Mercurial > hg > xemacs-beta
view lisp/disass.el @ 4477:e34711681f30
Don't determine whether to call general device-type code at startup,
rather decide in the device-specific code itself.
lisp/ChangeLog addition:
2008-07-07 Aidan Kehoe <kehoea@parhasard.net>
Patch to make it up to the device-specific code whether
various Lisp functions should be called during device creation,
not relying on the startup code to decide this. Also, rename
initial-window-system to initial-device-type (which makes more
sense in this scheme), always set it.
* startup.el (command-line):
Use initial-device-type, not initial-window-system; just call
#'make-device, leave the special behaviour to be done the first
time a console type is initialised to be decided on by the
respective console code.
* x-init.el (x-app-defaults-directory): Declare that it should be
bound.
(x-define-dead-key): Have the macro take a DEVICE argument.
(x-initialize-compose): Have the function take a DEVICE argument,
and use it when checking if various keysyms are available on the
keyboard.
(x-initialize-keyboard): Have the function take a DEVICE argument,
allowing device-specific keyboard initialisation.
(make-device-early-x-entry-point-called-p): New.
(make-device-late-x-entry-point-called-p): New. Rename
pre-x-win-initted, x-win-initted.
(make-device-early-x-entry-point): Rename init-pre-x-win, take the
call to make-x-device out (it should be called from the
device-creation code, not vice-versa).
(make-device-late-x-entry-point): Rename init-post-x-win, have it
take a DEVICE argument, use that DEVICE argument when working out
what device-specific things need doing. Don't use
create-console-hook in core code.
* x-win-xfree86.el (x-win-init-xfree86): Take a DEVICE argument;
use it.
* x-win-sun.el (x-win-init-sun): Take a DEVICE argument; use it.
* mule/mule-x-init.el: Remove #'init-mule-x-win, an empty
function.
* tty-init.el (make-device-early-tty-entry-point-called-p): New.
Rename pre-tty-win-initted.
(make-device-early-tty-entry-point): New.
Rename init-pre-tty-win.
(make-frame-after-init-entry-point): New.
Rename init-post-tty-win to better reflect when it's called.
* gtk-init.el (gtk-early-lisp-options-file): New.
Move this path to a documented variable.
(gtk-command-switch-alist): Wrap the docstring to fewer than 79
columns.
(make-device-early-gtk-entry-point-called-p): New.
(make-device-late-gtk-entry-point-called-p): New.
Renamed gtk-pre-win-initted, gtk-post-win-initted to these.
(make-device-early-gtk-entry-point): New.
(make-device-late-gtk-entry-point): New.
Renamed init-pre-gtk-win, init-post-gtk-win to these.
Have make-device-late-gtk-entry-point take a device argument, and use
it; have make-device-early-gtk-entry-point load the GTK-specific
startup code, instead of doing that in C.
(init-gtk-win): Deleted, functionality moved to the GTK device
creation code.
(gtk-define-dead-key): Have it take a DEVICE argument; use this
argument.
(gtk-initialize-compose): Ditto.
* coding.el (set-terminal-coding-system):
Correct the docstring; the function isn't broken.
src/ChangeLog addition:
2008-07-07 Aidan Kehoe <kehoea@parhasard.net>
Patch to make it up to the device-specific code whether
various Lisp functions should be called during device creation,
not relying on the startup code to decide this. Also, rename
initial-window-system to initial-device-type (which makes more
sense in this scheme), always set it.
* redisplay.c (Vinitial_device_type): New.
(Vinitial_window_system): Removed.
Rename initial-window-system to initial-device type, making it
a stream if we're noninteractive. Update its docstring.
* device-x.c (Qmake_device_early_x_entry_point,
Qmake_device_late_x_entry_point): New.
Rename Qinit_pre_x_win, Qinit_post_x_win.
(x_init_device): Call #'make-device-early-x-entry-point earlier,
now we rely on it to find the application class and the
app-defaults directory.
(x_finish_init_device): Call #'make-device-late-x-entry-point with
the created device.
(Vx_app_defaults_directory): Always make this available, to
simplify code in x-init.el.
* device-tty.c (Qmake_device_early_tty_entry_point): New.
Rename Qinit_pre_tty_win, rename Qinit_post_tty_win and move to
frame-tty.c as Qmake_frame_after_init_entry_point.
(tty_init_device): Call #'make-device-early-tty-entry-point before
doing anything.
* frame-tty.c (Qmake_frame_after_init_entry_point): New.
* frame-tty.c (tty_after_init_frame): Have it call the
better-named #'make-frame-after-init-entry-point function
instead of #'init-post-tty-win (since it's called after frame, not
device, creation).
* device-msw.c (Qmake_device_early_mswindows_entry_point,
Qmake_device_late_mswindows_entry_point): New.
