Mercurial > hg > xemacs-beta
view src/alloc.c @ 5934:e2fae7783046 cygwin
lots of use of EMACS_INT, a few others, to eliminate all pointer truncation warnings
author | Henry Thompson <ht@markup.co.uk> |
---|---|
date | Sat, 12 Dec 2015 19:08:46 +0000 |
parents | 427a72c6ee17 |
children | d5eb0914ca1f |
line wrap: on
line source
/* Storage allocation and gc for XEmacs Lisp interpreter. Copyright (C) 1985-1998 Free Software Foundation, Inc. Copyright (C) 1995 Sun Microsystems, Inc. Copyright (C) 1995, 1996, 2001, 2002, 2003, 2004, 2005, 2010 Ben Wing. This file is part of XEmacs. XEmacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs. If not, see <http://www.gnu.org/licenses/>. */ /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from FSF. */ /* Authorship: FSF: Original version; a long time ago. Mly: Significantly rewritten to use new 3-bit tags and nicely abstracted object definitions, for 19.8. JWZ: Improved code to keep track of purespace usage and issue nice purespace and GC stats. Ben Wing: Cleaned up frob-block lrecord code, added error-checking and various changes for Mule, for 19.12. Added bit vectors for 19.13. Added lcrecord lists for 19.14. slb: Lots of work on the purification and dump time code. Synched Doug Lea malloc support from Emacs 20.2. og: Killed the purespace. Portable dumper (moved to dumper.c) */ #include <config.h> #include "lisp.h" #include "backtrace.h" #include "buffer.h" #include "bytecode.h" #include "chartab.h" #include "device.h" #include "elhash.h" #include "events.h" #include "extents-impl.h" #include "file-coding.h" #include "frame-impl.h" #include "gc.h" #include "glyphs.h" #include "opaque.h" #include "lstream.h" #include "process.h" #include "profile.h" #include "redisplay.h" #include "specifier.h" #include "sysfile.h" #include "sysdep.h" #include "window.h" #ifdef NEW_GC #include "vdb.h" #endif /* NEW_GC */ #include "console-stream.h" #ifdef DOUG_LEA_MALLOC #include <malloc.h> #endif #ifdef USE_VALGRIND #include <valgrind/memcheck.h> #endif EXFUN (Fgarbage_collect, 0); #if 0 /* this is _way_ too slow to be part of the standard debug options */ #if defined(DEBUG_XEMACS) && defined(MULE) #define VERIFY_STRING_CHARS_INTEGRITY #endif #endif /* Define this to use malloc/free with no freelist for all datatypes, the hope being that some debugging tools may help detect freed memory references */ #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */ #include <dmalloc.h> #define ALLOC_NO_POOLS #endif #ifdef DEBUG_XEMACS static Fixnum debug_allocation; static Fixnum debug_allocation_backtrace_length; #endif Fixnum Varray_dimension_limit, Varray_total_size_limit, Varray_rank_limit; int need_to_check_c_alloca; int need_to_signal_post_gc; int funcall_allocation_flag; Bytecount __temp_alloca_size__; Bytecount funcall_alloca_count; /* All the built-in lisp object types are enumerated in `enum lrecord_type'. Additional ones may be defined by a module (none yet). We leave some room in `lrecord_implementations_table' for such new lisp object types. */ struct lrecord_implementation *lrecord_implementations_table[(int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT]; int lrecord_type_count = lrecord_type_last_built_in_type; /* This is just for use by the printer, to allow things to print uniquely. We have a separate UID space for each object. (Important because the UID is only 20 bits in old-GC, and 22 in NEW_GC.) */ int lrecord_uid_counter[countof (lrecord_implementations_table)]; #ifndef USE_KKCC /* Object marker functions are in the lrecord_implementation structure. But copying them to a parallel array is much more cache-friendly. This hack speeds up (garbage-collect) by about 5%. */ Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object); #endif /* not USE_KKCC */ struct gcpro *gcprolist; /* Non-zero means we're in the process of doing the dump */ int purify_flag; /* Non-zero means we're pdumping out or in */ #ifdef PDUMP int in_pdump; #endif #ifdef ERROR_CHECK_TYPES Error_Behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN, ERROR_ME_DEBUG_WARN; #endif #ifdef MEMORY_USAGE_STATS Lisp_Object Qobject_actually_requested, Qobject_malloc_overhead; Lisp_Object Qother_memory_actually_requested, Qother_memory_malloc_overhead; Lisp_Object Qother_memory_dynarr_overhead, Qother_memory_gap_overhead; #endif /* MEMORY_USAGE_STATS */ #ifndef NEW_GC static int gc_count_num_short_string_in_use; static Bytecount gc_count_string_total_size; static Bytecount gc_count_short_string_total_size; static Bytecount gc_count_long_string_storage_including_overhead; #endif /* not NEW_GC */ /* static int gc_count_total_records_used, gc_count_records_total_size; */ /* stats on objects in use */ #ifdef NEW_GC static struct { int instances_in_use; int bytes_in_use; int bytes_in_use_including_overhead; } lrecord_stats [countof (lrecord_implementations_table)]; #else /* not NEW_GC */ static struct { Elemcount instances_in_use; Bytecount bytes_in_use; Bytecount bytes_in_use_overhead; Elemcount instances_freed; Bytecount bytes_freed; Bytecount bytes_freed_overhead; Elemcount instances_on_free_list; Bytecount bytes_on_free_list; Bytecount bytes_on_free_list_overhead; #ifdef MEMORY_USAGE_STATS Bytecount nonlisp_bytes_in_use; Bytecount lisp_ancillary_bytes_in_use; struct generic_usage_stats stats; #endif } lrecord_stats [countof (lrecord_implementations_table)]; #endif /* (not) NEW_GC */ /* Very cheesy ways of figuring out how much memory is being used for data. #### Need better (system-dependent) ways. */ void *minimum_address_seen; void *maximum_address_seen; /************************************************************************/ /* Low-level allocation */ /************************************************************************/ void recompute_funcall_allocation_flag (void) { funcall_allocation_flag = need_to_garbage_collect || need_to_check_c_alloca || need_to_signal_post_gc; } /* Maximum amount of C stack to save when a GC happens. */ #ifndef MAX_SAVE_STACK #define MAX_SAVE_STACK 0 /* 16000 */ #endif /* Non-zero means ignore malloc warnings. Set during initialization. */ int ignore_malloc_warnings; #ifndef NEW_GC void *breathing_space; void release_breathing_space (void) { if (breathing_space) { void *tmp = breathing_space; breathing_space = 0; xfree (tmp); } } #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) /* If we released our reserve (due to running out of memory), and we have a fair amount free once again, try to set aside another reserve in case we run out once more. This is called when a relocatable block is freed in ralloc.c. */ void refill_memory_reserve (void); void refill_memory_reserve (void) { if (breathing_space == 0) breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD); } #endif /* !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) */ #endif /* not NEW_GC */ static void set_alloc_mins_and_maxes (void *val, Bytecount size) { if (!val) return; if ((char *) val + size > (char *) maximum_address_seen) maximum_address_seen = (char *) val + size; if (!minimum_address_seen) minimum_address_seen = #if SIZEOF_VOID_P == 8 (void *) 0xFFFFFFFFFFFFFFFF; #else (void *) 0xFFFFFFFF; #endif if ((char *) val < (char *) minimum_address_seen) minimum_address_seen = (char *) val; } #ifdef ERROR_CHECK_MALLOC static int in_malloc; extern int regex_malloc_disallowed; #define MALLOC_BEGIN() \ do \ { \ assert (!in_malloc); \ assert (!regex_malloc_disallowed); \ in_malloc = 1; \ } \ while (0) #ifdef NEW_GC #define FREE_OR_REALLOC_BEGIN(block) \ do \ { \ /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ error until much later on for many system mallocs, such as \ the one that comes with Solaris 2.3. FMH!! */ \ assert (block != (void *) DEADBEEF_CONSTANT); \ MALLOC_BEGIN (); \ } \ while (0) #else /* not NEW_GC */ #define FREE_OR_REALLOC_BEGIN(block) \ do \ { \ /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ error until much later on for many system mallocs, such as \ the one that comes with Solaris 2.3. FMH!! */ \ assert (block != (void *) DEADBEEF_CONSTANT); \ /* You cannot free something within dumped space, because there is \ no longer any sort of malloc structure associated with the block. \ If you are tripping this, you may need to conditionalize on \ DUMPEDP. */ \ assert (!DUMPEDP (block)); \ MALLOC_BEGIN (); \ } \ while (0) #endif /* not NEW_GC */ #define MALLOC_END() \ do \ { \ in_malloc = 0; \ } \ while (0) #else /* ERROR_CHECK_MALLOC */ #define MALLOC_BEGIN() #define FREE_OR_REALLOC_BEGIN(block) #define MALLOC_END() #endif /* ERROR_CHECK_MALLOC */ static void malloc_after (void *val, Bytecount size) { if (!val && size != 0) memory_full (); set_alloc_mins_and_maxes (val, size); } /* malloc calls this if it finds we are near exhausting storage */ void malloc_warning (const char *str) { if (ignore_malloc_warnings) return; /* Remove the malloc lock here, because warn_when_safe may allocate again. It is safe to remove the malloc lock here, because malloc is already finished (malloc_warning is called via after_morecore_hook -> check_memory_limits -> save_warn_fun -> malloc_warning). */ MALLOC_END (); warn_when_safe (Qmemory, Qemergency, "%s\n" "Killing some buffers may delay running out of memory.