view src/hash.c @ 1292:f3437b56874d

[xemacs-hg @ 2003-02-13 09:57:04 by ben] profile updates profile.c: Major reworking. Keep track of new information -- total function timing (includes descendants), GC usage, total GC usage (includes descendants). New functions to be called appropriately from eval.c, alloc.c to keep track of this information. Keep track of when we're actually in a function vs. in its profile, for more accurate timing counts. Track profile overhead separately. Create new mechanism for specifying "internal sections" that are tracked just like regular Lisp functions and even appear in the backtrace if `backtrace-with-internal-sections' is non-nil (t by default for error-checking builds). Add some KKCC information for the straight (non-Elisp) hash table used by profile, which contains Lisp objects in its keys -- but not used yet. Remove old ad-hoc methods for tracking garbage collection, redisplay (which was incorrect anyway when Lisp was called within these sections). Don't record any tick info when blocking under MS Windows, since the timer there is in real time rather than in process time. Make `start-profiling', `stop-profiling' interactive. Be consistent wrt. recursive functions and functions currently on the stack when starting or stopping -- together these make implementing the `total' values extremely difficult. When we start profiling, we act as if we just entered all the functions currently on the stack. Likewise when exiting. Create vars in_profile for tracking time spent inside of profiling, and profiling_lock for setting exclusive access to the main hash table when reading from it or modifying it. (protects against getting screwed up by the signal handle going off at the same time. profile.h: New file. Create macros for declaring internal profiling sections. lisp.h: Move profile-related stuff to profile.h. alloc.c: Keep track of total consing, for profile. Tell profile when we are consing. Use new profile-section method for noting garbage-collection. alloc.c: Abort if we attempt to call the allocator reentrantly. backtrace.h, eval.c: Add info for use by profile in the backtrace frame and transfer PUSH_BACKTRACE/POP_BACKTRACE from eval.c, for use with profile. elhash.c: Author comment. eval.c, lisp.h: New Lisp var `backtrace-with-internal-sections'. Set to t when error-checking is on. eval.c: When unwinding, eval.c: Report to profile when we are about-to-call and just-called wrt. a function. alloc.c, eval.c: Allow for "fake" backtrace frames, for internal sections (used by profile and `backtrace-with-internal-sections'. event-Xt.c, event-gtk.c, event-msw.c, event-tty.c: Record when we are actually blocking on an event, for profile's sake. event-stream.c: Record internal profiling sections for getting, dispatching events. extents.c: Record internal profiling sections for map_extents. hash.c, hash.h: Add pregrow_hash_table_if_necessary(). (Used in profile code since the signal handler is the main grower but can't allow a realloc(). We make sure, at critical points, that the table is large enough.) lread.c: Create internal profiling sections for `load' (which may be triggered internally by autoload, etc.). redisplay.c: Remove old profile_redisplay_flag. Use new macros to declare internal profiling section for redisplay. text.c: Use new macros to declare internal profiling sections for char-byte conversion and internal-external conversion. SEMI-UNRELATED CHANGES: ----------------------- text.c: Update the long comments.
author ben
date Thu, 13 Feb 2003 09:57:08 +0000
parents e22b0213b713
children a8d8f419b459
line wrap: on
line source

/* Hash tables.
   Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
   Copyright (C) 2003 Ben Wing.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

/* Author: Lost in the mists of history.  At least back to Lucid 19.3,
   circa Sep 1992. */

#include <config.h>
#include "lisp.h"
#include "hash.h"

#define NULL_ENTRY ((void *) 0xdeadbeef) /* -559038737 base 10 */

#define COMFORTABLE_SIZE(size) (21 * (size) / 16)

#define KEYS_DIFFER_P(old, new, testfun) \
  (((old) != (new)) && (!(testfun) || !(testfun) ((old),(new))))

static void rehash (hentry *harray, struct hash_table *ht, Elemcount size);