Rename Qinit_pre_mswindows_win, Qinit_post_mswindows_win.
(mswindows_init_device): Call
#'make-device-early-mswindows-entry-point here, instead of having
its predecessor call us.
(mswindows_finish_init_device): Call
#'make-device-early-mswindows-entry-point, for symmetry with the
other device types (though it's an empty function).
* device-gtk.c (Qmake_device_early_gtk_entry_point,
Qmake_device_late_gtk_entry_point): New.
Rename Qinit_pre_gtk_win, Qinit_post_gtk_win.
(gtk_init_device): Call #'make-device-early-gtk-entry-point; don't
load ~/.xemacs/gtk-options.el ourselves, leave that to lisp.
(gtk_finish_init_device): Call #'make-device-late-gtk-entry-point
with the created device as an argument.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Wed, 09 Jul 2008 20:46:22 +0200 |
parents | 3ecd8885ac67 |
children | e29fcfd8df5f |
line wrap: on
line source
;;; disass.el --- disassembler for compiled Emacs Lisp code ;;; Copyright (C) 1986, 1991-1994 Free Software Foundation, Inc. ;; Author: Doug Cutting <doug@csli.stanford.edu> ;; Jamie Zawinski <jwz@jwz.org> ;; Maintainer: XEmacs Development Team ;; Keywords: internal ;; This file is part of XEmacs. ;; XEmacs is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; XEmacs is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with XEmacs; see the file COPYING. If not, write to the ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA. ;;; Synched up with: FSF 19.28. ;;; Commentary: ;; The single entry point, `disassemble', disassembles a code object generated ;; by the Emacs Lisp byte-compiler. This doesn't invert the compilation ;; operation, not by a long shot, but it's useful for debugging. ;; ;; Original version by Doug Cutting (doug@csli.stanford.edu) ;; Substantially modified by Jamie Zawinski for ;; the new lapcode-based byte compiler. ;;; Code: (require 'byte-optimize) (defvar disassemble-column-1-indent 8 "*") (defvar disassemble-column-2-indent 10 "*") (defvar disassemble-recursive-indent 3 "*") ;;;###autoload (defun disassemble (object &optional buffer indent interactive-p) "Print disassembled code for OBJECT in (optional) BUFFER. OBJECT can be a symbol defined as a function, or a function itself \(a lambda expression or a compiled-function object). If OBJECT is not already compiled, we compile it, but do not redefine OBJECT if it is a symbol." (interactive (list (intern (completing-read "Disassemble function: " obarray 'fboundp t)) nil 0 t)) (if (eq (car-safe object) 'byte-code) (setq object (list 'lambda () object))) (or indent (setq indent 0)) ;Default indent to zero (save-excursion (if (or interactive-p (null buffer)) (with-output-to-temp-buffer "*Disassemble*" (set-buffer "*Disassemble*") (disassemble-internal object indent (not interactive-p))) (set-buffer buffer) (disassemble-internal object indent nil))) nil) (defun disassemble-internal (obj indent interactive-p) (let ((macro nil) (name nil) args) (while (symbolp obj) (setq name obj obj (symbol-function obj))) (if (subrp obj) (error "Can't disassemble #<subr %s>" name)) (if (eq (car-safe obj) 'autoload) (progn (load (elt obj 1)) (setq obj (symbol-function name)))) (if (eq (car-safe obj) 'macro) ;handle macros (setq macro t obj (cdr obj))) (if (and (listp obj) (eq (car obj) 'byte-code)) (setq obj (list 'lambda nil obj))) (if (and (listp obj) (not (eq (car obj) 'lambda))) (error "not a function")) (if (consp obj) (if (assq 'byte-code obj) nil (if interactive-p (message (if name "Compiling %s's definition..." "Compiling definition...") name)) (setq obj (byte-compile obj)) (if interactive-p (message "Done compiling. Disassembling...")))) (cond ((consp obj) (setq obj (cdr obj)) ;throw lambda away (setq args (car obj)) ;save arg list (setq obj (cdr obj))) (t (setq args (compiled-function-arglist obj)))) (if (zerop indent) ; not a nested function (progn (indent-to indent) (insert (format "byte code%s%s%s:\n" (if (or macro name) " for" "") (if macro " macro" "") (if name (format " %s" name) ""))))) (let ((doc (if (consp obj) (and (stringp (car obj)) (car obj)) (condition-case error (documentation obj) (error (format "%S" error)))))) (if (and doc (stringp doc)) (progn (and (consp obj) (setq