view tests/automated/lisp-tests.el @ 5020:eadd99984bfb

merge
author Ben Wing <ben@xemacs.org>
date Tue, 09 Feb 2010 03:53:52 -0600
parents 6ef8256a020a
children 1b96882bdf37
line wrap: on
line source

;; Copyright (C) 1998 Free Software Foundation, Inc.

;; Author: Martin Buchholz <martin@xemacs.org>
;; Maintainer: Martin Buchholz <martin@xemacs.org>
;; Created: 1998
;; Keywords: tests

;; This file is part of XEmacs.

;; XEmacs is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; XEmacs is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with XEmacs; see the file COPYING.  If not, write to the Free
;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
;; 02111-1307, USA.

;;; Synched up with: Not in FSF.

;;; Commentary:

;;; Test basic Lisp engine functionality
;;; See test-harness.el for instructions on how to run these tests.

(eval-when-compile
  (condition-case nil
      (require 'test-harness)
    (file-error
     (push "." load-path)
     (when (and (boundp 'load-file-name) (stringp load-file-name))
       (push (file-name-directory load-file-name) load-path))
     (require 'test-harness))))

(Check-Error wrong-number-of-arguments (setq setq-test-foo))
(Check-Error wrong-number-of-arguments (setq setq-test-foo 1 setq-test-bar))
(Check-Error wrong-number-of-arguments (setq-default setq-test-foo))
(Check-Error wrong-number-of-arguments (setq-default setq-test-foo 1 setq-test-bar))
(Assert-eq (setq)         nil)
(Assert-eq (setq-default) nil)
(Assert-eq (setq         setq-test-foo 42) 42)
(Assert-eq (setq-default setq-test-foo 42) 42)
(Assert-eq (setq         setq-test-foo 42 setq-test-bar 99) 99)
(Assert-eq (setq-default setq-test-foo 42 setq-test-bar 99) 99)

(macrolet ((test-setq (expected-result &rest body)
		      `(progn
			 (defun test-setq-fun () ,@body)
			 (Assert-eq ,expected-result (test-setq-fun))
			 (byte-compile 'test-setq-fun)
			 (Assert-eq ,expected-result (test-setq-fun)))))
  (test-setq nil (setq))
  (test-setq nil (setq-default))
  (test-setq 42  (setq         test-setq-var 42))
  (test-setq 42  (setq-default test-setq-var 42))
  (test-setq 42  (setq         test-setq-bar 99 test-setq-var 42))
  (test-setq 42  (setq-default test-setq-bar 99 test-setq-var 42))
  )

(let ((my-vector [1 2 3 4])
      (my-bit-vector (bit-vector 1 0 1 0))
      (my-string "1234")
      (my-list '(1 2 3 4)))

  ;;(Assert (fooooo)) ;; Generate Other failure
  ;;(Assert-eq 1 2) ;; Generate Assertion failure

  (dolist (sequence (list my-vector my-bit-vector my-string my-list))
    (Assert (sequencep sequence))
    (Assert-eq 4 (length sequence)))

  (dolist (array (list my-vector my-bit-vector my-string))
    (Assert (arrayp array)))

  (Assert-eq (elt my-vector 0) 1)
  (Assert-eq (elt my-bit-vector 0) 1)
  (Assert-eq (elt my-string 0) ?1)
  (Assert-eq (elt my-list 0) 1)

  (fillarray my-vector 5)
  (fillarray my-bit-vector 1)
  (fillarray my-string ?5)

  (dolist (array (list my-vector my-bit-vector))
    (Assert-eq 4 (length array)))

  (Assert-eq (elt my-vector 0) 5)
  (Assert-eq (elt my-bit-vector 0) 1)
  (Assert-eq (elt my-string 0) ?5)

  (Assert-eq (elt my-vector 3) 5)
  (Assert-eq (elt my-bit-vector 3) 1)
  (Assert-eq (elt my-string 3) ?5)

  (fillarray my-bit-vector 0)
  (Assert-eq 4 (length my-bit-vector))
  (Assert-eq (elt my-bit-vector 2) 0)
  )

(defun make-circular-list (length)
  "Create evil emacs-crashing circular list of length LENGTH"
  (let ((circular-list
	 (make-list
	  length
	  'you-are-trapped-in-a-twisty-maze-of-cons-cells-all-alike)))
    (setcdr (last circular-list) circular-list)
    circular-list))

;;-----------------------------------------------------
;; Test `nconc'
;;-----------------------------------------------------
(defun make-list-012 () (list 0 1 2))

(Check-Error wrong-type-argument (nconc 'foo nil))

(dolist (length '(1 2 3 4 1000 2000))
  (Check-Error circular-list (nconc (make-circular-list length) 'foo))
  (Check-Error circular-list (nconc '(1 . 2) (make-circular-list length) 'foo))
  (Check-Error circular-list (nconc '(1 . 2) '(3 . 4) (make-circular-list length) 'foo)))

(Assert-eq (nconc) nil)
(Assert-eq (nconc nil) nil)
(Assert-eq (nconc nil nil) nil)
(Assert-eq (nconc nil nil nil) nil)

(let ((x (make-list-012))) (Assert-eq (nconc nil x) x))
(let ((x (make-list-012))) (Assert-eq (nconc x nil) x))
(let ((x (make-list-012))) (Assert-eq (nconc nil x nil) x))
(let ((x (make-list-012))) (Assert-eq (nconc x) x))
(let ((x (make-list-012))) (Assert-eq (nconc x (make-circular-list 3)) x))

(Assert-equal (nconc '(1 . 2) '(3 . 4) '(5 . 6)) '(1 3 5 . 6))

(let ((y (nconc (make-list-012) nil (list 3 4 5) nil)))
  (Assert-eq (length y) 6)
  (Assert-eq (nth 3 y) 3))

;;-----------------------------------------------------
;; Test `last'
;;-----------------------------------------------------
(Check-Error wrong-type-argument (last 'foo))
(Check-Error wrong-number-of-arguments (last))
(Check-Error wrong-number-of-arguments (last '(1 2) 1 1))
(Check-Error circular-list (last (make-circular-list 1)))
(Check-Error circular-list (last (make-circular-list 2000)))
(let ((x (list 0 1 2 3)))
  (Assert-eq (last nil) nil)
  (Assert-eq (last x 0) nil)
  (Assert-eq (last x  ) (cdddr x))
  (Assert-eq (last x 1) (cdddr x))
  (Assert-eq (last x 2) (cddr x))
  (Assert-eq (last x 3) (cdr x))
  (Assert-eq (last x 4) x)
  (Assert-eq (last x 9) x)
  (Assert-eq (last '(1 . 2) 0) 2)
  )

;;-----------------------------------------------------
;; Test `butlast' and `nbutlast'
;;-----------------------------------------------------
(Check-Error wrong-type-argument (butlast  'foo))
(Check-Error wrong-type-argument (nbutlast 'foo))
(Check-Error wrong-number-of-arguments (butlast))
(Check-Error wrong-number-of-arguments (nbutlast))
(Check-Error wrong-number-of-arguments (butlast  '(1 2) 1 1))
(Check-Error wrong-number-of-arguments (nbutlast '(1 2) 1 1))
(Check-Error circular-list (butlast  (make-circular-list 1)))
(Check-Error circular-list (nbutlast (make-circular-list 1)))
(Check-Error circular-list (butlast  (make-circular-list 2000)))
(Check-Error circular-list (nbutlast (make-circular-list 2000)))

(let* ((x (list 0 1 2 3))
       (y (butlast x))
       (z (nbutlast x)))
  (Assert-eq z x)
  (Assert (not (eq y x)))
  (Assert-equal y '(0 1 2))
  (Assert-equal z y))

(let* ((x (list 0 1 2 3 4))
       (y (butlast x 2))
       (z (nbutlast x 2)))
  (Assert-eq z x)
  (Assert (not (eq y x)))
  (Assert-equal y '(0 1 2))
  (Assert-equal z y))

(let* ((x (list 0 1 2 3))
       (y (butlast x 0))
       (z (nbutlast x 0)))
  (Assert-eq z x)
  (Assert (not (eq y x)))
  (Assert-equal y '(0 1 2 3))
  (Assert-equal z y))

(Assert-eq (butlast  '(x)) nil)
(Assert-eq (nbutlast '(x)) nil)
(Assert-eq (butlast  '()) nil)
(Assert-eq (nbutlast '()) nil)

;;-----------------------------------------------------
;; Test `copy-list'
;;-----------------------------------------------------
(Check-Error wrong-type-argument (copy-list 'foo))
(Check-Error wrong-number-of-arguments (copy-list))
(Check-Error wrong-number-of-arguments (copy-list '(1 2) 1))
(Check-Error circular-list (copy-list (make-circular-list 1)))
(Check-Error circular-list (copy-list (make-circular-list 2000)))
(Assert-eq '() (copy-list '()))
(dolist (x '((1) (1 2) (1 2 3) (1 2 . 3)))
  (let ((y (copy-list x)))
    (Assert (and (equal x y) (not (eq x y))))))

;;-----------------------------------------------------
;; Arithmetic operations
;;-----------------------------------------------------

;; Test `+'
(Assert-eq (+ 1 1) 2)
(Assert= (+ 1.0 1.0) 2.0)
(Assert= (+ 1.0 3.0 0.0) 4.0)
(Assert= (+ 1 1.0) 2.0)
(Assert= (+ 1.0 1) 2.0)
(Assert= (+ 1.0 1 1) 3.0)
(Assert= (+ 1 1 1.0) 3.0)
(if (featurep 'bignum)
    (progn
      (Assert (bignump (1+ most-positive-fixnum)))
      (Assert-eq most-positive-fixnum (1- (1+ most-positive-fixnum)))
      (Assert (bignump (+ most-positive-fixnum 1)))
      (Assert-eq most-positive-fixnum (- (+ most-positive-fixnum 1) 1))
      (Assert= (1+ most-positive-fixnum) (- most-negative-fixnum))
      (Assert (zerop (+ (* 3 most-negative-fixnum) (* 3 most-positive-fixnum)
			3))))
  (Assert-eq (1+ most-positive-fixnum) most-negative-fixnum)
  (Assert-eq (+ most-positive-fixnum 1) most-negative-fixnum))

(when (featurep 'ratio)
  (let ((threefourths (read "3/4"))
	(threehalfs (read "3/2"))
	(bigpos (div (+ most-positive-fixnum 2) (1+ most-positive-fixnum)))
	(bigneg (div (+ most-positive-fixnum 2) most-negative-fixnum))
	(negone (div (1+ most-positive-fixnum) most-negative-fixnum)))
    (Assert= negone -1)
    (Assert= threehalfs (+ threefourths threefourths))
    (Assert (zerop (+ bigpos bigneg)))))

;; Test `-'
(Check-Error wrong-number-of-arguments (-))
(Assert-eq (- 0) 0)
(Assert-eq (- 1) -1)
(dolist (one `(1 1.0 ?\1 ,(Int-to-Marker 1)))
  (Assert= (+ 1 one) 2)
  (Assert= (+ one) 1)
  (Assert= (+ one) one)
  (Assert= (- one) -1)
  (Assert= (- one one) 0)
  (Assert= (- one one one) -1)
  (Assert= (- 0 one) -1)
  (Assert= (- 0 one one) -2)
  (Assert= (+ one 1) 2)
  (dolist (zero '(0 0.0 ?\0))
    (Assert= (+ 1 zero) 1 zero)
    (Assert= (+ zero 1) 1 zero)
    (Assert= (- zero) zero zero)
    (Assert= (- zero) 0 zero)
    (Assert= (- zero zero) 0 zero)
    (Assert= (- zero one one) -2 zero)))

(Assert= (- 1.5 1) .5)
(Assert= (- 1 1.5) (- .5))

(if (featurep 'bignum)
    (progn
      (Assert (bignump (1- most-negative-fixnum)))
      (Assert-eq most-negative-fixnum (1+ (1- most-negative-fixnum)))
      (Assert (bignump (- most-negative-fixnum 1)))
      (Assert-eq most-negative-fixnum (+ (- most-negative-fixnum 1) 1))
      (Assert= (1- most-negative-fixnum) (- 0 most-positive-fixnum 2))
      (Assert-eq (- (- most-positive-fixnum most-negative-fixnum)
		     (* 2 most-positive-fixnum))
		  1))
  (Assert-eq (1- most-negative-fixnum) most-positive-fixnum)
  (Assert-eq (- most-negative-fixnum 1) most-positive-fixnum))

(when (featurep 'ratio)
  (let ((threefourths (read "3/4"))
	(threehalfs (read "3/2"))
	(bigpos (div (+ most-positive-fixnum 2) (1+ most-positive-fixnum)))
	(bigneg (div most-positive-fixnum most-negative-fixnum))
	(negone (div (1+ most-positive-fixnum) most-negative-fixnum)))
    (Assert= (- negone) 1)
    (Assert= threefourths (- threehalfs threefourths))
    (Assert= (- bigpos bigneg) 2)))

;; Test `/'

;; Test division by zero errors
(dolist (zero '(0 0.0 ?\0))
  (Check-Error arith-error (/ zero))
  (dolist (n1 `(42 42.0 ?\042 ,(Int-to-Marker 42)))
    (Check-Error arith-error (/ n1 zero))
    (dolist (n2 `(3 3.0 ?\03 ,(Int-to-Marker 3)))
      (Check-Error arith-error (/ n1 n2 zero)))))

;; Other tests for `/'
(Check-Error wrong-number-of-arguments (/))
(let (x)
  (Assert= (/ (setq x 2))   0)
  (Assert= (/ (setq x 2.0)) 0.5))

(dolist (six '(6 6.0 ?\06))
  (dolist (two '(2 2.0 ?\02))
    (dolist (three '(3 3.0 ?\03))
      (Assert= (/ six two) three (list six two three)))))

