from `post-integral-type-change' to the present. (Alternatively, just do the merging in one operation; but you may then have a lot of conflicts needing to be resolved by hand.) Script `fixtypes.sh' follows: ----------------------------------- cut ------------------------------------ files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]" gr Memory_Count Bytecount $files gr Lstream_Data_Count Bytecount $files gr Element_Count Elemcount $files gr Hash_Code Hashcode $files gr extcount bytecount $files gr bufpos charbpos $files gr bytind bytebpos $files gr memind membpos $files gr bufbyte intbyte $files gr Extcount Bytecount $files gr Bufpos Charbpos $files gr Bytind Bytebpos $files gr Memind Membpos $files gr Bufbyte Intbyte $files gr EXTCOUNT BYTECOUNT $files gr BUFPOS CHARBPOS $files gr BYTIND BYTEBPOS $files gr MEMIND MEMBPOS $files gr BUFBYTE INTBYTE $files gr MEMORY_COUNT BYTECOUNT $files gr LSTREAM_DATA_COUNT BYTECOUNT $files gr ELEMENT_COUNT ELEMCOUNT $files gr HASH_CODE HASHCODE $files ----------------------------------- cut ------------------------------------ `fixtypes.sh' is a Bourne-shell script; it uses 'gr': ----------------------------------- cut ------------------------------------ #!/bin/sh # Usage is like this: # gr FROM TO FILES ... # globally replace FROM with TO in FILES. FROM and TO are regular expressions. # backup files are stored in the `backup' directory. from="$1" to="$2" shift 2 echo ${1+"$@"} | xargs global-replace "s/$from/$to/g" ----------------------------------- cut ------------------------------------ `gr' in turn uses a Perl script to do its real work, `global-replace', which follows: ----------------------------------- cut ------------------------------------ : #-*- Perl -*- ### global-modify --- modify the contents of a file by a Perl expression ## Copyright (C) 1999 Martin Buchholz. ## Copyright (C) 2001 Ben Wing. ## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org> ## Maintainer: Ben Wing <ben@xemacs.org> ## Current Version: 1.0, May 5, 2001 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with XEmacs; see the file COPYING. If not, write to the Free # Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA # 02111-1307, USA. eval 'exec perl -w -S $0 ${1+"$@"}' if 0; use strict; use FileHandle; use Carp; use Getopt::Long; use File::Basename; (my $myName = $0) =~ s@.*/@@; my $usage=" Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode] PERLEXPR FILE ... Globally modify a file, either line by line or in one big hunk. Typical usage is like this: [with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc. in file names] find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n [with non-GNU print, xargs] find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n The file is read in, either line by line (with --line-mode specified) or in one big hunk (with --hunk-mode specified; it's the default), and the Perl expression is then evalled with \$_ set to the line or hunk of text, including the terminating newline if there is one. It should destructively modify the value there, storing the changed result in \$_. Files in which any modifications are made are backed up to the directory specified using --backup-dir, or to `backup' by default. To disable this, use --backup-dir= with no argument. Hunk mode is the default because it is MUCH MUCH faster than line-by-line. Use line-by-line only when it matters, e.g. you want to do a replacement only once per line (the default without the `g' argument). Conversely, when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one replacement in the entire file! "; my %options = (); $Getopt::Long::ignorecase = 0; &GetOptions ( \%options, 'help', 'backup-dir=s', 'line-mode', 'hunk-mode', ); die $usage if $options{"help"} or @ARGV <= 1; my $code = shift; die $usage if grep (-d || ! -w, @ARGV); sub SafeOpen { open ((my $fh = new FileHandle), $_[0]); confess "Can't open $_[0]: $!" if ! defined $fh; return $fh; } sub SafeClose { close $_[0] or confess "Can't close $_[0]: $!"; } sub FileContents { my $fh = SafeOpen ("< $_[0]"); my $olddollarslash = $/; local $/ = undef; my $contents = <$fh>; $/ = $olddollarslash; return $contents; } sub WriteStringToFile { my $fh = SafeOpen ("> $_[0]"); binmode $fh; print $fh $_[1] or confess "$_[0]: $!