Hashcode
memory_hash (const void *xv, Bytecount size)
{
  Hashcode h = 0;
  unsigned const char *x = (unsigned const char *) xv;

  if (!x) return 0;

  while (size--)
    {
      Hashcode g;
      h = (h << 4) + *x++;
      if ((g = h & 0xf0000000) != 0)
	h = (h ^ (g >> 24)) ^ g;
    }

  return h;
}

Hashcode
string_hash (const char *xv)
{
  Hashcode h = 0;
  unsigned const char *x = (unsigned const char *) xv;

  if (!x) return 0;

  while (*x)
    {
      Hashcode g;
      h = (h << 4) + *x++;
      if ((g = h & 0xf0000000) != 0)
	h = (h ^ (g >> 24)) ^ g;
    }

  return h;
}

/* Return a suitable size for a hash table, with at least SIZE slots. */
static Elemcount
hash_table_size (Elemcount requested_size)
{
  /* Return some prime near, but greater than or equal to, SIZE.
     Decades from the time of writing, someone will have a system large
     enough that the list below will be too short... */
  static const Elemcount primes [] =
  {
    19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
    1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
    19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
    204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
    1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
    10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
    50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
    243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
    1174703521, 1527114613, 1985248999 /* , 2580823717UL, 3355070839UL */
  };
  /* We've heard of binary search. */
  int low, high;
  for (low = 0, high = countof (primes) - 1; high - low > 1;)
    {
      /* Loop Invariant: size < primes [high] */
      int mid = (low + high) / 2;
      if (primes [mid] < requested_size)
	low = mid;
      else
	high = mid;
    }
  return primes [high];
}

const void *
gethash (const void *key, struct hash_table *hash_table, const void **ret_value)
{
  if (!key)
    {
      *ret_value = hash_table->zero_entry;
      return (void *) hash_table->zero_set;
    }
  else
    {
      hentry *harray = hash_table->harray;
      hash_table_test_function test_function = hash_table->test_function;
      Elemcount size = hash_table->size;
      Hashcode hcode_initial =
	hash_table->hash_function ?
	hash_table->hash_function (key) :
	(Hashcode) key;
      Elemcount hcode = (Elemcount) (hcode_initial % size);
      hentry *e = &harray [hcode];
      const void *e_key = e->key;

      if (e_key ?
	  KEYS_DIFFER_P (e_key, key, test_function) :
	  e->contents == NULL_ENTRY)
	{
	  Elemcount h2 = size - 2;
	  Elemcount incr = (Elemcount) (1 + (hcode_initial % h2));
	  do
	    {
	      hcode += incr; if (hcode >= size) hcode -= size;
	      e = &harray [hcode];
	      e_key = e->key;
	    }
	  while (e_key ?
		 KEYS_DIFFER_P (e_key, key, test_function) :
		 e->contents == NULL_ENTRY);
	}

      *ret_value = e->contents;
      return e->key;
    }
}

void
clrhash (struct hash_table *hash_table)
{
  memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size);
  hash_table->zero_entry = 0;
  hash_table->zero_set   = 0;
  hash_table->fullness   = 0;
}

void
free_hash_table (struct hash_table *hash_table)
{
  xfree (hash_table->harray);
  xfree (hash_table);
}

struct hash_table*
make_hash_table (Elemcount size)
{
  struct hash_table *hash_table = xnew_and_zero (struct hash_table);
  hash_table->size = hash_table_size (COMFORTABLE_SIZE (size));
  hash_table->harray = xnew_array (hentry, hash_table->size);
  clrhash (hash_table);
  return hash_table;
}

struct hash_table *
make_general_hash_table (Elemcount size,
			hash_table_hash_function hash_function,
			hash_table_test_function test_function)
{
  struct hash_table* hash_table = make_hash_table (size);
  hash_table->hash_function = hash_function;
  hash_table->test_function = test_function;
  return hash_table;
}

static void
grow_hash_table (struct hash_table *hash_table, Elemcount new_size)
{
  Elemcount old_size   = hash_table->size;
  hentry     *old_harray = hash_table->harray;

  hash_table->size   = hash_table_size (new_size);
  hash_table->harray = xnew_array (hentry, hash_table->size);

  /* do the rehash on the "grown" table */
  {
    long old_zero_set    = hash_table->zero_set;
    void *old_zero_entry = hash_table->zero_entry;
    clrhash (hash_table);
    hash_table->zero_set   = old_zero_set;
    hash_table->zero_entry = old_zero_entry;
    rehash (old_harray, hash_table, old_size);
  }

  xfree (old_harray);
}

void
pregrow_hash_table_if_necessary (struct hash_table *hash_table,
				 Elemcount breathing_room)
{
  Elemcount comfortable_size = COMFORTABLE_SIZE (hash_table->fullness);
  if (hash_table->size < comfortable_size - breathing_room)
    grow_hash_table (hash_table, comfortable_size + 1);
}