(dolist (three '(3 3.0 ?\03))
  (Assert= (/ three 2.0) 1.5 three))
(dolist (two '(2 2.0 ?\02))
  (Assert= (/ 3.0 two) 1.5 two))

(when (featurep 'bignum)
  (let* ((million 1000000)
	 (billion (* million 1000))	;; American, not British, billion
	 (trillion (* billion 1000)))
    (Assert= (/ billion 1000) (/ trillion million) million 1000000.0)
    (Assert= (/ billion -1000) (/ trillion (- million)) (- million))
    (Assert= (/ trillion 1000) billion 1000000000.0)
    (Assert= (/ trillion -1000) (- billion) -1000000000.0)
    (Assert= (/ trillion 10) (* 100 billion) 100000000000.0)
    (Assert= (/ (- trillion) 10) (* -100 billion) -100000000000.0)))

(when (featurep 'ratio)
  (let ((half (div 1 2))
	(fivefourths (div 5 4))
	(fivehalfs (div 5 2)))
    (Assert= half (read "3000000000/6000000000"))
    (Assert= (/ fivehalfs fivefourths) 2)
    (Assert= (/ fivefourths fivehalfs) half)
    (Assert= (- half) (read "-3000000000/6000000000"))
    (Assert= (/ fivehalfs (- fivefourths)) -2)
    (Assert= (/ (- fivefourths) fivehalfs) (- half))))

;; Test `*'
(Assert= 1 (*))

(dolist (one `(1 1.0 ?\01 ,(Int-to-Marker 1)))
  (Assert= 1 (* one) one))

(dolist (two '(2 2.0 ?\02))
  (Assert= 2 (* two) two))

(dolist (six '(6 6.0 ?\06))
  (dolist (two '(2 2.0 ?\02))
    (dolist (three '(3 3.0 ?\03))
      (Assert= (* three two) six (list three two six)))))

(dolist (three '(3 3.0 ?\03))
  (dolist (two '(2 2.0 ?\02))
    (Assert= (* 1.5 two) three (list two three))
    (dolist (five '(5 5.0 ?\05))
      (Assert= 30 (* five two three) (list five two three)))))

(when (featurep 'bignum)
  (let ((64K 65536))
    (Assert= (* 64K 64K) (read "4294967296"))
    (Assert= (* (- 64K) 64K) (read "-4294967296"))
    (Assert (/= (* -1 most-negative-fixnum) most-negative-fixnum))))

(when (featurep 'ratio)
  (let ((half (div 1 2))
	(fivefourths (div 5 4))
	(twofifths (div 2 5)))
    (Assert= (* fivefourths twofifths) half)
    (Assert= (* half twofifths) (read "3/15"))))

;; Test `+'
(Assert= 0 (+))

(dolist (one `(1 1.0 ?\01 ,(Int-to-Marker 1)))
  (Assert= 1 (+ one) one))

(dolist (two '(2 2.0 ?\02))
  (Assert= 2 (+ two) two))

(dolist (five '(5 5.0 ?\05))
  (dolist (two '(2 2.0 ?\02))
    (dolist (three '(3 3.0 ?\03))
      (Assert= (+ three two) five (list three two five))
      (Assert= 10 (+ five two three) (list five two three)))))

;; Test `max', `min'
(dolist (one `(1 1.0 ?\01 ,(Int-to-Marker 1)))
  (Assert= one (max one) one)
  (Assert= one (max one one) one)
  (Assert= one (max one one one) one)
  (Assert= one (min one) one)
  (Assert= one (min one one) one)
  (Assert= one (min one one one) one)
  (dolist (two `(2 2.0 ?\02 ,(Int-to-Marker 2)))
    (Assert= one (min one two) (list one two))
    (Assert= one (min one two two) (list one two))
    (Assert= one (min two two one) (list one two))
    (Assert= two (max one two) (list one two))
    (Assert= two (max one two two) (list one two))
    (Assert= two (max two two one) (list one two))))

(when (featurep 'bignum)
  (let ((big (1+ most-positive-fixnum))
	(small (1- most-negative-fixnum)))
    (Assert= big (max 1 1000000.0 most-positive-fixnum big))
    (Assert= small (min -1 -1000000.0 most-negative-fixnum small))))

(when (featurep 'ratio)
  (let* ((big (1+ most-positive-fixnum))
	 (small (1- most-negative-fixnum))
	 (bigr (div (* 5 (1+ most-positive-fixnum)) 4))
	 (smallr (- bigr)))
    (Assert= bigr (max 1 1000000.0 most-positive-fixnum big bigr))
    (Assert= smallr (min -1 -1000000.0 most-negative-fixnum small smallr))))

;; The byte compiler has special handling for these constructs:
(let ((three 3) (five 5))
  (Assert= (+ three five 1) 9)
  (Assert= (+ 1 three five) 9)
  (Assert= (+ three five -1) 7)
  (Assert= (+ -1 three five) 7)
  (Assert= (+ three 1) 4)
  (Assert= (+ three -1) 2)
  (Assert= (+ -1 three) 2)
  (Assert= (+ -1 three) 2)
  (Assert= (- three five 1) -3)
  (Assert= (- 1 three five) -7)
  (Assert= (- three five -1) -1)
  (Assert= (- -1 three five) -9)
  (Assert= (- three 1) 2)
  (Assert= (- three 2 1) 0)
  (Assert= (- 2 three 1) -2)
  (Assert= (- three -1) 4)
  (Assert= (- three 0) 3)
  (Assert= (- three 0 five) -2)
  (Assert= (- 0 three 0 five) -8)
  (Assert= (- 0 three five) -8)
  (Assert= (* three 2) 6)
  (Assert= (* three -1 five) -15)
  (Assert= (* three 1 five) 15)
  (Assert= (* three 0 five) 0)
  (Assert= (* three 2 five) 30)
  (Assert= (/ three 1) 3)
  (Assert= (/ three -1) -3)
  (Assert= (/ (* five five) 2 2) 6)
  (Assert= (/ 64 five 2) 6))


;;-----------------------------------------------------
;; Logical bit-twiddling operations
;;-----------------------------------------------------
(Assert= (logxor)  0)
(Assert= (logior)  0)
(Assert= (logand) -1)

(Check-Error wrong-type-argument (logxor 3.0))
(Check-Error wrong-type-argument (logior 3.0))
(Check-Error wrong-type-argument (logand 3.0))

(dolist (three '(3 ?\03))
  (Assert-eq 3 (logand three) three)
  (Assert-eq 3 (logxor three) three)
  (Assert-eq 3 (logior three) three)
  (Assert-eq 3 (logand three three) three)
  (Assert-eq 0 (logxor three three) three)
  (Assert-eq 3 (logior three three)) three)

(dolist (one `(1 ?\01 ,(Int-to-Marker 1)))
  (dolist (two '(2 ?\02))
    (Assert-eq 0 (logand one two) (list one two))
    (Assert-eq 3 (logior one two) (list one two))
    (Assert-eq 3 (logxor one two) (list one two)))
  (dolist (three '(3 ?\03))
    (Assert-eq 1 (logand one three) (list one three))
    (Assert-eq 3 (logior one three) (list one three))
    (Assert-eq 2 (logxor one three) (list one three))))

;;-----------------------------------------------------
;; Test `%', mod
;;-----------------------------------------------------
(Check-Error wrong-number-of-arguments (%))
(Check-Error wrong-number-of-arguments (% 1))
(Check-Error wrong-number-of-arguments (% 1 2 3))

(Check-Error wrong-number-of-arguments (mod))
(Check-Error wrong-number-of-arguments (mod 1))
(Check-Error wrong-number-of-arguments (mod 1 2 3))

(Check-Error wrong-type-argument (% 10.0 2))
(Check-Error wrong-type-argument (% 10 2.0))

(flet ((test1 (x) (Assert-eql x (+ (% x 17) (* (/ x 17) 17)) x))
       (test2 (x) (Assert-eql (- x) (+ (% (- x) 17) (* (/ (- x) 17) 17)) x))
       (test3 (x) (Assert-eql x (+ (% (- x) 17) (* (/ (- x) 17) 17)) x))
       (test4 (x) (Assert-eql (% x -17) (- (% (- x) 17)) x))
       (test5 (x) (Assert-eql (% x -17) (% (- x) 17)) x))
  (test1 most-negative-fixnum)
  (if (featurep 'bignum)
      (progn
	(test2 most-negative-fixnum)
	(test4 most-negative-fixnum))
    (test3 most-negative-fixnum)
    (test5 most-negative-fixnum))
  (test1 most-positive-fixnum)
  (test2 most-positive-fixnum)
  (test4 most-positive-fixnum)
  (dotimes (j 30)
    (let ((x (random)))
      (if (eq x most-negative-fixnum) (setq x (1+ x)))
      (if (eq x most-positive-fixnum) (setq x (1- x)))
      (test1 x)
      (test2 x)
      (test4 x))))

(macrolet
    ((division-test (seven)
    `(progn
       (Assert-eq (% ,seven      2)  1)
       (Assert-eq (% ,seven     -2)  1)
       (Assert-eq (% (- ,seven)  2) -1)
       (Assert-eq (% (- ,seven) -2) -1)

       (Assert-eq (% ,seven      4)  3)
       (Assert-eq (% ,seven     -4)  3)
       (Assert-eq (% (- ,seven)  4) -3)
       (Assert-eq (% (- ,seven) -4) -3)

       (Assert-eq (%  35 ,seven)     0)
       (Assert-eq (% -35 ,seven)     0)
       (Assert-eq (%  35 (- ,seven)) 0)
       (Assert-eq (% -35 (- ,seven)) 0)

       (Assert-eq (mod ,seven      2)  1)
       (Assert-eq (mod ,seven     -2) -1)
       (Assert-eq (mod (- ,seven)  2)  1)
       (Assert-eq (mod (- ,seven) -2) -1)

       (Assert-eq (mod ,seven      4)  3)
       (Assert-eq (mod ,seven     -4) -1)
       (Assert-eq (mod (- ,seven)  4)  1)
       (Assert-eq (mod (- ,seven) -4) -3)

       (Assert-eq (mod  35 ,seven)     0)
       (Assert-eq (mod -35 ,seven)     0)
       (Assert-eq (mod  35 (- ,seven)) 0)
       (Assert-eq (mod -35 (- ,seven)) 0)

       (Assert= (mod ,seven      2.0)  1.0)
       (Assert= (mod ,seven     -2.0) -1.0)
       (Assert= (mod (- ,seven)  2.0)  1.0)
       (Assert= (mod (- ,seven) -2.0) -1.0)

       (Assert= (mod ,seven      4.0)  3.0)
       (Assert= (mod ,seven     -4.0) -1.0)
       (Assert= (mod (- ,seven)  4.0)  1.0)
       (Assert= (mod (- ,seven) -4.0) -3.0)

       (Assert-eq (% 0 ,seven) 0)
       (Assert-eq (% 0 (- ,seven)) 0)

       (Assert-eq (mod 0 ,seven) 0)
       (Assert-eq (mod 0 (- ,seven)) 0)

       (Assert= (mod 0.0 ,seven) 0.0)
       (Assert= (mod 0.0 (- ,seven)) 0.0))))

  (division-test 7)
  (division-test ?\07)
  (division-test (Int-to-Marker 7)))

(when (featurep 'bignum)
  (let ((big (+ (* 7 most-positive-fixnum 6)))
	(negbig (- (* 7 most-negative-fixnum 6))))
    (= (% big (1+ most-positive-fixnum)) most-positive-fixnum)
    (= (% negbig (1- most-negative-fixnum)) most-negative-fixnum)
    (= (mod big (1+ most-positive-fixnum)) most-positive-fixnum)
    (= (mod negbig (1- most-negative-fixnum)) most-negative-fixnum)))

;;-----------------------------------------------------
;; Arithmetic comparison operations
;;-----------------------------------------------------
(Check-Error wrong-number-of-arguments (=))
(Check-Error wrong-number-of-arguments (<))
(Check-Error wrong-number-of-arguments (>))
(Check-Error wrong-number-of-arguments (<=))
(Check-Error wrong-number-of-arguments (>=))
(Check-Error wrong-number-of-arguments (/=))

;; One argument always yields t
(loop for x in `(1 1.0 ,(Int-to-Marker 1) ?z) do
  (Assert-eq t (=  x) x)
  (Assert-eq t (<  x) x)
  (Assert-eq t (>  x) x)
  (Assert-eq t (>= x) x)
  (Assert-eq t (<= x) x)
  (Assert-eq t (/= x) x)
  )

;; Type checking
(Check-Error wrong-type-argument (=  'foo 1))
(Check-Error wrong-type-argument (<= 'foo 1))
(Check-Error wrong-type-argument (>= 'foo 1))
(Check-Error wrong-type-argument (<  'foo 1))
(Check-Error wrong-type-argument (>  'foo 1))
(Check-Error wrong-type-argument (/= 'foo 1))

;; Meat
(dolist (one `(1 1.0 ,(Int-to-Marker 1) ?\01))
  (dolist (two '(2 2.0 ?\02))
    (Assert (<  one two) (list one two))
    (Assert (<= one two) (list one two))
    (Assert (<= two two) two)
    (Assert (>  two one) (list one two))
    (Assert (>= two one) (list one two))
    (Assert (>= two two) two)
    (Assert (/= one two) (list one two))
    (Assert (not (/= two two)) two)
    (Assert (not (< one one)) one)
    (Assert (not (> one one)) one)
    (Assert (<= one one two two) (list one two))
    (Assert (not (< one one two two)) (list one two))
    (Assert (>= two two one one) (list one two))
    (Assert (not (> two two one one)) (list one two))
    (Assert= one one one one)
    (Assert (not (= one one one two)) (list one two))
    (Assert (not (/= one two one)) (list one two))
    ))