\n" "However, certainly by the time you receive the 95%% warning,\n" "you should clean up, kill this Emacs, and start a new one.", str); } /* Called if malloc returns zero */ DOESNT_RETURN memory_full (void) { /* Force a GC next time eval is called. It's better to loop garbage-collecting (we might reclaim enough to win) than to loop beeping and barfing "Memory exhausted" */ consing_since_gc = gc_cons_threshold + 1; recompute_need_to_garbage_collect (); #ifdef NEW_GC /* Put mc-alloc into memory shortage mode. This may keep XEmacs alive until the garbage collector can free enough memory to get us out of the memory exhaustion. If already in memory shortage mode, we are in a loop and hopelessly lost. */ if (memory_shortage) { fprintf (stderr, "Memory full, cannot recover.\n"); ABORT (); } fprintf (stderr, "Memory full, try to recover.\n" "You should clean up, kill this Emacs, and start a new one.\n"); memory_shortage++; #else /* not NEW_GC */ release_breathing_space (); #endif /* not NEW_GC */ /* Flush some histories which might conceivably contain garbalogical inhibitors. */ if (!NILP (Fboundp (Qvalues))) Fset (Qvalues, Qnil); Vcommand_history = Qnil; out_of_memory ("Memory exhausted", Qunbound); } /* like malloc, calloc, realloc, free but: -- check for no memory left -- set internal mins and maxes -- with error-checking on, check for reentrancy, invalid freeing, etc. */ #undef xmalloc void * xmalloc (Bytecount size) { void *val; MALLOC_BEGIN (); val = malloc (size); MALLOC_END (); malloc_after (val, size); return val; } #undef xcalloc static void * xcalloc (Elemcount nelem, Bytecount elsize) { void *val; MALLOC_BEGIN (); val= calloc (nelem, elsize); MALLOC_END (); malloc_after (val, nelem * elsize); return val; } void * xmalloc_and_zero (Bytecount size) { return xcalloc (size, sizeof (char)); } #undef xrealloc void * xrealloc (void *block, Bytecount size) { FREE_OR_REALLOC_BEGIN (block); block = realloc (block, size); MALLOC_END (); malloc_after (block, size); return block; } void xfree_1 (void *block) { #ifdef ERROR_CHECK_MALLOC assert (block); #endif /* ERROR_CHECK_MALLOC */ FREE_OR_REALLOC_BEGIN (block); free (block); MALLOC_END (); } void deadbeef_memory (void *ptr, Bytecount size) { UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr; Bytecount beefs = size >> 2; /* In practice, size will always be a multiple of four. */ while (beefs--) (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */ } #undef xstrdup char * xstrdup (const char *str) { int len = strlen (str) + 1; /* for stupid terminating 0 */ void *val = xmalloc (len); if (val == 0) return 0; return (char *) memcpy (val, str, len); } #ifdef NEED_STRDUP char * strdup (const char *s) { return xstrdup (s); } #endif /* NEED_STRDUP */ /************************************************************************/ /* Lisp object allocation */ /************************************************************************/ /* Determine now whether we need to garbage collect or not, to make Ffuncall() faster */ #define INCREMENT_CONS_COUNTER_1(size) \ do \ { \ consing_since_gc += (size); \ total_consing += (size); \ if (profiling_active) \ profile_record_consing (size); \ recompute_need_to_garbage_collect (); \ } while (0) #define debug_allocation_backtrace() \ do { \ if (debug_allocation_backtrace_length > 0) \ debug_short_backtrace (debug_allocation_backtrace_length); \ } while (0) #ifdef DEBUG_XEMACS #define INCREMENT_CONS_COUNTER(foosize, type) \ do { \ if (debug_allocation) \ { \ stderr_out ("allocating %s (size %ld)\n", type, \ (long) foosize); \ debug_allocation_backtrace (); \ } \ INCREMENT_CONS_COUNTER_1 (foosize); \ } while (0) #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \ do { \ if (debug_allocation > 1) \ { \ stderr_out ("allocating noseeum %s (size %ld)\n", type, \ (long) foosize); \ debug_allocation_backtrace (); \ } \ INCREMENT_CONS_COUNTER_1 (foosize); \ } while (0) #else #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size) #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \ INCREMENT_CONS_COUNTER_1 (size) #endif #ifdef NEW_GC /* [[ The call to recompute_need_to_garbage_collect is moved to free_normal_lisp_object, since DECREMENT_CONS_COUNTER is extensively called during sweep and recomputing need_to_garbage_collect all the time is not needed. ]] -- not accurate! */ #define DECREMENT_CONS_COUNTER(size) do { \ consing_since_gc -= (size); \ total_consing -= (size); \ if (profiling_active) \ profile_record_unconsing (size); \ if (consing_since_gc < 0) \ consing_since_gc = 0; \ } while (0) #else /* not NEW_GC */ #define DECREMENT_CONS_COUNTER(size) do { \ consing_since_gc -= (size); \ total_consing -= (size); \ if (profiling_active) \ profile_record_unconsing (size); \ if (consing_since_gc < 0) \ consing_since_gc = 0; \ recompute_need_to_garbage_collect (); \ } while (0) #endif /*not NEW_GC */ #ifndef NEW_GC static void * allocate_lisp_storage (Bytecount size) { void *val = xmalloc (size); /* We don't increment the cons counter anymore. Calling functions do that now because we have two different kinds of cons counters -- one for normal objects, and one for no-see-um conses (and possibly others similar) where the conses are used totally internally, never escape, and are created and then freed and shouldn't logically increment the cons counting. #### (Or perhaps, we should decrement it when an object get freed?) */ /* But we do now (as of 3-27-02) go and zero out the memory. This is a good thing, as it will guarantee we won't get any intermittent bugs coming from an uninitiated field. The speed loss is unnoticeable, esp. as the objects are not large -- large stuff like buffer text and redisplay structures are allocated separately. */ memset (val, 0, size); if (need_to_check_c_alloca) xemacs_c_alloca (0); return val; } #endif /* not NEW_GC */ #define assert_proper_sizing(size) \ type_checking_assert \ (implementation->static_size == 0 ? \ implementation->size_in_bytes_method != NULL : \ implementation->size_in_bytes_method == NULL && \ implementation->static_size == size) #ifndef NEW_GC /* lcrecords are chained together through their "next" field. After doing the mark phase, GC will walk this linked list and free any lcrecord which hasn't been marked. */ static struct old_lcrecord_header *all_lcrecords; #endif /* not NEW_GC */ #ifdef NEW_GC /* The basic lrecord allocation functions. See lrecord.h for details. */ static Lisp_Object alloc_sized_lrecord_1 (Bytecount size, const struct lrecord_implementation *implementation, int noseeum) { struct lrecord_header *lheader; assert_proper_sizing (size); lheader = (struct lrecord_header *) mc_alloc (size); gc_checking_assert (LRECORD_FREE_P (lheader)); set_lheader_implementation (lheader, implementation); #ifdef ALLOC_TYPE_STATS inc_lrecord_stats (size, lheader); #endif /* ALLOC_TYPE_STATS */ if (implementation->finalizer) add_finalizable_obj (wrap_pointer_1 (lheader)); if (noseeum) NOSEEUM_INCREMENT_CONS_COUNTER (size, implementation->name); else INCREMENT_CONS_COUNTER (size, implementation->name); return wrap_pointer_1 (lheader); } Lisp_Object alloc_sized_lrecord (Bytecount size, const struct lrecord_implementation *implementation) { return alloc_sized_lrecord_1 (size, implementation, 0); } Lisp_Object noseeum_alloc_sized_lrecord (Bytecount size, const struct lrecord_implementation * implementation) { return alloc_sized_lrecord_1 (size, implementation, 1); } Lisp_Object alloc_lrecord (const struct lrecord_implementation *implementation) { type_checking_assert (implementation->static_size > 0); return alloc_sized_lrecord (implementation->static_size, implementation); } Lisp_Object noseeum_alloc_lrecord (const struct lrecord_implementation *implementation) { type_checking_assert (implementation->static_size > 0); return noseeum_alloc_sized_lrecord (implementation->static_size, implementation); } Lisp_Object alloc_sized_lrecord_array (Bytecount size, int elemcount, const struct lrecord_implementation *implementation) { struct lrecord_header *lheader; Rawbyte *start, *stop; assert_proper_sizing (size); lheader = (struct lrecord_header *) mc_alloc_array (size, elemcount); gc_checking_assert (LRECORD_FREE_P (lheader)); for (start = (Rawbyte *) lheader, /* #### FIXME: why is this -1 present? */ stop = ((Rawbyte *) lheader) + (size * elemcount -1); start < stop; start += size) { struct lrecord_header *lh = (struct lrecord_header *) start; set_lheader_implementation (lh, implementation); #ifdef ALLOC_TYPE_STATS inc_lrecord_stats (size, lh); #endif /* not ALLOC_TYPE_STATS */ if (implementation->finalizer) add_finalizable_obj (wrap_pointer_1 (lh)); } INCREMENT_CONS_COUNTER (size * elemcount, implementation->name); return wrap_pointer_1 (lheader); } Lisp_Object alloc_lrecord_array (int elemcount, const struct lrecord_implementation *implementation) { type_checking_assert (implementation->static_size > 0); return alloc_sized_lrecord_array (implementation->static_size, elemcount, implementation); } #else /* not NEW_GC */ /* The most basic of the lcrecord allocation functions. Not usually called directly. Allocates an lrecord not managed by any lcrecord-list, of a specified size. See lrecord.h. */ Lisp_Object old_alloc_sized_lcrecord (Bytecount size, const struct lrecord_implementation *implementation) { struct old_lcrecord_header *lcheader; assert_proper_sizing (size); type_checking_assert (!implementation->frob_block_p && !