\n"; SafeClose $fh; } foreach my $file (@ARGV) { my $changed_p = 0; my $new_contents = ""; if ($options{"line-mode"}) { my $fh = SafeOpen $file; while (<$fh>) { my $save_line = $_; eval $code; $changed_p = 1 if $save_line ne $_; $new_contents .= $_; } } else { my $orig_contents = $_ = FileContents $file; eval $code; if ($_ ne $orig_contents) { $changed_p = 1; $new_contents = $_; } } if ($changed_p) { my $backdir = $options{"backup-dir"}; $backdir = "backup" if !defined ($backdir); if ($backdir) { my ($name, $path, $suffix) = fileparse ($file, ""); my $backfulldir = $path . $backdir; my $backfile = "$backfulldir/$name"; mkdir $backfulldir, 0755 unless -d $backfulldir; print "modifying $file (original saved in $backfile)\n"; rename $file, $backfile; } WriteStringToFile ($file, $new_contents); } } ----------------------------------- cut ------------------------------------ In addition to those programs, I needed to fix up a few other things, particularly relating to the duplicate definitions of types, now that some types merged with others. Specifically: 1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now look like this: (In each code snippet below, the first and last lines are the same as the original, as are all lines outside of those lines. That allows you to locate the section to be replaced, and replace the stuff in that section, verifying that there isn't anything new added that would need to be kept.) --------------------------------- snip ------------------------------------- /* Counts of bytes or chars */ typedef EMACS_INT Bytecount; typedef EMACS_INT Charcount; /* Counts of elements */ typedef EMACS_INT Elemcount; /* Hash codes */ typedef unsigned long Hashcode; /* ------------------------ dynamic arrays ------------------- */ --------------------------------- snip ------------------------------------- 2. in lstream.h, removed duplicate declaration of Bytecount. Rewrote the comment about this type. The changed code should now look like this: --------------------------------- snip ------------------------------------- #endif /* The have been some arguments over the what the type should be that specifies a count of bytes in a data block to be written out or read in, using Lstream_read(), Lstream_write(), and related functions. Originally it was long, which worked fine; Martin "corrected" these to size_t and ssize_t on the grounds that this is theoretically cleaner and is in keeping with the C standards. Unfortunately, this practice is horribly error-prone due to design flaws in the way that mixed signed/unsigned arithmetic happens. In fact, by doing this change, Martin introduced a subtle but fatal error that caused the operation of sending large mail messages to the SMTP server under Windows to fail. By putting all values back to be signed, avoiding any signed/unsigned mixing, the bug immediately went away. The type then in use was Lstream_Data_Count, so that it be reverted cleanly if a vote came to that. Now it is Bytecount. Some earlier comments about why the type must be signed: This MUST BE SIGNED, since it also is used in functions that return the number of bytes actually read to or written from in an operation, and these functions can return -1 to signal error. Note that the standard Unix read() and write() functions define the count going in as a size_t, which is UNSIGNED, and the count going out as an ssize_t, which is SIGNED. This is a horrible design flaw. Not only is it highly likely to lead to logic errors when a -1 gets interpreted as a large positive number, but operations are bound to fail in all sorts of horrible ways when a number in the upper-half of the size_t range is passed in -- this number is unrepresentable as an ssize_t, so code that checks to see how many bytes are actually written (which is mandatory if you are dealing with certain types of devices) will get completely screwed up. --ben */ typedef enum lstream_buffering --------------------------------- snip ------------------------------------- 3. in dumper.c, there are four places, all inside of switch() statements, where XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks contain identical code, and you should *REMOVE THE SECOND* and leave the first.
author ben
date Thu, 20 Sep 2001 06:31:11 +0000
parents 376386a54a3c
children
line wrap: on
line source