(dolist (one `(1 1.0 ,(Int-to-Marker 1) ?\01))
  (dolist (two '(2 2.0 ?\02))
    (Assert (<  one two) (list one two))
    (Assert (<= one two) (list one two))
    (Assert (<= two two) two)
    (Assert (>  two one) (list one two))
    (Assert (>= two one) (list one two))
    (Assert (>= two two) two)
    (Assert (/= one two) (list one two))
    (Assert (not (/= two two)) two)
    (Assert (not (< one one)) one)
    (Assert (not (> one one)) one)
    (Assert (<= one one two two) (list one two))
    (Assert (not (< one one two two)) (list one two))
    (Assert (>= two two one one) (list one two))
    (Assert (not (> two two one one)) (list one two))
    (Assert= one one one one)
    (Assert (not (= one one one two)) (list one two))
    (Assert (not (/= one two one)) (list one two))
    ))

;; ad-hoc
(Assert (< 1 2))
(Assert (< 1 2 3 4 5 6))
(Assert (not (< 1 1)))
(Assert (not (< 2 1)))


(Assert (not (< 1 1)))
(Assert (< 1 2 3 4 5 6))
(Assert (<= 1 2 3 4 5 6))
(Assert (<= 1 2 3 4 5 6 6))
(Assert (not (< 1 2 3 4 5 6 6)))
(Assert (<= 1 1))

(Assert (not (eq (point) (point-marker))))
(Assert= 1 (Int-to-Marker 1))
(Assert= (point) (point-marker))

(when (featurep 'bignum)
  (let ((big1 (1+ most-positive-fixnum))
	(big2 (* 10 most-positive-fixnum))
	(small1 (1- most-negative-fixnum))
	(small2 (* 10 most-negative-fixnum)))
    (Assert (< small2 small1 most-negative-fixnum most-positive-fixnum big1
	       big2))
    (Assert (<= small2 small1 most-negative-fixnum most-positive-fixnum big1
		big2))
    (Assert (> big2 big1 most-positive-fixnum most-negative-fixnum small1
	       small2))
    (Assert (>= big2 big1 most-positive-fixnum most-negative-fixnum small1
		small2))
    (Assert (/= small2 small1 most-negative-fixnum most-positive-fixnum big1
		big2))))

(when (featurep 'ratio)
  (let ((big1 (div (* 10 most-positive-fixnum) 4))
	(big2 (div (* 5 most-positive-fixnum) 2))
	(big3 (div (* 7 most-positive-fixnum) 2))
	(small1 (div (* 10 most-negative-fixnum) 4))
	(small2 (div (* 5 most-negative-fixnum) 2))
	(small3 (div (* 7 most-negative-fixnum) 2)))
    (Assert= big1 big2)
    (Assert= small1 small2)
    (Assert (< small3 small1 most-negative-fixnum most-positive-fixnum big1
	       big3))
    (Assert (<= small3 small2 small1 most-negative-fixnum most-positive-fixnum
		big1 big2 big3))
    (Assert (> big3 big1 most-positive-fixnum most-negative-fixnum small1
	       small3))
    (Assert (>= big3 big2 big1 most-positive-fixnum most-negative-fixnum
		small1 small2 small3))
    (Assert (/= big3 big1 most-positive-fixnum most-negative-fixnum small1
		small3))))

;;-----------------------------------------------------
;; testing list-walker functions
;;-----------------------------------------------------
(macrolet
    ((test-fun
      (fun)
      `(progn
	 (Check-Error wrong-number-of-arguments (,fun))
	 (Check-Error wrong-number-of-arguments (,fun nil))
	 (Check-Error malformed-list (,fun nil 1))
	 ,@(loop for n in '(1 2 2000)
	     collect `(Check-Error circular-list (,fun 1 (make-circular-list ,n))))))
     (test-funs (&rest funs) `(progn ,@(loop for fun in funs collect `(test-fun ,fun)))))

  (test-funs member old-member
	     memq   old-memq
	     assoc  old-assoc
	     rassoc old-rassoc
	     rassq  old-rassq
	     delete old-delete
	     delq   old-delq
	     remassoc remassq remrassoc remrassq))

(let ((x '((1 . 2) 3 (4 . 5))))
  (Assert-eq (assoc  1 x) (car x))
  (Assert-eq (assq   1 x) (car x))
  (Assert-eq (rassoc 1 x) nil)
  (Assert-eq (rassq  1 x) nil)
  (Assert-eq (assoc  2 x) nil)
  (Assert-eq (assq   2 x) nil)
  (Assert-eq (rassoc 2 x) (car x))
  (Assert-eq (rassq  2 x) (car x))
  (Assert-eq (assoc  3 x) nil)
  (Assert-eq (assq   3 x) nil)
  (Assert-eq (rassoc 3 x) nil)
  (Assert-eq (rassq  3 x) nil)
  (Assert-eq (assoc  4 x) (caddr x))
  (Assert-eq (assq   4 x) (caddr x))
  (Assert-eq (rassoc 4 x) nil)
  (Assert-eq (rassq  4 x) nil)
  (Assert-eq (assoc  5 x) nil)
  (Assert-eq (assq   5 x) nil)
  (Assert-eq (rassoc 5 x) (caddr x))
  (Assert-eq (rassq  5 x) (caddr x))
  (Assert-eq (assoc  6 x) nil)
  (Assert-eq (assq   6 x) nil)
  (Assert-eq (rassoc 6 x) nil)
  (Assert-eq (rassq  6 x) nil))

(let ((x '(("1" . "2") "3" ("4" . "5"))))
  (Assert-eq (assoc  "1" x) (car x))
  (Assert-eq (assq   "1" x) nil)
  (Assert-eq (rassoc "1" x) nil)
  (Assert-eq (rassq  "1" x) nil)
  (Assert-eq (assoc  "2" x) nil)
  (Assert-eq (assq   "2" x) nil)
  (Assert-eq (rassoc "2" x) (car x))
  (Assert-eq (rassq  "2" x) nil)
  (Assert-eq (assoc  "3" x) nil)
  (Assert-eq (assq   "3" x) nil)
  (Assert-eq (rassoc "3" x) nil)
  (Assert-eq (rassq  "3" x) nil)
  (Assert-eq (assoc  "4" x) (caddr x))
  (Assert-eq (assq   "4" x) nil)
  (Assert-eq (rassoc "4" x) nil)
  (Assert-eq (rassq  "4" x) nil)
  (Assert-eq (assoc  "5" x) nil)
  (Assert-eq (assq   "5" x) nil)
  (Assert-eq (rassoc "5" x) (caddr x))
  (Assert-eq (rassq  "5" x) nil)
  (Assert-eq (assoc  "6" x) nil)
  (Assert-eq (assq   "6" x) nil)
  (Assert-eq (rassoc "6" x) nil)
  (Assert-eq (rassq  "6" x) nil))

(flet ((a () (list '(1 . 2) 3 '(4 . 5))))
  (Assert (let* ((x (a)) (y (remassoc  1 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (remassq   1 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (remrassoc 1 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  1 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  2 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   2 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 2 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (remrassq  2 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))

  (Assert (let* ((x (a)) (y (remassoc  3 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   3 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 3 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  3 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  4 x))) (and (eq x y) (equal y '((1 . 2) 3)))))
  (Assert (let* ((x (a)) (y (remassq   4 x))) (and (eq x y) (equal y '((1 . 2) 3)))))
  (Assert (let* ((x (a)) (y (remrassoc 4 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  4 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  5 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   5 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 5 x))) (and (eq x y) (equal y '((1 . 2) 3)))))
  (Assert (let* ((x (a)) (y (remrassq  5 x))) (and (eq x y) (equal y '((1 . 2) 3)))))

  (Assert (let* ((x (a)) (y (remassoc  6 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   6 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 6 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  6 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (delete     3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))
  (Assert (let* ((x (a)) (y (delq       3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))
  (Assert (let* ((x (a)) (y (old-delete 3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))
  (Assert (let* ((x (a)) (y (old-delq   3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))

  (Assert (let* ((x (a)) (y (delete     '(1 . 2) x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (delq       '(1 . 2) x))) (and      (eq x y)  (equal y (a)))))
  (Assert (let* ((x (a)) (y (old-delete '(1 . 2) x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (old-delq   '(1 . 2) x))) (and      (eq x y)  (equal y (a)))))
  )



(flet ((a () (list '("1" . "2") "3" '("4" . "5"))))
  (Assert (let* ((x (a)) (y (remassoc  "1" x))) (and (not (eq x y)) (equal y '("3" ("4" . "5"))))))
  (Assert (let* ((x (a)) (y (remassq   "1" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "1" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "1" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "2" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "2" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "2" x))) (and (not (eq x y)) (equal y '("3" ("4" . "5"))))))
  (Assert (let* ((x (a)) (y (remrassq  "2" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "3" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "3" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "3" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "3" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "4" x))) (and (eq x y) (equal y '(("1" . "2") "3")))))
  (Assert (let* ((x (a)) (y (remassq   "4" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "4" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "4" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "5" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "5" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "5" x))) (and (eq x y) (equal y '(("1" . "2") "3")))))
  (Assert (let* ((x (a)) (y (remrassq  "5" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "6" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "6" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "6" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "6" x))) (and (eq x y) (equal y (a))))))

;;-----------------------------------------------------
;; function-max-args, function-min-args
;;-----------------------------------------------------
(defmacro check-function-argcounts (fun min max)
  `(progn
     (Assert-eq (function-min-args ,fun) ,min)
     (Assert-eq (function-max-args ,fun) ,max)))

(check-function-argcounts 'prog1 1 nil)         ; special form
(check-function-argcounts 'command-execute 1 3)	; normal subr
(check-function-argcounts 'funcall 1 nil)       ; `MANY' subr
(check-function-argcounts 'garbage-collect 0 0) ; no args subr

;; Test interpreted and compiled functions
(loop for (arglist min max) in
  '(((arg1 arg2 &rest args) 2 nil)
    ((arg1 arg2 &optional arg3 arg4) 2 4)
    ((arg1 arg2 &optional arg3 arg4 &rest args) 2 nil)
    (() 0 0))
  do
  (eval
   `(progn
      (defun test-fun ,arglist nil)
      (check-function-argcounts '(lambda ,arglist nil) ,min ,max)
      (check-function-argcounts (byte-compile '(lambda ,arglist nil)) ,min ,max))))

;; Test subr-arity. 
(loop for (function-name arity) in
  '((let (1 . unevalled))
    (prog1 (1 . unevalled))
    (list (0 . many))
    (type-of (1 . 1))
    (garbage-collect (0 . 0)))
  do (Assert-equal (subr-arity (symbol-function function-name)) arity))
  
(Check-Error wrong-type-argument (subr-arity
                                  (lambda () (message "Hi there!"))))
  
(Check-Error wrong-type-argument (subr-arity nil))

;;-----------------------------------------------------
;; Detection of cyclic variable indirection loops
;;-----------------------------------------------------
(fset 'test-sym1 'test-sym1)
(Check-Error cyclic-function-indirection (test-sym1))

(fset 'test-sym1 'test-sym2)
(fset 'test-sym2 'test-sym1)
(Check-Error cyclic-function-indirection (test-sym1))
(fmakunbound 'test-sym1) ; else macroexpand-internal infloops!
(fmakunbound 'test-sym2)

;;-----------------------------------------------------
;; Test `type-of'
;;-----------------------------------------------------
(Assert-eq (type-of load-path) 'cons)
(Assert-eq (type-of obarray) 'vector)
(Assert-eq (type-of 42) 'integer)
(Assert-eq (type-of ?z) 'character)
(Assert-eq (type-of "42") 'string)
(Assert-eq (type-of 'foo) 'symbol)
(Assert-eq (type-of (selected-device)) 'device)

;;-----------------------------------------------------
;; Test mapping functions
;;-----------------------------------------------------
(Check-Error wrong-type-argument (mapcar #'identity (current-buffer)))
(Assert-equal (mapcar #'identity load-path) load-path)
(Assert-equal (mapcar #'identity '(1 2 3)) '(1 2 3))
(Assert-equal (mapcar #'identity "123") '(?1 ?2 ?3))
(Assert-equal (mapcar #'identity [1 2 3]) '(1 2 3))
(Assert-equal (mapcar #'identity #*010) '(0 1 0))

(let ((z 0) (list (make-list 1000 1)))
  (mapc (lambda (x) (incf z x)) list)
  (Assert-eq 1000 z))

(Check-Error wrong-type-argument (mapvector #'identity (current-buffer)))
(Assert-equal (mapvector #'identity '(1 2 3)) [1 2 3])
(Assert-equal (mapvector #'identity "123") [?1 ?2 ?3])
(Assert-equal (mapvector #'identity [1 2 3]) [1 2 3])
(Assert-equal (mapvector #'identity #*010) [0 1 0])

(Check-Error wrong-type-argument (mapconcat #'identity (current-buffer) "foo"))
(Assert-equal (mapconcat #'identity '("1" "2" "3") "|") "1|2|3")
(Assert-equal (mapconcat #'identity ["1" "2" "3"]  "|") "1|2|3")

;; The following 2 functions used to crash XEmacs via mapcar1().
;; We don't test the actual values of the mapcar, since they're undefined.
(Assert
 (let ((x (list (cons 1 1) (cons 2 2) (cons 3 3))))
   (mapcar
    (lambda (y)
      "Devious evil mapping function"
      (when (eq (car y) 2) ; go out onto a limb
	(setcdr x nil)     ; cut it off behind us
	(garbage-collect)) ; are we riding a magic broomstick?
      (car y))             ; sorry, hard landing
    x)))