(implementation->hash == NULL && implementation->equal != NULL)); lcheader = (struct old_lcrecord_header *) allocate_lisp_storage (size); set_lheader_implementation (&lcheader->lheader, implementation); lcheader->next = all_lcrecords; all_lcrecords = lcheader; INCREMENT_CONS_COUNTER (size, implementation->name); return wrap_pointer_1 (lcheader); } Lisp_Object old_alloc_lcrecord (const struct lrecord_implementation *implementation) { type_checking_assert (implementation->static_size > 0); return old_alloc_sized_lcrecord (implementation->static_size, implementation); } #if 0 /* Presently unused */ /* Very, very poor man's EGC? * This may be slow and thrash pages all over the place. * Only call it if you really feel you must (and if the * lrecord was fairly recently allocated). * Otherwise, just let the GC do its job -- that's what it's there for */ void very_old_free_lcrecord (struct old_lcrecord_header *lcrecord) { if (all_lcrecords == lcrecord) { all_lcrecords = lcrecord->next; } else { struct old_lcrecord_header *header = all_lcrecords; for (;;) { struct old_lcrecord_header *next = header->next; if (next == lcrecord) { header->next = lrecord->next; break; } else if (next == 0) ABORT (); else header = next; } } if (lrecord->implementation->finalizer) lrecord->implementation->finalizer (wrap_pointer_1 (lrecord)); xfree (lrecord); return; } #endif /* Unused */ #endif /* not NEW_GC */ /* Bitwise copy all parts of a Lisp object other than the header */ void copy_lisp_object (Lisp_Object dst, Lisp_Object src) { const struct lrecord_implementation *imp = XRECORD_LHEADER_IMPLEMENTATION (src); Bytecount size = lisp_object_size (src); assert (imp == XRECORD_LHEADER_IMPLEMENTATION (dst)); assert (size == lisp_object_size (dst)); #ifdef NEW_GC memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), size - sizeof (struct lrecord_header)); #else /* not NEW_GC */ if (imp->frob_block_p) memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), size - sizeof (struct lrecord_header)); else memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct old_lcrecord_header), (char *) XRECORD_LHEADER (src) + sizeof (struct old_lcrecord_header), size - sizeof (struct old_lcrecord_header)); #endif /* not NEW_GC */ } /* Zero out all parts of a Lisp object other than the header, for a variable-sized object. The size needs to be given explicitly because at the time this is called, the contents of the object may not be defined, or may not be set up in such a way that we can reliably retrieve the size, since it may depend on settings inside of the object. */ void zero_sized_lisp_object (Lisp_Object obj, Bytecount size) { #ifndef NEW_GC const struct lrecord_implementation *imp = XRECORD_LHEADER_IMPLEMENTATION (obj); #endif /* not NEW_GC */ #ifdef NEW_GC memset ((char *) XRECORD_LHEADER (obj) + sizeof (struct lrecord_header), 0, size - sizeof (struct lrecord_header)); #else /* not NEW_GC */ if (imp->frob_block_p) memset ((char *) XRECORD_LHEADER (obj) + sizeof (struct lrecord_header), 0, size - sizeof (struct lrecord_header)); else memset ((char *) XRECORD_LHEADER (obj) + sizeof (struct old_lcrecord_header), 0, size - sizeof (struct old_lcrecord_header)); #endif /* not NEW_GC */ } /* Zero out all parts of a Lisp object other than the header, for an object that isn't variable-size. Objects that are variable-size need to use zero_sized_lisp_object(). */ void zero_nonsized_lisp_object (Lisp_Object obj) { const struct lrecord_implementation *imp = XRECORD_LHEADER_IMPLEMENTATION (obj); assert (!imp->size_in_bytes_method); zero_sized_lisp_object (obj, lisp_object_size (obj)); } #ifdef NEW_GC void free_normal_lisp_object (Lisp_Object UNUSED(obj)) { /* Manual frees are not allowed with asynchronous finalization */ return; } #else void free_normal_lisp_object (Lisp_Object obj) { const struct lrecord_implementation *imp = XRECORD_LHEADER_IMPLEMENTATION (obj); assert (!imp->frob_block_p); assert (!imp->size_in_bytes_method); old_free_lcrecord (obj); } #endif #ifndef NEW_GC int c_readonly (Lisp_Object obj) { return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj); } #endif /* not NEW_GC */ int lisp_readonly (Lisp_Object obj) { return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj); } /* #### Should be made into an object method */ int object_dead_p (Lisp_Object obj) { return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) || (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) || (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) || (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) || (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) || (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) || (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj)))); } /************************************************************************/ /* Debugger support */ /************************************************************************/ /* Give gdb/dbx enough information to decode Lisp Objects. We make sure certain symbols are always defined, so gdb doesn't complain about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc to see how this is used. */ EMACS_UINT dbg_valmask = (((EMACS_UINT)1 << VALBITS) - 1) << GCBITS; EMACS_UINT dbg_typemask = ((EMACS_UINT)1 << GCTYPEBITS) - 1; #ifdef USE_UNION_TYPE unsigned char dbg_USE_UNION_TYPE = 1; #else unsigned char dbg_USE_UNION_TYPE = 0; #endif unsigned char dbg_valbits = VALBITS; unsigned char dbg_gctypebits = GCTYPEBITS; /* On some systems, the above definitions will be optimized away by the compiler or linker unless they are referenced in some function. */ long dbg_inhibit_dbg_symbol_deletion (void); long dbg_inhibit_dbg_symbol_deletion (void) { return (dbg_valmask + dbg_typemask + dbg_USE_UNION_TYPE + dbg_valbits + dbg_gctypebits); } /* Macros turned into functions for ease of debugging. Debuggers don't know about macros! */ int dbg_eq (Lisp_Object obj1, Lisp_Object obj2); int dbg_eq (Lisp_Object obj1, Lisp_Object obj2) { return EQ (obj1, obj2); } #ifdef NEW_GC #define DECLARE_FIXED_TYPE_ALLOC(type, structture) struct __foo__ #else /************************************************************************/ /* Fixed-size type macros */ /************************************************************************/ /* For fixed-size types that are commonly used, we malloc() large blocks of memory at a time and subdivide them into chunks of the correct size for an object of that type. This is more efficient than malloc()ing each object separately because we save on malloc() time and overhead due to the fewer number of malloc()ed blocks, and also because we don't need any extra pointers within each object to keep them threaded together for GC purposes. For less common (and frequently large-size) types, we use lcrecords, which are malloc()ed individually and chained together through a pointer in the lcrecord header. lcrecords do not need to be fixed-size (i.e. two objects of the same type need not have the same size; however, the size of a particular object cannot vary dynamically). It is also much easier to create a new lcrecord type because no additional code needs to be added to alloc.c. Finally, lcrecords may be more efficient when there are only a small number of them. The types that are stored in these large blocks (or "frob blocks") are cons, all number types except fixnum, compiled-function, symbol, marker, extent, event, and string. Note that strings are special in that they are actually stored in two parts: a structure containing information about the string, and the actual data associated with the string. The former structure (a struct Lisp_String) is a fixed-size structure and is managed the same way as all the other such types. This structure contains a pointer to the actual string data, which is stored in structures of type struct string_chars_block. Each string_chars_block consists of a pointer to a struct Lisp_String, followed by the data for that string, followed by another pointer to a Lisp_String, followed by the data for that string, etc. At GC time, the data in these blocks is compacted by searching sequentially through all the blocks and compressing out any holes created by unmarked strings. Strings that are more than a certain size (bigger than the size of a string_chars_block, although something like half as big might make more sense) are malloc()ed separately and not stored in string_chars_blocks. Furthermore, no one string stretches across two string_chars_blocks. Vectors are each malloc()ed separately as lcrecords. In the following discussion, we use conses, but it applies equally well to the other fixed-size types. We store cons cells inside of cons_blocks, allocating a new cons_block with malloc() whenever necessary. Cons cells reclaimed by GC are put on a free list to be reallocated before allocating any new cons cells from the latest cons_block. Each cons_block is just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least the versions in malloc.c and gmalloc.c) really allocates in units of powers of two and uses 4 bytes for its own overhead. What GC actually does is to search through all the cons_blocks, from the most recently allocated to the oldest, and put all cons cells that are not marked (whether or not they're already