Debugging GNU Emacs
Copyright (c) 1985 Richard M. Stallman.

   Permission is granted to anyone to make or distribute verbatim copies
   of this document as received, in any medium, provided that the
   copyright notice and permission notice are preserved,
   and that the distributor grants the recipient permission
   for further redistribution as permitted by this notice.

   Permission is granted to distribute modified versions
   of this document, or of portions of it,
   under the above conditions, provided also that they
   carry prominent notices stating who last changed them.

On 4.2 you will probably find that dbx does not work for
debugging GNU Emacs.  For one thing, dbx does not keep the
inferior process's terminal modes separate from its own.
For another, dbx does not put the inferior in a separate
process group, which makes trouble when an inferior uses
interrupt input, which GNU Emacs must do on 4.2.

dbx has also been observed to have other problems,
such as getting incorrect values for register variables
in stack frames other than the innermost one.

The Emacs distribution now contains GDB, the new source-level
debugger for the GNU system.  GDB works for debugging Emacs.
GDB currently runs on vaxes under 4.2 and on Sun 2 and Sun 3
systems.


** Some useful techniques

`Fsignal' is a very useful place to stop in.
All Lisp errors go through there.

It is useful, when debugging, to have a guaranteed way
to return to the debugger at any time.  If you are using
interrupt-driven input, which is the default, then Emacs is using
RAW mode and the only way you can do it is to store
the code for some character into the variable stop_character:

    set stop_character = 29

makes Control-] (decimal code 29) the stop character.
Typing Control-] will cause immediate stop.  You cannot
use the set command until the inferior process has been started.
Put a breakpoint early in `main', or suspend the Emacs,
to get an opportunity to do the set command.

If you are using cbreak input (see the Lisp function set-input-mode),
then typing Control-g will cause a SIGINT, which will return control
to the debugger immediately unless you have done

    ignore 3  (in dbx)
or  handle 3 nostop noprint  (in gdb)

You will note that most of GNU Emacs is written to avoid
declaring a local variable in an inner block, even in
cases where using one would be the cleanest thing to do.
This is because dbx cannot access any of the variables
in a function which has even one variable defined in an
inner block.  A few functions in GNU Emacs do have variables
in inner blocks, only because I wrote them before realizing
that dbx had this problem and never rewrote them to avoid it.

I believe that GDB does not have such a problem.


** Examining Lisp object values.

When you have a live process to debug, and it has not encountered a
fatal error, you can use the GDB command `pr'.  First print the value
in the ordinary way, with the `p' command.  Then type `pr' with no
arguments.  This calls a subroutine which uses the Lisp printer.

If you can't use this command, either because the process can't run
a subroutine or because the data is invalid, you can fall back on
lower-level commands.

Use the `xtype' command to print out the data type of the last data
value.  Once you know the data type, use the command that corresponds
to that type.  Here are these commands:

    xint xptr xwindow xmarker xoverlay xmiscfree xintfwd xboolfwd xobjfwd
    xbufobjfwd xkbobjfwd xbuflocal xbuffer xsymbol xstring xvector xframe
    xwinconfig xcompiled xcons xcar xcdr xsubr xprocess xfloat xscrollbar

Each one of them applies to a certain type or class of types.
(Some of these types are not visible in Lisp, because they exist only
internally.)

Each x... command prints some information about the value, and
produces a GDB value (subsequently available in $) through which you
can get at the rest of the contents.

In general, most of the rest of the contents will be addition Lisp
objects which you can examine in turn with the x... commands.

** If GDB does not run and your debuggers can't load Emacs.

On some systems, no debugger can load Emacs with a symbol table,
perhaps because they all have fixed limits on the number of symbols
and Emacs exceeds the limits.  Here is a method that can be used
in such an extremity.  Do

    nm -n temacs > nmout
    strip temacs
    adb temacs
    0xd:i
    0xe:i
    14:i
    17:i
    :r -l loadup   (or whatever)

It is necessary to refer to the file `nmout' to convert
numeric addresses into symbols and vice versa.

It is useful to be running under a window system.
Then, if Emacs becomes hopelessly wedged, you can create
another window to do kill -9 in.  kill -ILL is often
useful too, since that may make Emacs dump core or return
to adb.


** Debugging incorrect screen updating.

To debug Emacs problems that update the screen wrong, it is useful
to have a record of what input you typed and what Emacs sent to the
screen.  To make these records, do

(open-dribble-file "~/.dribble")
(open-termscript "~/.termscript")

The dribble file contains all characters read by Emacs from the
terminal, and the termscript file contains all characters it sent to
the terminal.  The use of the directory `~/' prevents interference
with any other user.

If you have irreproducible display problems, put those two expressions
in your ~/.emacs file.  When the problem happens, exit the Emacs that
you were running, kill it, and rename the two files.  Then you can start
another Emacs without clobbering those files, and use it to examine them.