(Assert
 (let ((x (list (cons 1 1) (cons 2 2) (cons 3 3))))
   (mapcar
    (lambda (y)
      "Devious evil mapping function"
      (when (eq (car y) 1)
	(setcdr (cdr x) 42)) ; drop a brick wall onto the freeway
      (car y))
    x)))

;;-----------------------------------------------------
;; Test vector functions
;;-----------------------------------------------------
(Assert-equal [1 2 3] [1 2 3])
(Assert-equal [] [])
(Assert (not (equal [1 2 3] [])))
(Assert (not (equal [1 2 3] [1 2 4])))
(Assert (not (equal [0 2 3] [1 2 3])))
(Assert (not (equal [1 2 3] [1 2 3 4])))
(Assert (not (equal [1 2 3 4] [1 2 3])))
(Assert-equal (vector 1 2 3) [1 2 3])
(Assert-equal (make-vector 3 1) [1 1 1])

;;-----------------------------------------------------
;; Test bit-vector functions
;;-----------------------------------------------------
(Assert-equal #*010 #*010)
(Assert-equal #* #*)
(Assert (not (equal #*010 #*011)))
(Assert (not (equal #*010 #*)))
(Assert (not (equal #*110 #*010)))
(Assert (not (equal #*010 #*0100)))
(Assert (not (equal #*0101 #*010)))
(Assert-equal (bit-vector 0 1 0) #*010)
(Assert-equal (make-bit-vector 3 1) #*111)
(Assert-equal (make-bit-vector 3 0) #*000)

;;-----------------------------------------------------
;; Test buffer-local variables used as (ugh!) function parameters
;;-----------------------------------------------------
(make-local-variable 'test-emacs-buffer-local-variable)
(byte-compile
 (defun test-emacs-buffer-local-parameter (test-emacs-buffer-local-variable)
   (setq test-emacs-buffer-local-variable nil)))
(test-emacs-buffer-local-parameter nil)

;;-----------------------------------------------------
;; Test split-string
;;-----------------------------------------------------
;; Keep nulls, explicit SEPARATORS
;; Hrvoje didn't like the next 3 tests so I'm disabling them for now. -sb
;; I assume Hrvoje worried about the possibility of infloops. -sjt
(when test-harness-risk-infloops
  (Assert-equal (split-string "foo" "") '("" "f" "o" "o" ""))
  (Assert-equal (split-string "foo" "^") '("" "foo"))
  (Assert-equal (split-string "foo" "$") '("foo" "")))
(Assert-equal (split-string "foo,bar" ",") '("foo" "bar"))
(Assert-equal (split-string ",foo,bar," ",") '("" "foo" "bar" ""))
(Assert-equal (split-string ",foo,bar," "^,") '("" "foo,bar,"))
(Assert-equal (split-string ",foo,bar," ",$") '(",foo,bar" ""))
(Assert-equal (split-string ",foo,,bar," ",") '("" "foo" "" "bar" ""))
(Assert-equal (split-string "foo,,,bar" ",") '("foo" "" "" "bar"))
(Assert-equal (split-string "foo,,bar,," ",") '("foo" "" "bar" "" ""))
(Assert-equal (split-string "foo,,bar" ",+") '("foo" "bar"))
(Assert-equal (split-string ",foo,,bar," ",+") '("" "foo" "bar" ""))
;; Omit nulls, explicit SEPARATORS
(when test-harness-risk-infloops
  (Assert-equal (split-string "foo" "" t) '("f" "o" "o"))
  (Assert-equal (split-string "foo" "^" t) '("foo"))
  (Assert-equal (split-string "foo" "$" t) '("foo")))
(Assert-equal (split-string "foo,bar" "," t) '("foo" "bar"))
(Assert-equal (split-string ",foo,bar," "," t) '("foo" "bar"))
(Assert-equal (split-string ",foo,bar," "^," t) '("foo,bar,"))
(Assert-equal (split-string ",foo,bar," ",$" t) '(",foo,bar"))
(Assert-equal (split-string ",foo,,bar," "," t) '("foo" "bar"))
(Assert-equal (split-string "foo,,,bar" "," t) '("foo" "bar"))
(Assert-equal (split-string "foo,,bar,," "," t) '("foo" "bar"))
(Assert-equal (split-string "foo,,bar" ",+" t) '("foo" "bar"))
(Assert-equal (split-string ",foo,,bar," ",+" t) '("foo" "bar"))
;; "Double-default" case
(Assert-equal (split-string "foo bar") '("foo" "bar"))
(Assert-equal (split-string " foo bar ") '("foo" "bar"))
(Assert-equal (split-string " foo  bar ") '("foo" "bar"))
(Assert-equal (split-string "foo   bar") '("foo" "bar"))
(Assert-equal (split-string "foo  bar  ") '("foo" "bar"))
(Assert-equal (split-string "foobar") '("foobar"))
;; Semantics are identical to "double-default" case!  Fool ya?
(Assert-equal (split-string "foo bar" nil t) '("foo" "bar"))
(Assert-equal (split-string " foo bar " nil t) '("foo" "bar"))
(Assert-equal (split-string " foo  bar " nil t) '("foo" "bar"))
(Assert-equal (split-string "foo   bar" nil t) '("foo" "bar"))
(Assert-equal (split-string "foo  bar  " nil t) '("foo" "bar"))
(Assert-equal (split-string "foobar" nil t) '("foobar"))
;; Perverse "anti-double-default" case
(Assert-equal (split-string "foo bar" split-string-default-separators)
	       '("foo" "bar"))
(Assert-equal (split-string " foo bar " split-string-default-separators)
	       '("" "foo" "bar" ""))
(Assert-equal (split-string " foo  bar " split-string-default-separators)
	       '("" "foo" "bar" ""))
(Assert-equal (split-string "foo   bar" split-string-default-separators)
	       '("foo" "bar"))
(Assert-equal (split-string "foo  bar  " split-string-default-separators)
	       '("foo" "bar" ""))
(Assert-equal (split-string "foobar" split-string-default-separators)
	       '("foobar"))

;;-----------------------------------------------------
;; Test near-text buffer functions.
;;-----------------------------------------------------
(with-temp-buffer
  (erase-buffer)
  (Assert-eq (char-before) nil)
  (Assert-eq (char-before (point)) nil)
  (Assert-eq (char-before (point-marker)) nil)
  (Assert-eq (char-before (point) (current-buffer)) nil)
  (Assert-eq (char-before (point-marker) (current-buffer)) nil)
  (Assert-eq (char-after) nil)
  (Assert-eq (char-after (point)) nil)
  (Assert-eq (char-after (point-marker)) nil)
  (Assert-eq (char-after (point) (current-buffer)) nil)
  (Assert-eq (char-after (point-marker) (current-buffer)) nil)
  (Assert-eq (preceding-char) 0)
  (Assert-eq (preceding-char (current-buffer)) 0)
  (Assert-eq (following-char) 0)
  (Assert-eq (following-char (current-buffer)) 0)
  (insert "foobar")
  (Assert-eq (char-before) ?r)
  (Assert-eq (char-after) nil)
  (Assert-eq (preceding-char) ?r)
  (Assert-eq (following-char) 0)
  (goto-char (point-min))
  (Assert-eq (char-before) nil)
  (Assert-eq (char-after) ?f)
  (Assert-eq (preceding-char) 0)
  (Assert-eq (following-char) ?f)
  )

;;-----------------------------------------------------
;; Test plist manipulation functions.
;;-----------------------------------------------------
(let ((sym (make-symbol "test-symbol")))
  (Assert-eq t (get* sym t t))
  (Assert-eq t (get  sym t t))
  (Assert-eq t (getf nil t t))
  (Assert-eq t (plist-get nil t t))
  (put sym 'bar 'baz)
  (Assert-eq 'baz (get sym 'bar))
  (Assert-eq 'baz (getf '(bar baz) 'bar))
  (Assert-eq 'baz (getf (symbol-plist sym) 'bar))
  (Assert-eq 2 (getf '(1 2) 1))
  (Assert-eq 4 (put sym 3 4))
  (Assert-eq 4 (get sym 3))
  (Assert-eq t (remprop sym 3))
  (Assert-eq nil (remprop sym 3))
  (Assert-eq 5 (get sym 3 5))
  )

(loop for obj in
  (list (make-symbol "test-symbol")
	"test-string"
	(make-extent nil nil nil)
	(make-face 'test-face))
  do
  (Assert-eq 2 (get obj ?1 2) obj)
  (Assert-eq 4 (put obj ?3 4) obj)
  (Assert-eq 4 (get obj ?3) obj)
  (when (or (stringp obj) (symbolp obj))
    (Assert-equal '(?3 4) (object-plist obj) obj))
  (Assert-eq t (remprop obj ?3) obj)
  (when (or (stringp obj) (symbolp obj))
    (Assert-eq '() (object-plist obj) obj))
  (Assert-eq nil (remprop obj ?3) obj)
  (when (or (stringp obj) (symbolp obj))
    (Assert-eq '() (object-plist obj) obj))
  (Assert-eq 5 (get obj ?3 5) obj)
  )

(Check-Error-Message
 error "Object type has no properties"
 (get 2 'property))

(Check-Error-Message
 error "Object type has no settable properties"
 (put (current-buffer) 'property 'value))

(Check-Error-Message
 error "Object type has no removable properties"
 (remprop ?3 'property))

(Check-Error-Message
 error "Object type has no properties"
 (object-plist (symbol-function 'car)))

(Check-Error-Message
 error "Can't remove property from object"
 (remprop (make-extent nil nil nil) 'detachable))

;;-----------------------------------------------------
;; Test subseq
;;-----------------------------------------------------
(Assert-equal (subseq nil 0) nil)
(Assert-equal (subseq [1 2 3] 0) [1 2 3])
(Assert-equal (subseq [1 2 3] 1 -1) [2])
(Assert-equal (subseq "123" 0) "123")
(Assert-equal (subseq "1234" -3 -1) "23")
(Assert-equal (subseq #*0011 0) #*0011)
(Assert-equal (subseq #*0011 -3 3) #*01)
(Assert-equal (subseq '(1 2 3) 0) '(1 2 3))
(Assert-equal (subseq '(1 2 3 4) -3 nil) '(2 3 4))

(Check-Error wrong-type-argument (subseq 3 2))
(Check-Error args-out-of-range (subseq [1 2 3] -42))
(Check-Error args-out-of-range (subseq [1 2 3] 0 42))

;;-----------------------------------------------------
;; Time-related tests
;;-----------------------------------------------------
(Assert= (length (current-time-string)) 24)

;;-----------------------------------------------------
;; format test
;;-----------------------------------------------------
(Assert (string= (format "%d" 10) "10"))
(Assert (string= (format "%o" 8) "10"))
(Assert (string= (format "%x" 31) "1f"))
(Assert (string= (format "%X" 31) "1F"))
;; MS-Windows uses +002 in its floating-point numbers.  #### We should
;; perhaps fix this, but writing our own floating-point support in doprnt.c
;; is very hard.
(Assert (or (string= (format "%e" 100) "1.000000e+02")
	    (string= (format "%e" 100) "1.000000e+002")))
(Assert (or (string= (format "%E" 100) "1.000000E+02")
	    (string= (format "%E" 100) "1.000000E+002")))
(Assert (or (string= (format "%E" 100) "1.000000E+02")
	    (string= (format "%E" 100) "1.000000E+002")))
(Assert (string= (format "%f" 100) "100.000000"))
(Assert (string= (format "%7.3f" 12.12345) " 12.123"))
(Assert (string= (format "%07.3f" 12.12345) "012.123"))
(Assert (string= (format "%-7.3f" 12.12345) "12.123 "))
(Assert (string= (format "%-07.3f" 12.12345) "12.123 "))
(Assert (string= (format "%g" 100.0) "100"))
(Assert (or (string= (format "%g" 0.000001) "1e-06")
	    (string= (format "%g" 0.000001) "1e-006")))
(Assert (string= (format "%g" 0.0001) "0.0001"))
(Assert (string= (format "%G" 100.0) "100"))
(Assert (or (string= (format "%G" 0.000001) "1E-06")
	    (string= (format "%G" 0.000001) "1E-006")))
(Assert (string= (format "%G" 0.0001) "0.0001"))

(Assert (string= (format "%2$d%1$d" 10 20) "2010"))
(Assert (string= (format "%-d" 10) "10"))
(Assert (string= (format "%-4d" 10) "10  "))
(Assert (string= (format "%+d" 10) "+10"))
(Assert (string= (format "%+d" -10) "-10"))
(Assert (string= (format "%+4d" 10) " +10"))
(Assert (string= (format "%+4d" -10) " -10"))
(Assert (string= (format "% d" 10) " 10"))
(Assert (string= (format "% d" -10) "-10"))
(Assert (string= (format "% 4d" 10) "  10"))
(Assert (string= (format "% 4d" -10) " -10"))
(Assert (string= (format "%0d" 10) "10"))
(Assert (string= (format "%0d" -10) "-10"))
(Assert (string= (format "%04d" 10) "0010"))
(Assert (string= (format "%04d" -10) "-010"))
(Assert (string= (format "%*d" 4 10) "  10"))
(Assert (string= (format "%*d" 4 -10) " -10"))
(Assert (string= (format "%*d" -4 10) "10  "))
(Assert (string= (format "%*d" -4 -10) "-10 "))
(Assert (string= (format "%#d" 10) "10"))
(Assert (string= (format "%#o" 8) "010"))
(Assert (string= (format "%#x" 16) "0x10"))
(Assert (or (string= (format "%#e" 100) "1.000000e+02")
	    (string= (format "%#e" 100) "1.000000e+002")))
(Assert (or (string= (format "%#E" 100) "1.000000E+02")
	    (string= (format "%#E" 100) "1.000000E+002")))
(Assert (string= (format "%#f" 100) "100.000000"))
(Assert (string= (format "%#g" 100.0) "100.000"))
(Assert (or (string= (format "%#g" 0.000001) "1.00000e-06")
	    (string= (format "%#g" 0.000001) "1.00000e-006")))
(Assert (string= (format "%#g" 0.0001) "0.000100000"))
(Assert (string= (format "%#G" 100.0) "100.000"))
(Assert (or (string= (format "%#G" 0.000001) "1.00000E-06")
	    (string= (format "%#G" 0.000001) "1.00000E-006")))
(Assert (string= (format "%#G" 0.0001) "0.000100000"))
(Assert (string= (format "%.1d" 10) "10"))
(Assert (string= (format "%.4d" 10) "0010"))
;; Combination of `-', `+', ` ', `0', `#', `.', `*'
(Assert (string= (format "%-04d" 10) "10  "))
(Assert (string= (format "%-*d" 4 10) "10  "))
;; #### Correctness of this behavior is questionable.
;; It might be better to signal error.
(Assert (string= (format "%-*d" -4 10) "10  "))
;; These behavior is not specified.
;; (format "%-+d" 10)
;; (format "%- d" 10)
;; (format "%-01d" 10)
;; (format "%-#4x" 10)
;; (format "%-.1d" 10)