free) on a cons_free_list. The cons_free_list is a stack, and so the cons cells in the oldest-allocated cons_block end up at the head of the stack and are the first to be reallocated. If any cons_block is entirely free, it is freed with free() and its cons cells removed from the cons_free_list. Because the cons_free_list ends up basically in memory order, we have a high locality of reference (assuming a reasonable turnover of allocating and freeing) and have a reasonable probability of entirely freeing up cons_blocks that have been more recently allocated. This stage is called the "sweep stage" of GC, and is executed after the "mark stage", which involves starting from all places that are known to point to in-use Lisp objects (e.g. the obarray, where are all symbols are stored; the current catches and condition-cases; the backtrace list of currently executing functions; the gcpro list; etc.) and recursively marking all objects that are accessible. At the beginning of the sweep stage, the conses in the cons blocks are in one of three states: in use and marked, in use but not marked, and not in use (already freed). Any conses that are marked have been marked in the mark stage just executed, because as part of the sweep stage we unmark any marked objects. The way we tell whether or not a cons cell is in use is through the LRECORD_FREE_P macro. This uses a special lrecord type `lrecord_type_free', which is never associated with any valid object. Conses on the free_cons_list are threaded through a pointer stored in the conses themselves. Because the cons is still in a cons_block and needs to remain marked as not in use for the next time that GC happens, we need room to store both the "free" indicator and the chaining pointer. So this pointer is stored after the lrecord header (actually where C places a pointer after the lrecord header; they are not necessarily contiguous). This implies that all fixed-size types must be big enough to contain at least one pointer. This is true for all current fixed-size types, with the possible exception of Lisp_Floats, for which we define the meat of the struct using a union of a pointer and a double to ensure adequate space for the free list chain pointer. Some types of objects need additional "finalization" done when an object is converted from in use to not in use; this is the purpose of the ADDITIONAL_FREE_type macro. For example, markers need to be removed from the chain of markers that is kept in each buffer. This is because markers in a buffer automatically disappear if the marker is no longer referenced anywhere (the same does not apply to extents, however). WARNING: Things are in an extremely bizarre state when the ADDITIONAL_FREE_type macros are called, so beware! When ERROR_CHECK_GC is defined, we do things differently so as to maximize our chances of catching places where there is insufficient GCPROing. The thing we want to avoid is having an object that we're using but didn't GCPRO get freed by GC and then reallocated while we're in the process of using it -- this will result in something seemingly unrelated getting trashed, and is extremely difficult to track down. If the object gets freed but not reallocated, we can usually catch this because we set most of the bytes of a freed object to 0xDEADBEEF. (The lisp object type is set to the invalid type `lrecord_type_free', however, and a pointer used to chain freed objects together is stored after the lrecord header; we play some tricks with this pointer to make it more bogus, so crashes are more likely to occur right away.) We want freed objects to stay free as long as possible, so instead of doing what we do above, we maintain the free objects in a first-in first-out queue. We also don't recompute the free list each GC, unlike above; this ensures that the queue ordering is preserved. [This means that we are likely to have worse locality of reference, and that we can never free a frob block once it's allocated. (Even if we know that all cells in it are free, there's no easy way to remove all those cells from the free list because the objects on the free list are unlikely to be in memory order.)] Furthermore, we never take objects off the free list unless there's a large number (usually 1000, but varies depending on type) of them already on the list. This way, we ensure that an object that gets freed will remain free for the next 1000 (or whatever) times that an object of that type is allocated. */ #ifdef ALLOC_NO_POOLS # define TYPE_ALLOC_SIZE(type, structtype) 1 #else # define TYPE_ALLOC_SIZE(type, structtype) \ ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \ / sizeof (structtype)) #endif /* ALLOC_NO_POOLS */ #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \ \ struct type##_block \ { \ struct type##_block *prev; \ structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \ }; \ \ static struct type##_block *current_##type##_block; \ static int current_##type##_block_index; \ \ static Lisp_Free *type##_free_list; \ static Lisp_Free *type##_free_list_tail; \ \ static void \ init_##type##_alloc (void) \ { \ current_##type##_block = 0; \ current_##type##_block_index = \ countof (current_##type##_block->block); \ type##_free_list = 0; \ type##_free_list_tail = 0; \ } \ \ static int gc_count_num_##type##_in_use; \ static int gc_count_num_##type##_freelist #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \ if (current_##type##_block_index \ == countof (current_##type##_block->block)) \ { \ struct type##_block *AFTFB_new = (struct type##_block *) \ allocate_lisp_storage (sizeof (struct type##_block)); \ AFTFB_new->prev = current_##type##_block; \ current_##type##_block = AFTFB_new; \ current_##type##_block_index = 0; \ } \ (result) = \ &(current_##type##_block->block[current_##type##_block_index++]); \ } while (0) /* Allocate an instance of a type that is stored in blocks. TYPE is the "name" of the type, STRUCTTYPE is the corresponding structure type. */ #ifdef ERROR_CHECK_GC /* Note: if you get crashes in this function, suspect incorrect calls to free_cons() and friends. This happened once because the cons cell was not GC-protected and was getting collected before free_cons() was called. */ #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ if (gc_count_num_##type##_freelist > \ MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \ { \ result = (structtype *) type##_free_list; \ assert (LRECORD_FREE_P (result)); \ /* Before actually using the chain pointer, we complement \ all its bits; see PUT_FIXED_TYPE_ON_FREE_LIST(). */ \ type##_free_list = (Lisp_Free *) \ (~ (EMACS_UINT) (type##_free_list->chain)); \ gc_count_num_##type##_freelist--; \ } \ else \ ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ MARK_LRECORD_AS_NOT_FREE (result); \ } while (0) #else /* !ERROR_CHECK_GC */ #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ if (type##_free_list) \ { \ result = (structtype *) type##_free_list; \ type##_free_list = type##_free_list->chain; \ } \ else \ ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ MARK_LRECORD_AS_NOT_FREE (result); \ } while (0) #endif /* !ERROR_CHECK_GC */ #define ALLOCATE_FIXED_TYPE(type, structtype, result) \ do \ { \ ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ } while (0) #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \ do \ { \ ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ } while (0) /* Lisp_Free is the type to represent a free list member inside a frob block of any lisp object type. */ typedef struct Lisp_Free { struct lrecord_header lheader; struct Lisp_Free *chain; } Lisp_Free; #define LRECORD_FREE_P(ptr) \ (((struct lrecord_header *) ptr)->type == lrecord_type_free) #define MARK_LRECORD_AS_FREE(ptr) \ ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_free)) #ifdef ERROR_CHECK_GC #define MARK_LRECORD_AS_NOT_FREE(ptr) \ ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_undefined)) #else #define MARK_LRECORD_AS_NOT_FREE(ptr) DO_NOTHING #endif #ifdef ERROR_CHECK_GC #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ if (type##_free_list_tail) \ { \ /* When we store the chain pointer, we complement all \ its bits; this should significantly increase its \ bogosity in case someone tries to use the value, and \ should make us crash faster if someone overwrites the \ pointer because when it gets un-complemented in \ ALLOCATED_FIXED_TYPE(), the resulting pointer will be \ extremely bogus. */ \ type##_free_list_tail->chain = \ (Lisp_Free *) ~ (EMACS_UINT) (ptr); \ } \ else \ type##_free_list = (Lisp_Free *) (ptr); \ type##_free_list_tail = (Lisp_Free *) (ptr); \ } while (0) #else /* !ERROR_CHECK_GC */ #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ ((Lisp_Free *) (ptr))->chain = type##_free_list; \ type##_free_list = (Lisp_Free *) (ptr); \ } while (0) \ #endif /* !ERROR_CHECK_GC */ /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */ #define FREE_FIXED_TYPE(type, structtype, ptr) do { \ structtype *FFT_ptr = (ptr); \ gc_checking_assert (!LRECORD_FREE_P (FFT_ptr)); \ gc_checking_assert (!DUMPEDP (FFT_ptr)); \ ADDITIONAL_FREE_##type (FFT_ptr); \ deadbeef_memory (FFT_ptr, sizeof (structtype)); \ PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \ MARK_LRECORD_AS_FREE (FFT_ptr); \ } while (0) #endif /* NEW_GC */ #ifdef NEW_GC #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(lo, type, structtype, ptr) \ free_normal_lisp_object (lo) #else /* not NEW_GC */ /* Like FREE_FIXED_TYPE() but used when we are explicitly freeing a structure through free_cons(), free_marker(), etc. rather than through the normal process of sweeping. We attempt to undo the changes made to the allocation counters as a result of this structure being allocated. This is not completely necessary but helps keep things saner: e.g. this way, repeatedly allocating and freeing a cons will not result in the consing-since-gc counter advancing, which would cause a GC and somewhat defeat the purpose of explicitly freeing. We also disable this mechanism entirely when ALLOC_NO_POOLS is set, which is used for Purify and the like. */ #ifndef ALLOC_NO_POOLS #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(lo, type, structtype, ptr) \ do { FREE_FIXED_TYPE (type, structtype, ptr); \ DECREMENT_CONS_COUNTER (sizeof (structtype)); \ gc_count_num_##type##_freelist++; \ } while (0) #else #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(lo, type, structtype, ptr) #endif #endif /* (not) NEW_GC */ #ifdef NEW_GC #define ALLOC_FROB_BLOCK_LISP_OBJECT_1(type, lisp_type, var, lrec_ptr, \ lheader) \ do { \ (var) = (lisp_type *) XPNTR (ALLOC_NORMAL_LISP_OBJECT (type)); \ } while (0) #define NOSEEUM_ALLOC_FROB_BLOCK_LISP_OBJECT_1(type, lisp_type, var, \ lrec_ptr, lheader) \ do { \ (var) = (lisp_type *) XPNTR (noseeum_alloc_lrecord (lrec_ptr)); \ } while (0) #else /* not NEW_GC */ #define ALLOC_FROB_BLOCK_LISP_OBJECT_1(type, lisp_type, var, lrec_ptr, \ lheader) \ do \ { \ ALLOCATE_FIXED_TYPE (type, lisp_type, var); \ set_lheader_implementation (&(var)->lheader, lrec_ptr); \ } while (0) #define NOSEEUM_ALLOC_FROB_BLOCK_LISP_OBJECT_1(type, lisp_type, var, \ lrec_ptr, lheader) \ do \ { \ NOSEEUM_ALLOCATE_FIXED_TYPE (type, lisp_type, var); \ set_lheader_implementation (&(var)->lheader, lrec_ptr); \ } while (0) #endif /* not NEW_GC */ #define ALLOC_FROB_BLOCK_LISP_OBJECT(type, lisp_type, var, lrec_ptr) \ ALLOC_FROB_BLOCK_LISP_OBJECT_1(type, lisp_type, var, lrec_ptr, lheader) #define NOSEEUM_ALLOC_FROB_BLOCK_LISP_OBJECT(type, lisp_type, var, lrec_ptr) \ NOSEEUM_ALLOC_FROB_BLOCK_LISP_OBJECT_1(type, lisp_type, var, lrec_ptr, \ lheader) /************************************************************************/ /* Cons allocation */ /************************************************************************/ DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons); /* conses are used and freed so often that we set this really high */ /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */ #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000 static Lisp_Object mark_cons (Lisp_Object obj) { if (NILP (XCDR (obj))) return XCAR (obj); mark_object (XCAR (obj)); return XCDR (obj); } static int cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth, int foldcase) { depth++; while (internal_equal_0 (XCAR (ob1), XCAR (ob2), depth, foldcase)) { ob1 = XCDR (ob1); ob2 = XCDR (ob2); if (! CONSP (ob1) || ! CONSP (ob2)) return internal_equal_0 (ob1, ob2, depth, foldcase); } return 0; } extern Elemcount print_preprocess_inchash_eq (Lisp_Object obj, Lisp_Object table, Elemcount *seen_object_count); static void cons_print_preprocess (Lisp_Object object, Lisp_Object print_number_table, Elemcount *seen_object_count) { /* Special-case conses, don't recurse down the cdr if the cdr is a cons. */ for (;;) { PRINT_PREPROCESS (XCAR (object), print_number_table, seen_object_count); object = XCDR (object); if (!CONSP (object)) { break; } if (print_preprocess_inchash_eq (object, print_number_table, seen_object_count) > 1) { return; } } PRINT_PREPROCESS (object, print_number_table, seen_object_count); } static void cons_nsubst_structures_descend (Lisp_Object new_, Lisp_Object old, Lisp_Object object, Lisp_Object number_table, Boolint test_not_unboundp) { /* No need for a special case, nsubst_structures_descend is called much less frequently than is print_preprocess. */ if (EQ (old, XCAR (object)) == test_not_unboundp) { XSETCAR (object, new_); } else if (LRECORDP (XCAR (object)) && HAS_OBJECT_METH_P (XCAR (object), nsubst_structures_descend)) { nsubst_structures_descend (new_, old, XCAR (object), number_table, test_not_unboundp); } if (EQ (old, XCDR (object)) == test_not_unboundp) { XSETCDR (object, new_); } else if (LRECORDP (XCDR (object)) && HAS_OBJECT_METH_P (XCDR (object), nsubst_structures_descend)) { nsubst_structures_descend (new_, old, XCDR (object), number_table, test_not_unboundp); } } static const struct memory_description cons_description[] = { { XD_LISP_OBJECT, offsetof (Lisp_Cons, car_) }, { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr_) }, { XD_END } }; DEFINE_DUMPABLE_FROB_BLOCK_LISP_OBJECT ("cons", cons, mark_cons, print_cons, 0, cons_equal, /* * No `hash' method needed. * internal_hash knows how to * handle conses. */ 0, cons_description, Lisp_Cons); DEFUN ("cons", Fcons, 2, 2, 0, /* Create a new cons cell, give it CAR and CDR as components, and return it. A cons cell is a Lisp object (an area in memory) made up of two pointers called the CAR and the CDR. Each of these pointers can point to any other Lisp object. The common Lisp data type, the list, is a specially-structured series of cons cells. The pointers are accessed from Lisp with `car' and `cdr', and mutated with `setcar' and `setcdr' respectively. For historical reasons, the aliases `rplaca' and `rplacd' (for `setcar' and `setcdr') are supported. */ (car, cdr)) { /* This cannot GC. */ Lisp_Object val; Lisp_Cons *c; ALLOC_FROB_BLOCK_LISP_OBJECT (cons, Lisp_Cons, c, &lrecord_cons); val = wrap_cons (c); XSETCAR (val, car); XSETCDR (val, cdr); return val; } /* This is identical to Fcons() but it used for conses that we're going to free later, and is useful when trying to track down "real" consing. */ Lisp_Object noseeum_cons (Lisp_Object car, Lisp_Object cdr) { Lisp_Object val; Lisp_Cons *c; NOSEEUM_ALLOC_FROB_BLOCK_LISP_OBJECT (cons, Lisp_Cons, c, &lrecord_cons); val = wrap_cons (c); XCAR (val) = car; XCDR (val) = cdr; return val; } DEFUN ("list", Flist, 0, MANY, 0, /* Return a newly created list with specified ARGS as elements. Any number of arguments, even zero arguments, are allowed. arguments: (&rest ARGS) */ (int nargs, Lisp_Object *args)) { Lisp_Object val = Qnil; Lisp_Object *argp = args + nargs; while (argp > args) val = Fcons (*--argp, val); return val; } Lisp_Object list1 (Lisp_Object obj0) { /* This cannot GC. */ return Fcons (obj0, Qnil); } Lisp_Object list2 (Lisp_Object obj0, Lisp_Object obj1) { /* This cannot GC. */ return Fcons (obj0, Fcons (obj1, Qnil)); } Lisp_Object list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) { /* This cannot GC. */ return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil))); } Lisp_Object cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) { /* This cannot GC. */ return Fcons (obj0, Fcons (obj1, obj2)); } DEFUN ("acons", Facons, 3, 3, 0, /* Return a new alist created by prepending (KEY . VALUE) to ALIST. */ (key, value, alist)) { return Fcons (Fcons (key, value), alist); } Lisp_Object list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3) { /* This cannot GC. */ return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil)))); } Lisp_Object list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, Lisp_Object obj4) { /* This cannot GC. */ return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil))))); } Lisp_Object list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5) { /* This cannot GC. */ return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil)))))); } /* Return a list of arbitrary length, terminated by Qunbound. */ Lisp_Object listu (Lisp_Object first, ...) { Lisp_Object obj = Qnil; if (!UNBOUNDP (first)) { va_list va; Lisp_Object last, val; last = obj = Fcons (first, Qnil); va_start (va, first); val = va_arg (va, Lisp_Object); while (!UNBOUNDP (val)) { last = XCDR (last) = Fcons (val, Qnil); val = va_arg (va, Lisp_Object); } va_end (va); } return obj; } /* Return a list of arbitrary length, with length specified and remaining args making up the list. */ Lisp_Object listn (int num_args, ...) { Lisp_Object obj = Qnil; if (num_args > 0) { va_list va; Lisp_Object last; int i; va_start (va, num_args); last = obj = Fcons (va_arg (va, Lisp_Object), Qnil); for (i = 1; i < num_args; i++) last = XCDR (last) = Fcons (va_arg (va, Lisp_Object), Qnil); va_end (va); } return obj; } /* Return a list of arbitrary length, with length specified and an array of elements. */ DEFUN ("make-list", Fmake_list, 2, 2, 0, /* Return a new list of length LENGTH, with each element being OBJECT. */ (length, object)) { Lisp_Object val = Qnil; Elemcount size; check_integer_range (length, Qzero, make_fixnum (MOST_POSITIVE_FIXNUM)); size = XFIXNUM (length); while (size--) val = Fcons (object, val); return val; } /************************************************************************/ /* Float allocation */ /************************************************************************/ /*** With enhanced number support, these are short floats */ DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000 Lisp_Object make_float (double float_value) { Lisp_Float *f; ALLOC_FROB_BLOCK_LISP_OBJECT (float, Lisp_Float, f, &lrecord_float); /* Avoid dump-time `uninitialized memory read' purify warnings. */ if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f)) zero_nonsized_lisp_object (wrap_float (f)); float_data (f) = float_value; return wrap_float (f); } /************************************************************************/ /* Enhanced number allocation */ /************************************************************************/ /*** Bignum ***/ #ifdef HAVE_BIGNUM DECLARE_FIXED_TYPE_ALLOC (bignum, Lisp_Bignum); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bignum 250 /* WARNING: This function returns a bignum even if its argument fits into a fixnum. See Fcanonicalize_number(). */ Lisp_Object make_bignum (long bignum_value) { Lisp_Bignum *b; ALLOC_FROB_BLOCK_LISP_OBJECT (bignum, Lisp_Bignum, b, &lrecord_bignum); bignum_init (bignum_data (b)); bignum_set_long (bignum_data (b), bignum_value); return wrap_bignum (b); } /* WARNING: This function returns a bignum even if its argument fits into a fixnum. See Fcanonicalize_number(). */ Lisp_Object make_bignum_un (unsigned long bignum_value) { Lisp_Bignum *b; ALLOC_FROB_BLOCK_LISP_OBJECT (bignum, Lisp_Bignum, b, &lrecord_bignum); bignum_init (bignum_data (b)); bignum_set_ulong (bignum_data (b), bignum_value); return wrap_bignum (b); } /* WARNING: This function returns a bignum even if its argument fits into a fixnum. See Fcanonicalize_number(). */ Lisp_Object make_bignum_ll (long long bignum_value) { Lisp_Bignum *b; ALLOC_FROB_BLOCK_LISP_OBJECT (bignum, Lisp_Bignum, b, &lrecord_bignum); bignum_init (bignum_data (b)); bignum_set_llong (bignum_data (b), bignum_value); return wrap_bignum (b); } /* WARNING: This function returns a bignum even if its argument fits into a fixnum. See Fcanonicalize_number(). */ Lisp_Object make_bignum_ull (unsigned long long bignum_value) { Lisp_Bignum *b; ALLOC_FROB_BLOCK_LISP_OBJECT (bignum, Lisp_Bignum, b, &lrecord_bignum); bignum_init (bignum_data (b)); bignum_set_ullong (bignum_data (b), bignum_value); return wrap_bignum (b); } /* WARNING: This function returns a bignum even if its argument fits into a fixnum. See Fcanonicalize_number(). */ Lisp_Object make_bignum_bg (bignum bg) { Lisp_Bignum *b; ALLOC_FROB_BLOCK_LISP_OBJECT (bignum, Lisp_Bignum, b, &lrecord_bignum); bignum_init (bignum_data (b)); bignum_set (bignum_data (b), bg); return wrap_bignum (b); } #endif /* HAVE_BIGNUM */ /*** Ratio ***/ #ifdef HAVE_RATIO DECLARE_FIXED_TYPE_ALLOC (ratio, Lisp_Ratio); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_ratio 250 Lisp_Object make_ratio (long numerator, unsigned long denominator) { Lisp_Ratio *r; ALLOC_FROB_BLOCK_LISP_OBJECT (ratio, Lisp_Ratio, r, &lrecord_ratio); ratio_init (ratio_data (r)); ratio_set_long_ulong (ratio_data (r), numerator, denominator); ratio_canonicalize (ratio_data (r)); return wrap_ratio (r); } Lisp_Object make_ratio_bg (bignum numerator, bignum denominator) { Lisp_Ratio *r; ALLOC_FROB_BLOCK_LISP_OBJECT (ratio, Lisp_Ratio, r, &lrecord_ratio); ratio_init (ratio_data (r)); ratio_set_bignum_bignum (ratio_data (r), numerator, denominator); ratio_canonicalize (ratio_data (r)); return wrap_ratio (r); } Lisp_Object make_ratio_rt (ratio rat) { Lisp_Ratio *r; ALLOC_FROB_BLOCK_LISP_OBJECT (ratio, Lisp_Ratio, r, &lrecord_ratio); ratio_init (ratio_data (r)); ratio_set (ratio_data (r), rat); return wrap_ratio (r); } #endif /* HAVE_RATIO */ /*** Bigfloat ***/ #ifdef HAVE_BIGFLOAT DECLARE_FIXED_TYPE_ALLOC (bigfloat, Lisp_Bigfloat); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bigfloat 250 /* This function creates a bigfloat with the default precision if the PRECISION argument is zero. */ Lisp_Object make_bigfloat (double float_value, unsigned long precision) { Lisp_Bigfloat *f; ALLOC_FROB_BLOCK_LISP_OBJECT (bigfloat, Lisp_Bigfloat, f, &lrecord_bigfloat); if (precision == 0UL) bigfloat_init (bigfloat_data (f)); else bigfloat_init_prec (bigfloat_data (f), precision); bigfloat_set_double (bigfloat_data (f), float_value); return wrap_bigfloat (f); } /* This function creates a bigfloat with the precision of its argument */ Lisp_Object make_bigfloat_bf (bigfloat float_value) { Lisp_Bigfloat *f; ALLOC_FROB_BLOCK_LISP_OBJECT (bigfloat, Lisp_Bigfloat, f, &lrecord_bigfloat); bigfloat_init_prec (bigfloat_data (f), bigfloat_get_prec (float_value)); bigfloat_set (bigfloat_data (f), float_value); return wrap_bigfloat (f); } #endif /* HAVE_BIGFLOAT */ /************************************************************************/ /* Vector allocation */ /************************************************************************/ static Lisp_Object mark_vector (Lisp_Object obj) { Lisp_Vector *ptr = XVECTOR (obj); int len = vector_length (ptr); int i; for (i = 0; i < len - 1; i++) mark_object (ptr->contents[i]); return (len > 0) ? ptr->contents[len - 1] : Qnil; } static Bytecount size_vector (Lisp_Object obj) { return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents, XVECTOR (obj)->size); } static int vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth, int foldcase) { int len = XVECTOR_LENGTH (obj1); if (len != XVECTOR_LENGTH (obj2)) return 0; { Lisp_Object *ptr1 = XVECTOR_DATA (obj1); Lisp_Object *ptr2 = XVECTOR_DATA (obj2); while (len--) if (!internal_equal_0 (*ptr1++, *ptr2++, depth + 1, foldcase)) return 0; } return 1; } static Hashcode vector_hash (Lisp_Object obj, int depth, Boolint equalp) { return HASH2 (XVECTOR_LENGTH (obj), internal_array_hash (XVECTOR_DATA (obj), XVECTOR_LENGTH (obj), depth + 1, equalp)); } static void vector_print_preprocess (Lisp_Object object, Lisp_Object print_number_table, Elemcount *seen_object_count) { Elemcount ii, len; for (ii = 0, len = XVECTOR_LENGTH (object); ii < len; ii++) { PRINT_PREPROCESS (XVECTOR_DATA (object)[ii], print_number_table, seen_object_count); } } static void vector_nsubst_structures_descend (Lisp_Object new_, Lisp_Object old, Lisp_Object object, Lisp_Object number_table, Boolint test_not_unboundp) { Elemcount ii = XVECTOR_LENGTH (object); Lisp_Object *vdata = XVECTOR_DATA (object); while (ii > 0) { --ii; if (EQ (vdata[ii], old) == test_not_unboundp) { vdata[ii] = new_; } else if (LRECORDP (vdata[ii]) && HAS_OBJECT_METH_P (vdata[ii], nsubst_structures_descend)) { nsubst_structures_descend (new_, old, vdata[ii], number_table, test_not_unboundp); } } } static const struct memory_description vector_description[] = { { XD_LONG, offsetof (Lisp_Vector, size) }, { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) }, { XD_END } }; DEFINE_DUMPABLE_SIZABLE_LISP_OBJECT ("vector", vector, mark_vector, print_vector, 0, vector_equal, vector_hash, vector_description, size_vector, Lisp_Vector); /* #### should allocate `small' vectors from a frob-block */ static Lisp_Vector * make_vector_internal (Elemcount sizei) { /* no `next' field; we use lcrecords */ Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents, sizei); Lisp_Object obj = ALLOC_SIZED_LISP_OBJECT (sizem, vector); Lisp_Vector *p = XVECTOR (obj); p->size = sizei; return p; } Lisp_Object make_vector (Elemcount length, Lisp_Object object) { Lisp_Vector *vecp = make_vector_internal (length); Lisp_Object *p = vector_data (vecp); while (length--) *p++ = object; return wrap_vector (vecp); } DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /* Return a new vector of length LENGTH, with each element being OBJECT. See also the function `vector'. */ (length, object)) { check_integer_range (length, Qzero, make_fixnum (ARRAY_DIMENSION_LIMIT)); return make_vector (XFIXNUM (length), object); } DEFUN ("vector", Fvector, 0, MANY, 0, /* Return a newly created vector with specified ARGS as elements. Any number of arguments, even zero arguments, are allowed. arguments: (&rest ARGS) */ (int nargs, Lisp_Object *args)) { Lisp_Vector *vecp = make_vector_internal (nargs); Lisp_Object *p = vector_data (vecp); while (nargs--) *p++ = *args++; return wrap_vector (vecp); } Lisp_Object vector1 (Lisp_Object obj0) { return Fvector (1, &obj0); } Lisp_Object vector2 (Lisp_Object obj0, Lisp_Object obj1) { Lisp_Object args[2]; args[0] = obj0; args[1] = obj1; return Fvector (2, args); } Lisp_Object vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) { Lisp_Object args[3]; args[0] = obj0; args[1] = obj1; args[2] = obj2; return Fvector (3, args); } #if 0 /* currently unused */ Lisp_Object vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3) { Lisp_Object args[4]; args[0] = obj0; args[1] = obj1; args[2] = obj2; args[3] = obj3; return Fvector (4, args); } Lisp_Object vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, Lisp_Object obj4) { Lisp_Object args[5]; args[0] = obj0; args[1] = obj1; args[2] = obj2; args[3] = obj3; args[4] = obj4; return Fvector (5, args); } Lisp_Object vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5) { Lisp_Object args[6]; args[0] = obj0; args[1] = obj1; args[2] = obj2; args[3] = obj3; args[4] = obj4; args[5] = obj5; return Fvector (6, args); } Lisp_Object vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, Lisp_Object obj6) { Lisp_Object args[7]; args[0] = obj0; args[1] = obj1; args[2] = obj2; args[3] = obj3; args[4] = obj4; args[5] = obj5; args[6] = obj6; return Fvector (7, args); } Lisp_Object vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, Lisp_Object obj6, Lisp_Object obj7) { Lisp_Object