obj (cdr obj))) (indent-to indent) (princ " doc: " (current-buffer)) (let ((frobbed nil)) (if (string-match "\n" doc) (setq doc (substring doc 0 (match-beginning 0)) frobbed t)) (if (> (length doc) 70) (setq doc (substring doc 0 65) frobbed t)) (if frobbed (setq doc (concat doc " ...")))) (insert doc "\n")))) (indent-to indent) (insert " args: ") (prin1 args (current-buffer)) (insert "\n") (if (condition-case () (commandp obj) ; ie interactivep (error nil)) (let ((interactive (if (consp obj) (elt (assq 'interactive obj) 1) (elt (compiled-function-interactive obj) 1)))) (if (eq (car-safe (car-safe obj)) 'interactive) (setq obj (cdr obj))) (indent-to indent) (insert " interactive: ") (if (eq (car-safe interactive) 'byte-code) (progn (insert "\n") (disassemble-1 interactive (+ indent disassemble-recursive-indent))) (let ((print-escape-newlines t)) (prin1 interactive (current-buffer)))) (insert "\n"))) (cond ((and (consp obj) (assq 'byte-code obj)) (disassemble-1 (assq 'byte-code obj) indent)) ((compiled-function-p obj) (disassemble-1 obj indent)) (t (insert "Uncompiled body: ") (let ((print-escape-newlines t)) (prin1 (if (cdr obj) (cons 'progn obj) (car obj)) (current-buffer)))))) (if interactive-p (message nil))) (defun disassemble-1 (obj indent) "Print the byte-code call OBJ in the current buffer. OBJ should be a compiled-function object generated by the byte compiler." (let (bytes constvec) (if (consp obj) (setq bytes (car (cdr obj)) ; the byte code constvec (car (cdr (cdr obj)))) ; constant vector (setq bytes (compiled-function-instructions obj) constvec (compiled-function-constants obj))) (let ((lap (byte-decompile-bytecode bytes constvec)) op arg opname pc-value) (let ((tagno 0) tmp (lap lap)) (while (setq tmp (assq 'TAG lap)) (setcar (cdr tmp) (setq tagno (1+ tagno))) (setq lap (cdr (memq tmp lap))))) (while lap ;; Take off the pc value of the next thing ;; and put it in pc-value. (setq pc-value nil) (if (numberp (car lap)) (setq pc-value (car lap) lap (cdr lap))) ;; Fetch the next op and its arg. (setq op (car (car lap)) arg (cdr (car lap))) (setq lap (cdr lap)) (indent-to indent) (if (eq 'TAG op) (progn ;; We have a label. Display it, but first its pc value. (if pc-value (insert (format "%d:" pc-value))) (insert (int-to-string (car arg)))) ;; We have an instruction. Display its pc value first. (if pc-value (insert (format "%d" pc-value))) (indent-to (+ indent disassemble-column-1-indent)) (if (and op (string-match "^byte-" (setq opname (symbol-name op)))) (setq opname (substring opname 5)) (setq opname "<not-an-opcode>")) (if (eq op 'byte-constant2) (insert " #### shouldn't have seen constant2 here!\n ")) (insert opname) (indent-to (+ indent disassemble-column-1-indent disassemble-column-2-indent -1)) (insert " ") (cond ((memq op byte-goto-ops) (insert (int-to-string (nth 1 arg)))) ((memq op '(byte-call byte-unbind byte-listN byte-concatN byte-insertN)) (insert (int-to-string arg))) ((memq op '(byte-varref byte-varset byte-varbind)) (prin1 (car arg) (current-buffer))) ((memq op '(byte-constant byte-constant2)) ;; it's a constant (setq arg (car arg)) ;; but if the value of the constant is compiled code, then ;; recursively disassemble it. (cond ((or (compiled-function-p arg) (and (eq (car-safe arg) 'lambda) (assq 'byte-code arg)) (and (eq (car-safe arg) 'macro) (or (compiled-function-p (cdr arg)) (and (eq (car-safe (cdr arg)) 'lambda) (assq 'byte-code (cdr arg)))))) (cond ((compiled-function-p arg) (insert "<compiled-function>\n")) ((eq (car-safe arg) 'lambda) (insert "<compiled lambda>")) (t (insert "<compiled macro>\n"))) (disassemble-internal arg (+ indent disassemble-recursive-indent 1) nil)) ((eq (car-safe arg) 'byte-code) (insert "<byte code>\n") (disassemble-1 ;recurse on byte-code object arg (+ indent disassemble-recursive-indent))) ((eq (car-safe (car-safe arg)) 'byte-code) (insert "(<byte code>...)\n") (mapcar ;recurse on list of byte-code objects #'(lambda (obj) (disassemble-1 obj (+ indent disassemble-recursive-indent))) arg)) (t ;; really just a constant (let ((print-escape-newlines t)) (prin1 arg (current-buffer)))))) ) (insert "\n"))))) nil) (provide 'disass) ;;; disass.el ends here