(Assert (string= (format "%01.1d" 10) "10"))
(Assert (string= (format "%03.1d" 10) " 10"))
(Assert (string= (format "%01.3d" 10) "010"))
(Assert (string= (format "%1.3d" 10) "010"))
(Assert (string= (format "%3.1d" 10) " 10"))

;;; The following two tests used to use 1000 instead of 100,
;;; but that merely found buffer overflow bugs in Solaris sprintf().
(Assert= 102 (length (format "%.100f" 3.14)))
(Assert= 100 (length (format "%100f" 3.14)))

;;; Check for 64-bit cleanness on LP64 platforms.
(Assert= (read (format "%d"  most-positive-fixnum)) most-positive-fixnum)
(Assert= (read (format "%ld" most-positive-fixnum)) most-positive-fixnum)
(Assert= (read (format "%u"  most-positive-fixnum)) most-positive-fixnum)
(Assert= (read (format "%lu" most-positive-fixnum)) most-positive-fixnum)
(Assert= (read (format "%d"  most-negative-fixnum)) most-negative-fixnum)
(Assert= (read (format "%ld" most-negative-fixnum)) most-negative-fixnum)

;; These used to crash. 
(Assert-eql (read (format "%f" 1.2e+302)) 1.2e+302)
(Assert-eql (read (format "%.1000d" 1)) 1)

;;; "%u" is undocumented, and Emacs Lisp has no unsigned type.
;;; What to do if "%u" is used with a negative number?
;;; For non-bignum XEmacsen, the most reasonable thing seems to be to print an
;;; un-read-able number.  The printed value might be useful to a human, if not
;;; to Emacs Lisp.
;;; For bignum XEmacsen, we make %u with a negative value throw an error.
(if (featurep 'bignum)
    (progn
      (Check-Error wrong-type-argument (format "%u" most-negative-fixnum))
      (Check-Error wrong-type-argument (format "%u" -1)))
  (Check-Error invalid-read-syntax (read (format "%u" most-negative-fixnum)))
  (Check-Error invalid-read-syntax (read (format "%u" -1))))

;; Check all-completions ignore element start with space.
(Assert (not (all-completions "" '((" hidden" . "object")))))
(Assert (all-completions " " '((" hidden" . "object"))))

(let* ((literal-with-uninterned
	'(first-element
	  [#1=#:G32976 #2=#:G32974 #3=#:G32971 #4=#:G32969 alias
		       #s(hash-table size 256 data (969 ?\xF9 55 ?7 166 ?\xA6))
		       #5=#:G32970 #6=#:G32972]))
       (print-readably t)
       (print-gensym t)
       (printed-with-uninterned (prin1-to-string literal-with-uninterned))
       (awkward-regexp "#1=#")
       (first-match-start (string-match awkward-regexp
					printed-with-uninterned)))
  (Assert (null (string-match awkward-regexp printed-with-uninterned
			      (1+ first-match-start)))))

(let ((char-table-with-string #s(char-table data (?\x00 "text")))
      (char-table-with-symbol #s(char-table data (?\x00 text))))
  (Assert (not (string-equal (prin1-to-string char-table-with-string)
                             (prin1-to-string char-table-with-symbol)))
          "Check that char table elements are quoted correctly when printing"))


(let ((test-file-name
       (make-temp-file (expand-file-name "sR4KDwU" (temp-directory))
		       nil ".el")))
  (find-file test-file-name)
  (erase-buffer)
  (insert 
       "\
;; Lisp should not be able to modify #$, which is
;; Vload_file_name_internal of lread.c.
(Check-Error setting-constant (aset #$ 0 ?\\ ))

;; But modifying load-file-name should work:
(let ((new-char ?\\ )
      old-char)
  (setq old-char (aref load-file-name 0))
  (if (= new-char old-char)
      (setq new-char ?/))
  (aset load-file-name 0 new-char)
  (Assert= new-char (aref load-file-name 0)
	  \"Check that we can modify the string value of load-file-name\"))

(let* ((new-load-file-name \"hi there\")
       (load-file-name new-load-file-name))
  (Assert-eq new-load-file-name load-file-name
	  \"Checking that we can bind load-file-name successfully.\"))

")
   (write-region (point-min) (point-max) test-file-name nil 'quiet)
   (set-buffer-modified-p nil)
   (kill-buffer nil)
   (load test-file-name nil t nil)
   (delete-file test-file-name))