void
puthash (const void *key, void *contents, struct hash_table *hash_table)
{
  if (!key)
    {
      hash_table->zero_entry = contents;
      hash_table->zero_set = 1;
    }
  else
    {
      hash_table_test_function test_function = hash_table->test_function;
      Elemcount size = hash_table->size;
      hentry *harray   = hash_table->harray;
      Hashcode hcode_initial =
	hash_table->hash_function ?
	hash_table->hash_function (key) :
	(Hashcode) key;
      Elemcount hcode = (Elemcount) (hcode_initial % size);
      Elemcount h2 = size - 2;
      Elemcount incr = (Elemcount) (1 + (hcode_initial % h2));
      const void *e_key = harray [hcode].key;
      const void *oldcontents;

      if (e_key && KEYS_DIFFER_P (e_key, key, test_function))
	{
	  do
	    {
	      hcode += incr; if (hcode >= size) hcode -= size;
	      e_key = harray [hcode].key;
	    }
	  while (e_key && KEYS_DIFFER_P (e_key, key, test_function));
	}
      oldcontents = harray [hcode].contents;
      harray [hcode].key = key;
      harray [hcode].contents = contents;
      /* If the entry that we used was a deleted entry,
	 check for a non deleted entry of the same key,
	 then delete it. */
      if (!e_key && oldcontents == NULL_ENTRY)
	{
	  hentry *e;

	  do
	    {
	      hcode += incr; if (hcode >= size) hcode -= size;
	      e = &harray [hcode];
	      e_key = e->key;
	    }
	  while (e_key ?
		 KEYS_DIFFER_P (e_key, key, test_function):
		 e->contents == NULL_ENTRY);

	  if (e_key)
	    {
	      e->key = 0;
	      e->contents = NULL_ENTRY;
	    }
	}

      /* only increment the fullness when we used up a new hentry */
      if (!e_key || KEYS_DIFFER_P (e_key, key, test_function))
	{
	  Elemcount comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness));
	  if (hash_table->size < comfortable_size)
	    grow_hash_table (hash_table, comfortable_size + 1);
	}
    }
}

static void
rehash (hentry *harray, struct hash_table *hash_table, Elemcount size)
{
  hentry *limit = harray + size;
  hentry *e;
  for (e = harray; e < limit; e++)
    {
      if (e->key)
	puthash (e->key, e->contents, hash_table);
    }
}

void
remhash (const void *key, struct hash_table *hash_table)
{
  if (!key)
    {
      hash_table->zero_entry = 0;
      hash_table->zero_set = 0;
    }
  else
    {
      hentry *harray = hash_table->harray;
      hash_table_test_function test_function = hash_table->test_function;
      Elemcount size = hash_table->size;
      Hashcode hcode_initial =
	(hash_table->hash_function) ?
	(hash_table->hash_function (key)) :
	((Hashcode) key);
      Elemcount hcode = (Elemcount) (hcode_initial % size);
      hentry *e = &harray [hcode];
      const void *e_key = e->key;

      if (e_key ?
	  KEYS_DIFFER_P (e_key, key, test_function) :
	  e->contents == NULL_ENTRY)
	{
	  Elemcount h2 = size - 2;
	  Elemcount incr = (Elemcount) (1 + (hcode_initial % h2));
	  do
	    {
	      hcode += incr; if (hcode >= size) hcode -= size;
	      e = &harray [hcode];
	      e_key = e->key;
	    }
	  while (e_key?
		 KEYS_DIFFER_P (e_key, key, test_function):
		 e->contents == NULL_ENTRY);
	}
      if (e_key)
	{
	  e->key = 0;
	  e->contents = NULL_ENTRY;
	  /* Note: you can't do fullness-- here, it breaks the world. */
	}
    }
}

void
maphash (maphash_function mf, struct hash_table *hash_table, void *arg)
{
  hentry *e;
  hentry *limit;

  if (hash_table->zero_set)
    {
      if (mf (0, hash_table->zero_entry, arg))
	return;
    }

  for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
    {
      if (e->key && mf (e->key, e->contents, arg))
	return;
    }
}

void
map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg)
{
  hentry *e;
  hentry *limit;

  if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg))
    {
      hash_table->zero_set = 0;
      hash_table->zero_entry = 0;
    }

  for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
    if (predicate (e->key, e->contents, arg))
      {
        e->key = 0;
        e->contents = NULL_ENTRY;
      }
}