(flet ((cl-floor (x &optional y)
	 (let ((q (floor x y)))
	   (list q (- x (if y (* y q) q)))))
       (cl-ceiling (x &optional y)
	 (let ((res (cl-floor x y)))
	   (if (= (car (cdr res)) 0) res
	     (list (1+ (car res)) (- (car (cdr res)) (or y 1))))))
       (cl-truncate (x &optional y)
	 (if (eq (>= x 0) (or (null y) (>= y 0)))
	     (cl-floor x y) (cl-ceiling x y)))
       (cl-round (x &optional y)
	 (if y
	     (if (and (integerp x) (integerp y))
		 (let* ((hy (/ y 2))
			(res (cl-floor (+ x hy) y)))
		   (if (and (= (car (cdr res)) 0)
			    (= (+ hy hy) y)
			    (/= (% (car res) 2) 0))
		       (list (1- (car res)) hy)
		     (list (car res) (- (car (cdr res)) hy))))
	       (let ((q (round (/ x y))))
		 (list q (- x (* q y)))))
	   (if (integerp x) (list x 0)
	     (let ((q (round x)))
	       (list q (- x q))))))
       (Assert-rounding (first second &key
			 one-floor-result two-floor-result 
			 one-ffloor-result two-ffloor-result 
			 one-ceiling-result two-ceiling-result
			 one-fceiling-result two-fceiling-result
			 one-round-result two-round-result
			 one-fround-result two-fround-result
			 one-truncate-result two-truncate-result
			 one-ftruncate-result two-ftruncate-result)
	 (Assert-equal one-floor-result (multiple-value-list
					  (floor first))
		 (format "checking (floor %S) gives %S"
			 first one-floor-result))
	 (Assert-equal one-floor-result (multiple-value-list
					  (floor first 1))
		 (format "checking (floor %S 1) gives %S"
			 first one-floor-result))
	 (Check-Error arith-error (floor first 0))
	 (Check-Error arith-error (floor first 0.0))
	 (Assert-equal two-floor-result (multiple-value-list
					  (floor first second))
		 (format
		  "checking (floor %S %S) gives %S"
		  first second two-floor-result))
	 (Assert-equal (cl-floor first second)
			(multiple-value-list (floor first second))
		 (format
		  "checking (floor %S %S) gives the same as the old code"
		  first second))
	 (Assert-equal one-ffloor-result (multiple-value-list
					   (ffloor first))
		 (format "checking (ffloor %S) gives %S"
			 first one-ffloor-result))
	 (Assert-equal one-ffloor-result (multiple-value-list
					   (ffloor first 1))
		 (format "checking (ffloor %S 1) gives %S"
			 first one-ffloor-result))
	 (Check-Error arith-error (ffloor first 0))
	 (Check-Error arith-error (ffloor first 0.0))
	 (Assert-equal two-ffloor-result (multiple-value-list
					   (ffloor first second))
		 (format "checking (ffloor %S %S) gives %S"
			 first second two-ffloor-result))
	 (Assert-equal one-ceiling-result (multiple-value-list
					    (ceiling first))
		 (format "checking (ceiling %S) gives %S"
			 first one-ceiling-result))
	 (Assert-equal one-ceiling-result (multiple-value-list
					    (ceiling first 1))
		 (format "checking (ceiling %S 1) gives %S"
			 first one-ceiling-result))
	 (Check-Error arith-error (ceiling first 0))
	 (Check-Error arith-error (ceiling first 0.0))
	 (Assert-equal two-ceiling-result (multiple-value-list
					    (ceiling first second))
		 (format "checking (ceiling %S %S) gives %S"
			 first second two-ceiling-result))
	 (Assert-equal (cl-ceiling first second)
			(multiple-value-list (ceiling first second))
		 (format
		  "checking (ceiling %S %S) gives the same as the old code"
		  first second))
	 (Assert-equal one-fceiling-result (multiple-value-list
					     (fceiling first))
		 (format "checking (fceiling %S) gives %S"
			 first one-fceiling-result))
	 (Assert-equal one-fceiling-result (multiple-value-list
					     (fceiling first 1))
		 (format "checking (fceiling %S 1) gives %S"
			 first one-fceiling-result))
	 (Check-Error arith-error (fceiling first 0))
	 (Check-Error arith-error (fceiling first 0.0))
	 (Assert-equal two-fceiling-result (multiple-value-list
					  (fceiling first second))
		 (format "checking (fceiling %S %S) gives %S"
			 first second two-fceiling-result))
	 (Assert-equal one-round-result (multiple-value-list
					  (round first))
		 (format "checking (round %S) gives %S"
			 first one-round-result))
	 (Assert-equal one-round-result (multiple-value-list
					  (round first 1))
		 (format "checking (round %S 1) gives %S"
			 first one-round-result))
	 (Check-Error arith-error (round first 0))
	 (Check-Error arith-error (round first 0.0))
	 (Assert-equal two-round-result (multiple-value-list
					  (round first second))
		 (format "checking (round %S %S) gives %S"
			 first second two-round-result))
	 (Assert-equal one-fround-result (multiple-value-list
					   (fround first))
		 (format "checking (fround %S) gives %S"
			 first one-fround-result))
	 (Assert-equal one-fround-result (multiple-value-list
					   (fround first 1))
		 (format "checking (fround %S 1) gives %S"
			 first one-fround-result))
	 (Check-Error arith-error (fround first 0))
	 (Check-Error arith-error (fround first 0.0))
	 (Assert-equal two-fround-result (multiple-value-list
					   (fround first second))
		 (format "checking (fround %S %S) gives %S"
			 first second two-fround-result))
	 (Assert-equal (cl-round first second)
			(multiple-value-list (round first second))
		 (format
		  "checking (round %S %S) gives the same as the old code"
		  first second))
	 (Assert-equal one-truncate-result (multiple-value-list
					     (truncate first))
		 (format "checking (truncate %S) gives %S"
			 first one-truncate-result))
	 (Assert-equal one-truncate-result (multiple-value-list
					     (truncate first 1))
		 (format "checking (truncate %S 1) gives %S"
			 first one-truncate-result))
	 (Check-Error arith-error (truncate first 0))
	 (Check-Error arith-error (truncate first 0.0))
	 (Assert-equal two-truncate-result (multiple-value-list
					     (truncate first second))
		 (format "checking (truncate %S %S) gives %S"
			 first second two-truncate-result))
	 (Assert-equal (cl-truncate first second)
			(multiple-value-list (truncate first second))
		 (format
		  "checking (truncate %S %S) gives the same as the old code"
		  first second))
	 (Assert-equal one-ftruncate-result (multiple-value-list
					      (ftruncate first))
		 (format "checking (ftruncate %S) gives %S"
			 first one-ftruncate-result))
	 (Assert-equal one-ftruncate-result (multiple-value-list
					      (ftruncate first 1))
		 (format "checking (ftruncate %S 1) gives %S"
			 first one-ftruncate-result))
	 (Check-Error arith-error (ftruncate first 0))
	 (Check-Error arith-error (ftruncate first 0.0))
	 (Assert-equal two-ftruncate-result (multiple-value-list
					      (ftruncate first second))
		 (format "checking (ftruncate %S %S) gives %S"
			 first second two-ftruncate-result)))
       (Assert-rounding-floating (pie ee)
	 (let ((pie-type (type-of pie)))
	   (assert (eq pie-type (type-of ee)) t
		   "This code assumes the two arguments have the same type.")
	   (Assert-rounding pie ee
  	    :one-floor-result (list 3 (- pie 3))
            :two-floor-result (list 1 (- pie (* 1 ee)))
            :one-ffloor-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-ffloor-result (list (coerce 1 pie-type) (- pie (* 1.0 ee)))
            :one-ceiling-result (list 4 (- pie 4))
            :two-ceiling-result (list 2 (- pie (* 2 ee)))
            :one-fceiling-result (list (coerce 4 pie-type) (- pie 4.0))
            :two-fceiling-result (list (coerce 2 pie-type) (- pie (* 2.0 ee)))
            :one-round-result (list 3 (- pie 3))
            :two-round-result (list 1 (- pie (* 1 ee)))
            :one-fround-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-fround-result (list (coerce 1 pie-type) (- pie (* 1.0 ee)))
            :one-truncate-result (list 3 (- pie 3))
            :two-truncate-result (list 1 (- pie (* 1 ee)))
            :one-ftruncate-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-ftruncate-result (list (coerce 1 pie-type)
					(- pie (* 1.0 ee))))
  	 (Assert-rounding pie (- ee)
            :one-floor-result (list 3 (- pie 3))
            :two-floor-result (list -2 (- pie (* -2 (- ee))))
            :one-ffloor-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-ffloor-result (list (coerce -2 pie-type)
				     (- pie (* -2.0 (- ee))))
            :one-ceiling-result (list 4 (- pie 4))
            :two-ceiling-result (list -1 (- pie (* -1 (- ee))))
            :one-fceiling-result (list (coerce 4 pie-type) (- pie 4.0))
            :two-fceiling-result (list (coerce -1 pie-type)
				       (- pie (* -1.0 (- ee))))
            :one-round-result (list 3 (- pie 3))
            :two-round-result (list -1 (- pie (* -1 (- ee))))
            :one-fround-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-fround-result (list (coerce -1 pie-type)
				     (- pie (* -1.0 (- ee))))
            :one-truncate-result (list 3 (- pie 3))
            :two-truncate-result (list -1 (- pie (* -1 (- ee))))
            :one-ftruncate-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-ftruncate-result (list (coerce -1 pie-type)
					(- pie (* -1.0 (- ee)))))
  	 (Assert-rounding (- pie) ee
            :one-floor-result (list -4 (- (- pie) -4))
            :two-floor-result (list -2 (- (- pie) (* -2 ee)))
            :one-ffloor-result (list (coerce -4 pie-type) (- (- pie) -4.0))
            :two-ffloor-result (list (coerce -2 pie-type)
				     (- (- pie) (* -2.0 ee)))
            :one-ceiling-result (list -3 (- (- pie) -3))
            :two-ceiling-result (list -1 (- (- pie) (* -1 ee)))
            :one-fceiling-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-fceiling-result (list (coerce -1 pie-type)
				       (- (- pie) (* -1.0 ee)))
            :one-round-result (list -3 (- (- pie) -3))
            :two-round-result (list -1 (- (- pie) (* -1 ee)))
            :one-fround-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-fround-result (list (coerce -1 pie-type)
				     (- (- pie) (* -1.0 ee)))
            :one-truncate-result (list -3 (- (- pie) -3))
            :two-truncate-result (list -1 (- (- pie) (* -1 ee)))
            :one-ftruncate-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-ftruncate-result (list (coerce -1 pie-type)
					(- (- pie) (* -1.0 ee))))
  	 (Assert-rounding (- pie) (- ee)
            :one-floor-result (list -4 (- (- pie) -4))
            :two-floor-result (list 1 (- (- pie) (* 1 (- ee))))
            :one-ffloor-result (list (coerce -4 pie-type) (- (- pie) -4.0))
            :two-ffloor-result (list (coerce 1 pie-type)
				     (- (- pie) (* 1.0 (- ee))))
            :one-ceiling-result (list -3 (- (- pie) -3))
            :two-ceiling-result (list 2 (- (- pie) (* 2 (- ee))))
            :one-fceiling-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-fceiling-result (list (coerce 2 pie-type)
				       (- (- pie) (* 2.0 (- ee))))
            :one-round-result (list -3 (- (- pie) -3))
            :two-round-result (list 1 (- (- pie) (* 1 (- ee))))
            :one-fround-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-fround-result (list (coerce 1 pie-type)
				     (- (- pie) (* 1.0 (- ee))))
            :one-truncate-result (list -3 (- (- pie) -3))
            :two-truncate-result (list 1 (- (- pie) (* 1 (- ee))))
            :one-ftruncate-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-ftruncate-result (list (coerce 1 pie-type)
					(- (- pie) (* 1.0 (- ee)))))
  	 (Assert-rounding ee pie
            :one-floor-result (list 2 (- ee 2))
            :two-floor-result (list 0 ee)
            :one-ffloor-result (list (coerce 2 pie-type) (- ee 2.0))
            :two-ffloor-result (list (coerce 0 pie-type) ee)
            :one-ceiling-result (list 3 (- ee 3))
            :two-ceiling-result (list 1 (- ee pie))
            :one-fceiling-result (list (coerce 3 pie-type) (- ee 3.0))
            :two-fceiling-result (list (coerce 1 pie-type) (- ee pie))
            :one-round-result (list 3 (- ee 3))
            :two-round-result (list 1 (- ee (* 1 pie)))
            :one-fround-result (list (coerce 3 pie-type) (- ee 3.0))
            :two-fround-result (list (coerce 1 pie-type) (- ee (* 1.0 pie)))
            :one-truncate-result (list 2 (- ee 2))
            :two-truncate-result (list 0 ee)
            :one-ftruncate-result (list (coerce 2 pie-type) (- ee 2.0))
            :two-ftruncate-result (list (coerce 0 pie-type) ee))
  	 (Assert-rounding ee (- pie)
            :one-floor-result (list 2 (- ee 2))
            :two-floor-result (list -1 (- ee (* -1 (- pie))))
            :one-ffloor-result (list (coerce 2 pie-type) (- ee 2.0))
            :two-ffloor-result (list (coerce -1 pie-type)
				     (- ee (* -1.0 (- pie))))
            :one-ceiling-result (list 3 (- ee 3))
            :two-ceiling-result (list 0 ee)
            :one-fceiling-result (list (coerce 3 pie-type) (- ee 3.0))
            :two-fceiling-result (list (coerce 0 pie-type) ee)
            :one-round-result (list 3 (- ee 3))
            :two-round-result (list -1 (- ee (* -1 (- pie))))
            :one-fround-result (list (coerce 3 pie-type) (- ee 3.0))
            :two-fround-result (list (coerce -1 pie-type)
				     (- ee (* -1.0 (- pie))))
            :one-truncate-result (list 2 (- ee 2))
            :two-truncate-result (list 0 ee)
            :one-ftruncate-result (list (coerce 2 pie-type) (- ee 2.0))
            :two-ftruncate-result (list (coerce 0 pie-type) ee)))))
    ;; First, two integers: 
  (Assert-rounding 27 8 :one-floor-result '(27 0) :two-floor-result '(3 3)
    :one-ffloor-result '(27.0 0) :two-ffloor-result '(3.0 3)
    :one-ceiling-result '(27 0) :two-ceiling-result '(4 -5)
    :one-fceiling-result '(27.0 0) :two-fceiling-result '(4.0 -5)
    :one-round-result '(27 0) :two-round-result '(3 3)
    :one-fround-result '(27.0 0) :two-fround-result '(3.0 3)
    :one-truncate-result '(27 0) :two-truncate-result '(3 3)
    :one-ftruncate-result '(27.0 0) :two-ftruncate-result '(3.0 3))
  (Assert-rounding 27 -8 :one-floor-result '(27 0)  :two-floor-result '(-4 -5)
    :one-ffloor-result '(27.0 0) :two-ffloor-result '(-4.0 -5) 
    :one-ceiling-result '(27 0) :two-ceiling-result '(-3 3)
    :one-fceiling-result '(27.0 0)  :two-fceiling-result '(-3.0 3)
    :one-round-result '(27 0) :two-round-result '(-3 3)
    :one-fround-result '(27.0 0) :two-fround-result '(-3.0 3)
    :one-truncate-result '(27 0) :two-truncate-result '(-3 3)
    :one-ftruncate-result '(27.0 0)  :two-ftruncate-result '(-3.0 3))
  (Assert-rounding -27 8
    :one-floor-result '(-27 0) :two-floor-result '(-4 5)
    :one-ffloor-result '(-27.0 0) :two-ffloor-result '(-4.0 5)
    :one-ceiling-result '(-27 0) :two-ceiling-result '(-3 -3)
    :one-fceiling-result '(-27.0 0) :two-fceiling-result '(-3.0 -3)
    :one-round-result '(-27 0) :two-round-result '(-3 -3)
    :one-fround-result '(-27.0 0) :two-fround-result '(-3.0 -3)
    :one-truncate-result '(-27 0) :two-truncate-result '(-3 -3)
    :one-ftruncate-result '(-27.0 0) :two-ftruncate-result '(-3.0 -3))
  (Assert-rounding -27 -8
    :one-floor-result '(-27 0) :two-floor-result '(3 -3)
    :one-ffloor-result '(-27.0 0) :two-ffloor-result '(3.0 -3)
    :one-ceiling-result '(-27 0) :two-ceiling-result '(4 5)
    :one-fceiling-result '(-27.0 0) :two-fceiling-result '(4.0 5)
    :one-round-result '(-27 0) :two-round-result '(3 -3)
    :one-fround-result '(-27.0 0) :two-fround-result '(3.0 -3)
    :one-truncate-result '(-27 0) :two-truncate-result '(3 -3)
    :one-ftruncate-result '(-27.0 0) :two-ftruncate-result '(3.0 -3))
  (Assert-rounding 8 27
    :one-floor-result '(8 0) :two-floor-result '(0 8)
    :one-ffloor-result '(8.0 0) :two-ffloor-result '(0.0 8)
    :one-ceiling-result '(8 0) :two-ceiling-result '(1 -19)
    :one-fceiling-result '(8.0 0) :two-fceiling-result '(1.0 -19)
    :one-round-result '(8 0) :two-round-result '(0 8)
    :one-fround-result '(8.0 0) :two-fround-result '(0.0 8)
    :one-truncate-result '(8 0) :two-truncate-result '(0 8)
    :one-ftruncate-result '(8.0 0) :two-ftruncate-result '(0.0 8))
  (Assert-rounding 8 -27
    :one-floor-result '(8 0) :two-floor-result '(-1 -19)
    :one-ffloor-result '(8.0 0) :two-ffloor-result '(-1.0 -19)
    :one-ceiling-result '(8 0) :two-ceiling-result '(0 8)
    :one-fceiling-result '(8.0 0) :two-fceiling-result '(0.0 8)
    :one-round-result '(8 0) :two-round-result '(0 8)
    :one-fround-result '(8.0 0) :two-fround-result '(0.0 8)
    :one-truncate-result '(8 0) :two-truncate-result '(0 8)
    :one-ftruncate-result '(8.0 0) :two-ftruncate-result '(0.0 8))
  (Assert-rounding -8 27
    :one-floor-result '(-8 0) :two-floor-result '(-1 19)
    :one-ffloor-result '(-8.0 0) :two-ffloor-result '(-1.0 19)
    :one-ceiling-result '(-8 0) :two-ceiling-result '(0 -8)
    :one-fceiling-result '(-8.0 0) :two-fceiling-result '(0.0 -8)
    :one-round-result '(-8 0) :two-round-result '(0 -8)
    :one-fround-result '(-8.0 0) :two-fround-result '(0.0 -8)
    :one-truncate-result '(-8 0) :two-truncate-result '(0 -8)
    :one-ftruncate-result '(-8.0 0) :two-ftruncate-result '(0.0 -8))
  (Assert-rounding -8 -27
    :one-floor-result '(-8 0) :two-floor-result '(0 -8)
    :one-ffloor-result '(-8.0 0) :two-ffloor-result '(0.0 -8)
    :one-ceiling-result '(-8 0) :two-ceiling-result '(1 19)
    :one-fceiling-result '(-8.0 0) :two-fceiling-result '(1.0 19)
    :one-round-result '(-8 0) :two-round-result '(0 -8)
    :one-fround-result '(-8.0 0) :two-fround-result '(0.0 -8)
    :one-truncate-result '(-8 0) :two-truncate-result '(0 -8)
    :one-ftruncate-result '(-8.0 0) :two-ftruncate-result '(0.0 -8))
  (Assert-rounding 32 4
    :one-floor-result '(32 0) :two-floor-result '(8 0)
    :one-ffloor-result '(32.0 0) :two-ffloor-result '(8.0 0)
    :one-ceiling-result '(32 0) :two-ceiling-result '(8 0)
    :one-fceiling-result '(32.0 0) :two-fceiling-result '(8.0 0)
    :one-round-result '(32 0) :two-round-result '(8 0)
    :one-fround-result '(32.0 0) :two-fround-result '(8.0 0)
    :one-truncate-result '(32 0) :two-truncate-result '(8 0)
    :one-ftruncate-result '(32.0 0) :two-ftruncate-result '(8.0 0))
  (Assert-rounding 32 -4
    :one-floor-result '(32 0) :two-floor-result '(-8 0)
    :one-ffloor-result '(32.0 0) :two-ffloor-result '(-8.0 0)
    :one-ceiling-result '(32 0) :two-ceiling-result '(-8 0)
    :one-fceiling-result '(32.0 0) :two-fceiling-result '(-8.0 0)
    :one-round-result '(32 0) :two-round-result '(-8 0)
    :one-fround-result '(32.0 0) :two-fround-result '(-8.0 0)
    :one-truncate-result '(32 0) :two-truncate-result '(-8 0)
    :one-ftruncate-result '(32.0 0) :two-ftruncate-result '(-8.0 0))
  (Assert-rounding 12 9
    :one-floor-result '(12 0) :two-floor-result '(1 3)
    :one-ffloor-result '(12.0 0) :two-ffloor-result '(1.0 3)
    :one-ceiling-result '(12 0) :two-ceiling-result '(2 -6)
    :one-fceiling-result '(12.0 0) :two-fceiling-result '(2.0 -6)
    :one-round-result '(12 0) :two-round-result '(1 3)
    :one-fround-result '(12.0 0) :two-fround-result '(1.0 3)
    :one-truncate-result '(12 0) :two-truncate-result '(1 3)
    :one-ftruncate-result '(12.0 0) :two-ftruncate-result '(1.0 3))
  (Assert-rounding 10 4
    :one-floor-result '(10 0) :two-floor-result '(2 2)
    :one-ffloor-result '(10.0 0) :two-ffloor-result '(2.0 2)
    :one-ceiling-result '(10 0) :two-ceiling-result '(3 -2)
    :one-fceiling-result '(10.0 0) :two-fceiling-result '(3.0 -2)
    :one-round-result '(10 0) :two-round-result '(2 2)
    :one-fround-result '(10.0 0) :two-fround-result '(2.0 2)
    :one-truncate-result '(10 0) :two-truncate-result '(2 2)
    :one-ftruncate-result '(10.0 0) :two-ftruncate-result '(2.0 2))
  (Assert-rounding 14 4
    :one-floor-result '(14 0) :two-floor-result '(3 2)
    :one-ffloor-result '(14.0 0) :two-ffloor-result '(3.0 2)
    :one-ceiling-result '(14 0) :two-ceiling-result '(4 -2)
    :one-fceiling-result '(14.0 0) :two-fceiling-result '(4.0 -2)
    :one-round-result '(14 0) :two-round-result '(4 -2)
    :one-fround-result '(14.0 0) :two-fround-result '(4.0 -2)
    :one-truncate-result '(14 0) :two-truncate-result '(3 2)
    :one-ftruncate-result '(14.0 0) :two-ftruncate-result '(3.0 2))
  ;; Now, two floats:
  (Assert-rounding-floating pi e)
  (when (featurep 'bigfloat)
    (Assert-rounding-floating (coerce pi 'bigfloat) (coerce e 'bigfloat)))
  (when (featurep 'bignum)
    (assert (not (evenp most-positive-fixnum)) t
      "In the unlikely event that most-positive-fixnum is even, rewrite this.")
    (Assert-rounding (1+ most-positive-fixnum) (* 2 most-positive-fixnum)
      :one-floor-result `(,(1+ most-positive-fixnum) 0)
      :two-floor-result `(0 ,(1+ most-positive-fixnum))
      :one-ffloor-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-ffloor-result `(0.0 ,(1+ most-positive-fixnum))
      :one-ceiling-result `(,(1+ most-positive-fixnum) 0)
      :two-ceiling-result `(1 ,(1+ (- most-positive-fixnum)))
      :one-fceiling-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-fceiling-result `(1.0 ,(1+ (- most-positive-fixnum)))
      :one-round-result `(,(1+ most-positive-fixnum) 0)
      :two-round-result `(1 ,(1+ (- most-positive-fixnum)))
      :one-fround-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-fround-result `(1.0 ,(1+ (- most-positive-fixnum)))
      :one-truncate-result `(,(1+ most-positive-fixnum) 0)
      :two-truncate-result `(0 ,(1+ most-positive-fixnum))
      :one-ftruncate-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-ftruncate-result `(0.0 ,(1+ most-positive-fixnum)))
    (Assert-rounding (1+ most-positive-fixnum) (- (* 2 most-positive-fixnum))
      :one-floor-result `(,(1+ most-positive-fixnum) 0)
      :two-floor-result `(-1 ,(1+ (- most-positive-fixnum)))
      :one-ffloor-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-ffloor-result `(-1.0 ,(1+ (- most-positive-fixnum)))
      :one-ceiling-result `(,(1+ most-positive-fixnum) 0)
      :two-ceiling-result `(0 ,(1+ most-positive-fixnum))
      :one-fceiling-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-fceiling-result `(0.0 ,(1+ most-positive-fixnum))
      :one-round-result `(,(1+ most-positive-fixnum) 0)
      :two-round-result `(-1 ,(1+ (- most-positive-fixnum)))
      :one-fround-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-fround-result `(-1.0 ,(1+ (- most-positive-fixnum)))
      :one-truncate-result `(,(1+ most-positive-fixnum) 0)
      :two-truncate-result `(0 ,(1+ most-positive-fixnum))
      :one-ftruncate-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-ftruncate-result `(0.0 ,(1+ most-positive-fixnum)))
    (Assert-rounding (- (1+ most-positive-fixnum)) (* 2 most-positive-fixnum)
      :one-floor-result `(,(- (1+ most-positive-fixnum)) 0)
      :two-floor-result `(-1 ,(1- most-positive-fixnum))
      :one-ffloor-result `(,(float (- (1+ most-positive-fixnum))) 0)
      :two-ffloor-result `(-1.0 ,(1- most-positive-fixnum))
      :one-ceiling-result `(,(- (1+ most-positive-fixnum)) 0)
      :two-ceiling-result `(0 ,(- (1+ most-positive-fixnum)))
      :one-fceiling-result `(,(float (- (1+ most-positive-fixnum))) 0)
      :two-fceiling-result `(0.0 ,(- (1+ most-positive-fixnum)))
      :one-round-result `(,(- (1+ most-positive-fixnum)) 0)
      :two-round-result `(-1 ,(1- most-positive-fixnum))
      :one-fround-result `(,(float (- (1+ most-positive-fixnum))) 0)
      :two-fround-result `(-1.0 ,(1- most-positive-fixnum))
      :one-truncate-result `(,(- (1+ most-positive-fixnum)) 0)
      :two-truncate-result `(0 ,(- (1+ most-positive-fixnum)))
      :one-ftruncate-result `(,(float (- (1+ most-positive-fixnum))) 0)
      :two-ftruncate-result `(0.0 ,(- (1+ most-positive-fixnum))))
    ;; Test the handling of values with .5: 
    (Assert-rounding (1+ (* 2 most-positive-fixnum)) 2
      :one-floor-result `(,(1+ (* 2 most-positive-fixnum)) 0)
      :two-floor-result `(,most-positive-fixnum 1)
      :one-ffloor-result `(,(float (1+ (* 2 most-positive-fixnum))) 0)
      ;; We can't just call #'float here; we must use code that converts a
      ;; bignum with value most-positive-fixnum (the creation of which is
      ;; not directly possible in Lisp) to a float, not code that converts
      ;; the fixnum with value most-positive-fixnum to a float. The eval is
      ;; to avoid compile-time optimisation that can break this.
      :two-ffloor-result `(,(eval '(- (1+ most-positive-fixnum) 1 0.0)) 1)
      :one-ceiling-result `(,(1+ (* 2 most-positive-fixnum)) 0)
      :two-ceiling-result `(,(1+ most-positive-fixnum) -1)
      :one-fceiling-result `(,(float (1+ (* 2 most-positive-fixnum))) 0)
      :two-fceiling-result `(,(float (1+ most-positive-fixnum)) -1)
      :one-round-result `(,(1+ (* 2 most-positive-fixnum)) 0)
      :two-round-result `(,(1+ most-positive-fixnum) -1)
      :one-fround-result `(,(float (1+ (* 2 most-positive-fixnum))) 0)
      :two-fround-result `(,(float (1+ most-positive-fixnum)) -1)
      :one-truncate-result `(,(1+ (* 2 most-positive-fixnum)) 0)
      :two-truncate-result `(,most-positive-fixnum 1)
      :one-ftruncate-result `(,(float (1+ (* 2 most-positive-fixnum))) 0)
      ;; See the comment above on :two-ffloor-result:
      :two-ftruncate-result `(,(eval '(- (1+ most-positive-fixnum) 1 0.0)) 1))
    (Assert-rounding (1+ (* 2 (1- most-positive-fixnum))) 2
      :one-floor-result `(,(1+ (* 2 (1- most-positive-fixnum))) 0)
      :two-floor-result `(,(1- most-positive-fixnum) 1)
      :one-ffloor-result `(,(float (1+ (* 2 (1- most-positive-fixnum)))) 0)
      ;; See commentary above on float conversions.
      :two-ffloor-result `(,(eval '(- (1+ most-positive-fixnum) 2 0.0)) 1)
      :one-ceiling-result `(,(1+ (* 2 (1- most-positive-fixnum))) 0)
      :two-ceiling-result `(,most-positive-fixnum -1)
      :one-fceiling-result `(,(float (1+ (* 2 (1- most-positive-fixnum)))) 0)
      :two-fceiling-result `(,(eval '(- (1+ most-positive-fixnum) 1 0.0)) -1)
      :one-round-result `(,(1+ (* 2 (1- most-positive-fixnum))) 0)
      :two-round-result `(,(1- most-positive-fixnum) 1)
      :one-fround-result `(,(float (1+ (* 2 (1- most-positive-fixnum)))) 0)
      :two-fround-result `(,(eval '(- (1+ most-positive-fixnum) 2 0.0)) 1)
      :one-truncate-result `(,(1+ (* 2 (1- most-positive-fixnum))) 0)
      :two-truncate-result `(,(1- most-positive-fixnum) 1)
      :one-ftruncate-result `(,(float (1+ (* 2 (1- most-positive-fixnum)))) 0)
      ;; See commentary above
      :two-ftruncate-result `(,(eval '(- (1+ most-positive-fixnum) 2 0.0))
			      1)))
  (when (featurep 'ratio)
    (Assert-rounding (read "4/3") (read "8/7")
     :one-floor-result '(1 1/3) :two-floor-result '(1 4/21)
     :one-ffloor-result '(1.0 1/3) :two-ffloor-result '(1.0 4/21)
     :one-ceiling-result '(2 -2/3) :two-ceiling-result '(2 -20/21)
     :one-fceiling-result '(2.0 -2/3) :two-fceiling-result '(2.0 -20/21)
     :one-round-result '(1 1/3) :two-round-result '(1 4/21)
     :one-fround-result '(1.0 1/3) :two-fround-result '(1.0 4/21)
     :one-truncate-result '(1 1/3) :two-truncate-result '(1 4/21)
     :one-ftruncate-result '(1.0 1/3) :two-ftruncate-result '(1.0 4/21))
    (Assert-rounding (read "-4/3") (read "8/7")
     :one-floor-result '(-2 2/3) :two-floor-result '(-2 20/21)
     :one-ffloor-result '(-2.0 2/3) :two-ffloor-result '(-2.0 20/21)
     :one-ceiling-result '(-1 -1/3) :two-ceiling-result '(-1 -4/21)
     :one-fceiling-result '(-1.0 -1/3) :two-fceiling-result '(-1.0 -4/21)
     :one-round-result '(-1 -1/3) :two-round-result '(-1 -4/21)
     :one-fround-result '(-1.0 -1/3) :two-fround-result '(-1.0 -4/21)
     :one-truncate-result '(-1 -1/3) :two-truncate-result '(-1 -4/21)
     :one-ftruncate-result '(-1.0 -1/3) :two-ftruncate-result '(-1.0 -4/21))))

;; Run this function in a Common Lisp with two arguments to get results that
;; we should compare against, above. Though note the dancing-around with the
;; bigfloats and bignums above, too; you can't necessarily just use the
;; output here.

(defun generate-rounding-output (first second)
  (let ((print-readably t))
    (princ first)
    (princ " ")
    (princ second)
    (princ " :one-floor-result ")
    (princ (list 'quote (multiple-value-list (floor first))))
    (princ " :two-floor-result ")
    (princ (list 'quote (multiple-value-list (floor first second))))
    (princ " :one-ffloor-result ")
    (princ (list 'quote (multiple-value-list (ffloor first))))
    (princ " :two-ffloor-result ")
    (princ (list 'quote (multiple-value-list (ffloor first second))))
    (princ " :one-ceiling-result ")
    (princ (list 'quote (multiple-value-list (ceiling first))))
    (princ " :two-ceiling-result ")
    (princ (list 'quote (multiple-value-list (ceiling first second))))
    (princ " :one-fceiling-result ")
    (princ (list 'quote (multiple-value-list (fceiling first))))
    (princ " :two-fceiling-result ")
    (princ (list 'quote (multiple-value-list (fceiling first second))))
    (princ " :one-round-result ")
    (princ (list 'quote (multiple-value-list (round first))))
    (princ " :two-round-result ")
    (princ (list 'quote (multiple-value-list (round first second))))
    (princ " :one-fround-result ")
    (princ (list 'quote (multiple-value-list (fround first))))
    (princ " :two-fround-result ")
    (princ (list 'quote (multiple-value-list (fround first second))))
    (princ " :one-truncate-result ")
    (princ (list 'quote (multiple-value-list (truncate first))))
    (princ " :two-truncate-result ")
    (princ (list 'quote (multiple-value-list (truncate first second))))
    (princ " :one-ftruncate-result ")
    (princ (list 'quote (multiple-value-list (ftruncate first))))
    (princ " :two-ftruncate-result ")
    (princ (list 'quote (multiple-value-list (ftruncate first second))))))

;; Multiple value tests. 

(flet ((foo (x y) 
	 (floor (+ x y) y))
       (foo-zero (x y)
	 (values (floor (+ x y) y)))
       (multiple-value-function-returning-t ()
	 (values t pi e degrees-to-radians radians-to-degrees))
       (multiple-value-function-returning-nil ()
	 (values nil pi e radians-to-degrees degrees-to-radians))
       (function-throwing-multiple-values ()
	 (let* ((listing '(0 3 4 nil "string" symbol))
		(tail listing)
		elt)
	   (while t
	     (setq tail (cdr listing)
		   elt (car listing)
		   listing tail)
	     (when (null elt)
	       (throw 'VoN61Lo4Y (multiple-value-function-returning-t)))))))
  (Assert
   (= (+ (floor 5 3) (floor 19 4)) (+ 1 4) 5)
   "Checking that multiple values are discarded correctly as func args")
  (Assert
   (= 2 (length (multiple-value-list (foo 400 (1+ most-positive-fixnum)))))
   "Checking multiple values are passed through correctly as return values")
  (Assert
   (= 1 (length (multiple-value-list
		 (foo-zero 400 (1+ most-positive-fixnum)))))
   "Checking multiple values are discarded correctly when forced")
  (Check-Error setting-constant (setq multiple-values-limit 20))
  (Assert-equal '(-1 1)
	  (multiple-value-list (floor -3 4))
   "Checking #'multiple-value-list gives a sane result")
  (let ((ey 40000)
	(bee "this is a string")
	(cee #s(hash-table size 256 data (969 ?\xF9))))
    (Assert-equal
     (multiple-value-list (values ey bee cee))
     (multiple-value-list (values-list (list ey bee cee)))
     "Checking that #'values and #'values-list are correctly related")
    (Assert-equal
     (multiple-value-list (values-list (list ey bee cee)))
     (multiple-value-list (apply #'values (list ey bee cee)))
     "Checking #'values-list and #'apply with #values are correctly related"))
  (Assert= (multiple-value-call #'+ (floor 5 3) (floor 19 4)) 10
   "Checking #'multiple-value-call gives reasonable results.")
  (Assert= (multiple-value-call (values '+ '*) (floor 5 3) (floor 19 4)) 10
   "Checking #'multiple-value-call correct when first arg multiple.")
  (Assert= 1 (length (multiple-value-list (prog1 (floor pi) "hi there")))
   "Checking #'prog1 does not pass back multiple values")
  (Assert= 2 (length (multiple-value-list
		 (multiple-value-prog1 (floor pi) "hi there")))
   "Checking #'multiple-value-prog1 passes back multiple values")
  (multiple-value-bind (floored remainder this-is-nil)
      (floor pi 1.0)
    (Assert= floored 3
	    "Checking floored bound correctly")
    (Assert-eql remainder (- pi 3.0)
	    "Checking remainder bound correctly") 
    (Assert (null this-is-nil)
	    "Checking trailing arg bound but nil"))
  (let ((ey 40000)
	(bee "this is a string")
	(cee #s(hash-table size 256 data (969 ?\xF9))))
    (multiple-value-setq (ey bee cee)
      (ffloor e 1.0))
    (Assert-eql 2.0 ey "Checking ey set correctly")
    (Assert-eql bee (- e 2.0) "Checking bee set correctly")
    (Assert (null cee) "Checking cee set to nil correctly"))
  (Assert= 3 (length (multiple-value-list (eval '(values nil t pi))))
   "Checking #'eval passes back multiple values")
  (Assert= 2 (length (multiple-value-list (apply #'floor '(5 3))))
   "Checking #'apply passes back multiple values")
  (Assert= 2 (length (multiple-value-list (funcall #'floor 5 3)))
   "Checking #'funcall passes back multiple values")
  (Assert-equal '(1 2) (multiple-value-list 
		  (multiple-value-call #'floor (values 5 3)))
   "Checking #'multiple-value-call passes back multiple values correctly")
  (Assert= 1 (length (multiple-value-list
		 (and (multiple-value-function-returning-nil) t)))
   "Checking multiple values from non-trailing forms discarded by #'and")
  (Assert= 5 (length (multiple-value-list 
		 (and t (multiple-value-function-returning-nil))))
   "Checking multiple values from final forms not discarded by #'and")
  (Assert= 1 (length (multiple-value-list
		 (or (multiple-value-function-returning-t) t)))
   "Checking multiple values from non-trailing forms discarded by #'and")
  (Assert= 5 (length (multiple-value-list 
		 (or nil (multiple-value-function-returning-t))))
   "Checking multiple values from final forms not discarded by #'and")
  (Assert= 1 (length (multiple-value-list
		 (cond ((multiple-value-function-returning-t)))))
   "Checking cond doesn't pass back multiple values in tests.")
  (Assert-equal (list nil pi e radians-to-degrees degrees-to-radians)
	  (multiple-value-list
	   (cond (t (multiple-value-function-returning-nil))))
   "Checking cond passes back multiple values in clauses.")
  (Assert= 1 (length (multiple-value-list
		 (prog1 (multiple-value-function-returning-nil))))
   "Checking prog1 discards multiple values correctly.")
  (Assert= 5 (length (multiple-value-list
		 (multiple-value-prog1
		  (multiple-value-function-returning-nil))))
   "Checking multiple-value-prog1 passes back multiple values correctly.")
  (Assert-equal (list t pi e degrees-to-radians radians-to-degrees)
	  (multiple-value-list
	   (catch 'VoN61Lo4Y (function-throwing-multiple-values))))
  (Assert-equal (list t pi e degrees-to-radians radians-to-degrees)
	  (multiple-value-list
	   (loop
	     for eye in `(a b c d ,e f g ,nil ,pi)
	     do (when (null eye)
		  (return (multiple-value-function-returning-t)))))
   "Checking #'loop passes back multiple values correctly.")
  (Assert
   (null (or))
   "Checking #'or behaves correctly with zero arguments.")
  (Assert-eq t (and)
   "Checking #'and behaves correctly with zero arguments.")
  (Assert= (* 3.0 (- pi 3.0))
      (letf (((values three one-four-one-five-nine) (floor pi)))
        (* three one-four-one-five-nine))
   "checking letf handles #'values in a basic sense"))

;; #'equalp tests.
(let ((string-variable "aBcDeeFgH\u00Edj")
      (eacute-character ?\u00E9)
      (Eacute-character ?\u00c9)
      (+base-chars+ (loop
		      with res = (make-string 96 ?\x20)
		      for int-char from #x20 to #x7f
		      for char being each element in-ref res
		      do (setf char (int-to-char int-char))
		      finally return res)))
  (let ((equal-lists
	 '((111111111111111111111111111111111111111111111111111
	    111111111111111111111111111111111111111111111111111.0)
	   (0 0.0 0.000 -0 -0.0 -0.000 #b0 0/5 -0/5)
	   (21845 #b101010101010101 #x5555)
	   (1.5 1.500000000000000000000000000000000000000000000000000000000
		3/2)
	   (-55 -110/2)
	   ;; Can't use this, these values aren't `='.
	   ;;(-12345678901234567890123457890123457890123457890123457890123457890
	   ;; -12345678901234567890123457890123457890123457890123457890123457890.0)
	   )))
    (loop for li in equal-lists do
      (loop for (x . tail) on li do
	(loop for y in tail do
	  (Assert-equalp x y)
	  (Assert-equalp y x)))))

  (let ((diff-list
	 `(0 1 2 3 1000 5000000000 5555555555555555555555555555555555555
	   -1 -2 -3 -1000 -5000000000 -5555555555555555555555555555555555555
	   1/2 1/3 2/3 8/2 355/113 (/ 3/2 0.2) (/ 3/2 0.7)
	   55555555555555555555555555555555555555555/2718281828459045
	   0.111111111111111111111111111111111111111111111111111111111111111
	   1e+300 1e+301 -1e+300 -1e+301)))
    (loop for (x . tail) on diff-list do
      (loop for y in tail do
	(Assert-not-equalp x y)
	(Assert-not-equalp y x))))

  (Assert-equalp "hi there" "Hi There"
		 "checking equalp isn't case-sensitive")
  (Assert-equalp 99 99.0
		 "checking equalp compares numerical values of different types")
  (Assert (null (equalp 99 ?c))
	  "checking equalp does not convert characters to numbers")
  ;; Fixed in Hg d0ea57eb3de4.
  (Assert (null (equalp "hi there" [hi there]))
	  "checking equalp doesn't error with string and non-string")
  (Assert-equalp "ABCDEEFGH\u00CDJ" string-variable
		 "checking #'equalp is case-insensitive with an upcased constant") 
  (Assert-equalp "abcdeefgh\xedj" string-variable
		 "checking #'equalp is case-insensitive with a downcased constant")
  (Assert-equalp string-variable string-variable
		 "checking #'equalp works when handed the same string twice")
  (Assert-equalp string-variable "aBcDeeFgH\u00Edj"
		 "check #'equalp is case-insensitive with a variable-cased constant")
  (Assert-equalp "" (bit-vector) 
		 "check empty string and empty bit-vector are #'equalp.")
  (Assert-equalp (string) (bit-vector) 
		 "check empty string and empty bit-vector are #'equalp, no constants")
  (Assert-equalp "hi there" (vector ?h ?i ?\  ?t ?h ?e ?r ?e)
		 "check string and vector with same contents #'equalp")
  (Assert-equalp (string ?h ?i ?\  ?t ?h ?e ?r ?e)
		 (vector ?h ?i ?\  ?t ?h ?e ?r ?e)
	     "check string and vector with same contents #'equalp, no constants")
  (Assert-equalp [?h ?i ?\  ?t ?h ?e ?r ?e]
		 (string ?h ?i ?\  ?t ?h ?e ?r ?e)
	     "check string and vector with same contents #'equalp, vector constant")
  (Assert-equalp [0 1.0 0.0 0 1]
		 (bit-vector 0 1 0 0 1)
	     "check vector and bit-vector with same contents #'equalp,\
 vector constant")
  (Assert-not-equalp [0 2 0.0 0 1]
		     (bit-vector 0 1 0 0 1)
	     "check vector and bit-vector with different contents not #'equalp,\
 vector constant")
  (Assert-equalp #*01001
		 (vector 0 1.0 0.0 0 1)
	     "check vector and bit-vector with same contents #'equalp,\
 bit-vector constant")
  (Assert-equalp ?\u00E9 Eacute-character
		 "checking characters are case-insensitive, one constant")
  (Assert-not-equalp ?\u00E9 (aref (format "%c" ?a) 0)
		     "checking distinct characters are not equalp, one constant")
  (Assert-equalp t (and)
		 "checking symbols are correctly #'equalp")
  (Assert-not-equalp t (or nil '#:t)
		     "checking distinct symbols with the same name are not #'equalp")
  (Assert-equalp #s(char-table type generic data (?\u0080 "hi-there"))
		 (let ((aragh (make-char-table 'generic)))
		   (put-char-table ?\u0080 "hi-there" aragh)
		   aragh)
		 "checking #'equalp succeeds correctly, char-tables")
  (Assert-equalp #s(char-table type generic data (?\u0080 "hi-there"))
		 (let ((aragh (make-char-table 'generic)))
		   (put-char-table ?\u0080 "HI-THERE" aragh)
		   aragh)
		 "checking #'equalp succeeds correctly, char-tables")
  (Assert-not-equalp #s(char-table type generic data (?\u0080 "hi-there"))
		     (let ((aragh (make-char-table 'generic)))
		       (put-char-table ?\u0080 "hi there" aragh)
		       aragh)
	     "checking #'equalp fails correctly, char-tables"))

;; There are more tests available for equalp here: 
;;
;; http://www.parhasard.net/xemacs/equalp-tests.el
;;
;; They are taken from Paul Dietz' GCL ANSI test suite, licensed under the
;; LGPL and part of GNU Common Lisp; the GCL people didn't respond to
;; several requests for information on who owned the copyright for the
;; files, so I haven't included the tests with XEmacs. Anyone doing XEmacs
;; development on equalp should still run them, though. Aidan Kehoe, Thu Dec
;; 31 14:53:52 GMT 2009. 

(loop
  for special-form in '(multiple-value-call setq-default quote throw
			save-current-buffer and or)
  with not-special-form = nil
  do
  (Assert (special-form-p special-form)
	  (format "checking %S is a special operator" special-form))
  (setq not-special-form 
	(intern (format "%s-gMAu" (symbol-name special-form))))
  (Assert (not (special-form-p not-special-form))
	  (format "checking %S is a special operator" special-form))
  (Assert (not (functionp special-form))
	  (format "checking %S is not a function" special-form)))

(loop
  for real-function in '(find-file quote-maybe + - find-file-read-only)
  do (Assert (functionp real-function)
	     (format "checking %S is a function" real-function)))

;; #'member, #'assoc tests.

(when (featurep 'bignum)
  (let* ((member*-list `(0 9 342 [hi there] ,(1+ most-positive-fixnum) 0
			 0.0 ,(1- most-negative-fixnum) nil))
	 (assoc*-list (loop
			for elt in member*-list
			collect (cons elt (random))))
	 (hashing (make-hash-table :test 'eql))
	 hashed-bignum)
    (macrolet
	((1+most-positive-fixnum ()
	   (1+ most-positive-fixnum))
	 (1-most-negative-fixnum ()
	   (1- most-negative-fixnum))
	 (*-2-most-positive-fixnum ()
	   (* 2 most-positive-fixnum))) 
      (Assert-eq
       (member* (1+ most-positive-fixnum) member*-list)
       (member* (1+ most-positive-fixnum) member*-list :test #'eql)
       "checking #'member* correct if #'eql not explicitly specified")
      (Assert-eq
       (assoc* (1+ most-positive-fixnum) assoc*-list)
       (assoc* (1+ most-positive-fixnum) assoc*-list :test #'eql)
       "checking #'assoc* correct if #'eql not explicitly specified")
      (Assert-eq
       (rassoc* (1- most-negative-fixnum) assoc*-list)
       (rassoc* (1- most-negative-fixnum) assoc*-list :test #'eql)
       "checking #'rassoc* correct if #'eql not explicitly specified")
      (Assert-eql (1+most-positive-fixnum) (1+ most-positive-fixnum)
		  "checking #'eql handles a bignum literal properly.")
      (Assert-eq 
       (member* (1+most-positive-fixnum) member*-list)
       (member* (1+ most-positive-fixnum) member*-list :test #'equal)
       "checking #'member* compiler macro correct with literal bignum")
      (Assert-eq
       (assoc* (1+most-positive-fixnum) assoc*-list)
       (assoc* (1+ most-positive-fixnum) assoc*-list :test #'equal)
       "checking #'assoc* compiler macro correct with literal bignum")
      (puthash (setq hashed-bignum (*-2-most-positive-fixnum)) 
	       (gensym) hashing)
      (Assert-eq
       (gethash (* 2 most-positive-fixnum) hashing)
       (gethash hashed-bignum hashing)
       "checking hashing works correctly with #'eql tests and bignums"))))

;;; end of lisp-tests.el