args[8]; args[0] = obj0; args[1] = obj1; args[2] = obj2; args[3] = obj3; args[4] = obj4; args[5] = obj5; args[6] = obj6; args[7] = obj7; return Fvector (8, args); } #endif /* unused */ /************************************************************************/ /* Bit Vector allocation */ /************************************************************************/ static Lisp_Object mark_bit_vector (Lisp_Object UNUSED (obj)) { return Qnil; } static void print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int UNUSED (escapeflag)) { Elemcount i; Lisp_Bit_Vector *v = XBIT_VECTOR (obj); Elemcount len = bit_vector_length (v); Elemcount last = len; if (FIXNUMP (Vprint_length)) last = min (len, XFIXNUM (Vprint_length)); write_ascstring (printcharfun, "#*"); for (i = 0; i < last; i++) { if (bit_vector_bit (v, i)) write_ascstring (printcharfun, "1"); else write_ascstring (printcharfun, "0"); } if (last != len) write_ascstring (printcharfun, "..."); } static int bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth), int UNUSED (foldcase)) { Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1); Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2); return ((bit_vector_length (v1) == bit_vector_length (v2)) && !memcmp (v1->bits, v2->bits, BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) * sizeof (long))); } /* This needs to be algorithmically identical to internal_array_hash in elhash.c when equalp is one, so arrays and bit vectors with the same contents hash the same. It would be possible to enforce this by giving internal_ARRAYLIKE_hash its own file and including it twice, but right now that doesn't seem worth it. */ static Hashcode internal_bit_vector_equalp_hash (Lisp_Bit_Vector *v) { int ii, size = bit_vector_length (v); Hashcode hash = 0; if (size <= 5) { for (ii = 0; ii < size; ii++) { hash = HASH2 (hash, FLOAT_HASHCODE_FROM_DOUBLE ((double) (bit_vector_bit (v, ii)))); } return hash; } /* just pick five elements scattered throughout the array. A slightly better approach would be to offset by some noise factor from the points chosen below. */ for (ii = 0; ii < 5; ii++) hash = HASH2 (hash, FLOAT_HASHCODE_FROM_DOUBLE ((double) (bit_vector_bit (v, ii * size / 5)))); return hash; } static Hashcode bit_vector_hash (Lisp_Object obj, int UNUSED (depth), Boolint equalp) { Lisp_Bit_Vector *v = XBIT_VECTOR (obj); if (equalp) { return HASH2 (bit_vector_length (v), internal_bit_vector_equalp_hash (v)); } return HASH2 (bit_vector_length (v), memory_hash (v->bits, BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) * sizeof (long))); } static Bytecount size_bit_vector (Lisp_Object obj) { Lisp_Bit_Vector *v = XBIT_VECTOR (obj); return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, unsigned long, bits, BIT_VECTOR_LONG_STORAGE (bit_vector_length (v))); } static const struct memory_description bit_vector_description[] = { { XD_END } }; DEFINE_DUMPABLE_SIZABLE_LISP_OBJECT ("bit-vector", bit_vector, mark_bit_vector, print_bit_vector, 0, bit_vector_equal, bit_vector_hash, bit_vector_description, size_bit_vector, Lisp_Bit_Vector); /* #### should allocate `small' bit vectors from a frob-block */ static Lisp_Bit_Vector * make_bit_vector_internal (Elemcount sizei) { /* no `next' field; we use lcrecords */ Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (sizei); Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, unsigned long, bits, num_longs); Lisp_Object obj = ALLOC_SIZED_LISP_OBJECT (sizem, bit_vector); Lisp_Bit_Vector *p = XBIT_VECTOR (obj); bit_vector_length (p) = sizei; return p; } Lisp_Object make_bit_vector (Elemcount length, Lisp_Object bit) { Lisp_Bit_Vector *p = make_bit_vector_internal (length); Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (length); CHECK_BIT (bit); if (ZEROP (bit)) memset (p->bits, 0, num_longs * sizeof (long)); else { Elemcount bits_in_last = length & (LONGBITS_POWER_OF_2 - 1); memset (p->bits, ~0, num_longs * sizeof (long)); /* But we have to make sure that the unused bits in the last long are 0, so that equal/hash is easy. */ if (bits_in_last) p->bits[num_longs - 1] &= (1 << bits_in_last) - 1; } return wrap_bit_vector (p); } Lisp_Object make_bit_vector_from_byte_vector (unsigned char *bytevec, Elemcount length) { Elemcount i; Lisp_Bit_Vector *p = make_bit_vector_internal (length); for (i = 0; i < length; i++) set_bit_vector_bit (p, i, bytevec[i]); return wrap_bit_vector (p); } DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /* Return a new bit vector of length LENGTH. with each bit set to BIT. BIT must be one of the integers 0 or 1. See also the function `bit-vector'. */ (length, bit)) { check_integer_range (length, Qzero, make_fixnum (ARRAY_DIMENSION_LIMIT)); return make_bit_vector (XFIXNUM (length), bit); } DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /* Return a newly created bit vector with specified ARGS as elements. Any number of arguments, even zero arguments, are allowed. Each argument must be one of the integers 0 or 1. arguments: (&rest ARGS) */ (int nargs, Lisp_Object *args)) { int i; Lisp_Bit_Vector *p = make_bit_vector_internal (nargs); for (i = 0; i < nargs; i++) { CHECK_BIT (args[i]); set_bit_vector_bit (p, i, !ZEROP (args[i])); } return wrap_bit_vector (p); } /************************************************************************/ /* Compiled-function allocation */ /************************************************************************/ DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000 static Lisp_Object make_compiled_function (void) { Lisp_Compiled_Function *f; ALLOC_FROB_BLOCK_LISP_OBJECT (compiled_function, Lisp_Compiled_Function, f, &lrecord_compiled_function); f->stack_depth = 0; f->specpdl_depth = 0; f->flags.documentationp = 0; f->flags.interactivep = 0; f->flags.domainp = 0; /* I18N3 */ f->instructions = Qzero; f->constants = Qzero; f->arglist = Qnil; #ifdef NEW_GC f->arguments = Qnil; #else /* not NEW_GC */ f->args = NULL; #endif /* not NEW_GC */ f->max_args = f->min_args = f->args_in_array = 0; f->doc_and_interactive = Qnil; #ifdef COMPILED_FUNCTION_ANNOTATION_HACK f->annotated = Qnil; #endif return wrap_compiled_function (f); } DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /* Return a new compiled-function object. Note that, unlike all other emacs-lisp functions, calling this with five arguments is NOT the same as calling it with six arguments, the last of which is nil. If the INTERACTIVE arg is specified as nil, then that means that this function was defined with `(interactive)'. If the arg is not specified, then that means the function is not interactive. This is terrible behavior which is retained for compatibility with old `.elc' files which expect these semantics. arguments: (ARGLIST INSTRUCTIONS CONSTANTS STACK-DEPTH &optional DOC-STRING INTERACTIVE) */ (int nargs, Lisp_Object *args)) { /* In a non-insane world this function would have this arglist... (arglist instructions constants stack_depth &optional doc_string interactive) */ Lisp_Object fun = make_compiled_function (); Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun); Lisp_Object arglist = args[0]; Lisp_Object instructions = args[1]; Lisp_Object constants = args[2]; Lisp_Object stack_depth = args[3]; Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil; Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound; if (nargs < 4 || nargs > 6) return Fsignal (Qwrong_number_of_arguments, list2 (intern ("make-byte-code"), make_fixnum (nargs))); /* Check for valid formal parameter list now, to allow us to use SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */ { EXTERNAL_LIST_LOOP_2 (symbol, arglist) { CHECK_SYMBOL (symbol); if (EQ (symbol, Qt) || EQ (symbol, Qnil) || SYMBOL_IS_KEYWORD (symbol)) invalid_constant_2 ("Invalid constant symbol in formal parameter list", symbol, arglist); } } f->arglist = arglist; /* `instructions' is a string or a cons (string . int) for a lazy-loaded function. */ if (CONSP (instructions)) { CHECK_STRING (XCAR (instructions)); CHECK_FIXNUM (XCDR (instructions)); } else { CHECK_STRING (instructions); } f->instructions = instructions; if (!NILP (constants)) CHECK_VECTOR (constants); f->constants = constants; check_integer_range (stack_depth, Qzero, make_fixnum (USHRT_MAX)); f->stack_depth = (unsigned short) XFIXNUM (stack_depth); #ifdef COMPILED_FUNCTION_ANNOTATION_HACK f->annotated = Vload_file_name_internal; #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */ /* doc_string may be nil, string, int, or a cons (string . int). interactive may be list or string (or unbound). */ f->doc_and_interactive = Qunbound; #ifdef I18N3 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0) f->doc_and_interactive = Vfile_domain; #endif if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0) { f->doc_and_interactive = (UNBOUNDP (f->doc_and_interactive) ? interactive : Fcons (interactive, f->doc_and_interactive)); } if ((f->flags.documentationp = !NILP (doc_string)) != 0) { f->doc_and_interactive = (UNBOUNDP (f->doc_and_interactive) ? doc_string : Fcons (doc_string, f->doc_and_interactive)); } if (UNBOUNDP (f->doc_and_interactive)) f->doc_and_interactive = Qnil; return fun; } /************************************************************************/ /* Symbol allocation */ /************************************************************************/ DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /* Return a newly allocated uninterned symbol whose name is NAME. Its value and function definition are void, and its property list is nil. */ (name)) { Lisp_Symbol *p; CHECK_STRING (name); ALLOC_FROB_BLOCK_LISP_OBJECT_1 (symbol, Lisp_Symbol, p, &lrecord_symbol, u.lheader); p->u.v.package_count = 0; p->u.v.first_package_id = 0; p->name = name; p->plist = Qnil; p->value = Qunbound; p->function = Qunbound; symbol_next (p) = 0; return wrap_symbol (p); } /************************************************************************/ /* Extent allocation */ /************************************************************************/ DECLARE_FIXED_TYPE_ALLOC (extent, struct extent); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000 struct extent * allocate_extent (void) { struct extent *e; ALLOC_FROB_BLOCK_LISP_OBJECT (extent, struct extent, e, &lrecord_extent); extent_object (e) = Qnil; set_extent_start (e, -1); set_extent_end (e, -1); e->plist = Qnil; xzero (e->flags); extent_face (e) = Qnil; e->flags.end_open = 1; /* default is for endpoints to behave like markers */ e->flags.detachable = 1; return e; } /************************************************************************/ /* Event allocation */ /************************************************************************/ DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000 Lisp_Object allocate_event (void) { Lisp_Event *e; ALLOC_FROB_BLOCK_LISP_OBJECT (event, Lisp_Event, e, &lrecord_event); return wrap_event (e); } #ifdef EVENT_DATA_AS_OBJECTS DECLARE_FIXED_TYPE_ALLOC (key_data, Lisp_Key_Data); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_key_data 1000 Lisp_Object make_key_data (void) { Lisp_Key_Data *d; ALLOC_FROB_BLOCK_LISP_OBJECT (key_data, Lisp_Key_Data, d, &lrecord_key_data); zero_nonsized_lisp_object (wrap_key_data (d)); d->keysym = Qnil; return wrap_key_data (d); } DECLARE_FIXED_TYPE_ALLOC (button_data, Lisp_Button_Data); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_button_data 1000 Lisp_Object make_button_data (void) { Lisp_Button_Data *d; ALLOC_FROB_BLOCK_LISP_OBJECT (button_data, Lisp_Button_Data, d, &lrecord_button_data); zero_nonsized_lisp_object (wrap_button_data (d)); return wrap_button_data (d); } DECLARE_FIXED_TYPE_ALLOC (motion_data, Lisp_Motion_Data); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_motion_data 1000 Lisp_Object make_motion_data (void) { Lisp_Motion_Data *d; ALLOC_FROB_BLOCK_LISP_OBJECT (motion_data, Lisp_Motion_Data, d, &lrecord_motion_data); zero_nonsized_lisp_object (wrap_motion_data (d)); return wrap_motion_data (d); } DECLARE_FIXED_TYPE_ALLOC (process_data, Lisp_Process_Data); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_process_data 1000 Lisp_Object make_process_data (void) { Lisp_Process_Data *d; ALLOC_FROB_BLOCK_LISP_OBJECT (process_data, Lisp_Process_Data, d, &lrecord_process_data); zero_nonsized_lisp_object (wrap_process_data (d)); d->process = Qnil; return wrap_process_data (d); } DECLARE_FIXED_TYPE_ALLOC (timeout_data, Lisp_Timeout_Data); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_timeout_data 1000 Lisp_Object make_timeout_data (void) { Lisp_Timeout_Data *d; ALLOC_FROB_BLOCK_LISP_OBJECT (timeout_data, Lisp_Timeout_Data, d, &lrecord_timeout_data); zero_nonsized_lisp_object (wrap_timeout_data (d)); d->function = Qnil; d->object = Qnil; return wrap_timeout_data (d); } DECLARE_FIXED_TYPE_ALLOC (magic_data, Lisp_Magic_Data); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_data 1000 Lisp_Object make_magic_data (void) { Lisp_Magic_Data *d; ALLOC_FROB_BLOCK_LISP_OBJECT (magic_data, Lisp_Magic_Data, d, &lrecord_magic_data); zero_nonsized_lisp_object (wrap_magic_data (d)); return wrap_magic_data (d); } DECLARE_FIXED_TYPE_ALLOC (magic_eval_data, Lisp_Magic_Eval_Data); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_eval_data 1000 Lisp_Object make_magic_eval_data (void) { Lisp_Magic_Eval_Data *d; ALLOC_FROB_BLOCK_LISP_OBJECT (magic_eval_data, Lisp_Magic_Eval_Data, d, &lrecord_magic_eval_data); zero_nonsized_lisp_object (wrap_magic_eval_data (d)); d->object = Qnil; return wrap_magic_eval_data (d); } DECLARE_FIXED_TYPE_ALLOC (eval_data, Lisp_Eval_Data); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_eval_data 1000 Lisp_Object make_eval_data (void) { Lisp_Eval_Data *d; ALLOC_FROB_BLOCK_LISP_OBJECT (eval_data, Lisp_Eval_Data, d, &lrecord_eval_data); zero_nonsized_lisp_object (wrap_eval_data (d)); d->function = Qnil; d->object = Qnil; return wrap_eval_data (d); } DECLARE_FIXED_TYPE_ALLOC (misc_user_data, Lisp_Misc_User_Data); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_misc_user_data 1000 Lisp_Object make_misc_user_data (void) { Lisp_Misc_User_Data *d; ALLOC_FROB_BLOCK_LISP_OBJECT (misc_user_data, Lisp_Misc_User_Data, d, &lrecord_misc_user_data); zero_nonsized_lisp_object (wrap_misc_user_data (d)); d->function = Qnil; d->object = Qnil; return wrap_misc_user_data (d); } #endif /* EVENT_DATA_AS_OBJECTS */ /************************************************************************/ /* Marker allocation */ /************************************************************************/ DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker); #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /* Return a new marker which does not point at any place. */ ()) { Lisp_Marker *p; ALLOC_FROB_BLOCK_LISP_OBJECT (marker, Lisp_Marker, p, &lrecord_marker); p->buffer = 0; p->membpos = 0; marker_next (p) = 0; marker_prev (p) = 0; p->insertion_type = 0; return wrap_marker (p); } Lisp_Object noseeum_make_marker (void) { Lisp_Marker *p; NOSEEUM_ALLOC_FROB_BLOCK_LISP_OBJECT (marker, Lisp_Marker, p, &lrecord_marker); p->buffer = 0; p->membpos = 0; marker_next (p) = 0; marker_prev (p) = 0; p->insertion_type = 0; return wrap_marker (p); } /************************************************************************/ /* String allocation */ /************************************************************************/ /* The data for "short" strings generally resides inside of structs of type string_chars_block. The Lisp_String structure is allocated just like any other frob-block lrecord, and these are freelisted when they get garbage collected. The data for short strings get compacted, but the data for large strings do not. Previously Lisp_String structures were relocated, but this caused a lot of bus-errors because the C code didn't include enough GCPRO's for strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so that the reference would get relocated). This new method makes things somewhat bigger, but it is MUCH safer. */ DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String); /* strings are used and freed quite often */ /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */ #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000 static Lisp_Object mark_string (Lisp_Object obj) { if (CONSP (XSTRING_PLIST (obj)) && EXTENT_INFOP (XCAR (XSTRING_PLIST (obj)))) flush_cached_extent_info (XCAR (XSTRING_PLIST (obj))); return XSTRING_PLIST (obj); } static int string_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth), int foldcase) { Bytecount len; if (foldcase) return !lisp_strcasecmp_i18n (obj1, obj2); else return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) && !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len)); } static const struct memory_description string_description[] = { #ifdef NEW_GC { XD_LISP_OBJECT, offsetof (Lisp_String, data_object) }, #else /* not NEW_GC */ { XD_BYTECOUNT, offsetof (Lisp_String, size_) }, { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data_), XD_INDIRECT(0, 1) }, #endif /* not NEW_GC */ { XD_LISP_OBJECT, offsetof (Lisp_String, plist) }, { XD_END } }; /* We store the string's extent info as the first element of the string's property list; and the string's MODIFF as the first or second element of the string's property list (depending on whether the extent info is present), but only if the string has been modified. This is ugly but it reduces the memory allocated for the string in the vast majority of cases, where the string is never modified and has no extent info. #### This means you can't use an int as a key in a string's plist. */ static Lisp_Object * string_plist_ptr (Lisp_Object string) { Lisp_Object *ptr = &XSTRING_PLIST (string); if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) ptr = &XCDR (*ptr); if (CONSP (*ptr) && FIXNUMP (XCAR (*ptr))) ptr = &XCDR (*ptr); return ptr; } static Lisp_Object string_getprop (Lisp_Object string, Lisp_Object property) { return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME); } static int string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value) { external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME); return 1; } static int string_remprop (Lisp_Object string, Lisp_Object property) { return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME); } static Lisp_Object string_plist (Lisp_Object string) { return *string_plist_ptr (string); } #ifndef NEW_GC /* No `finalize', or `hash' methods. internal_hash() already knows how to hash strings and finalization is done with the ADDITIONAL_FREE_string macro, which is the standard way to do finalization when using SWEEP_FIXED_TYPE_BLOCK(). */ DEFINE_DUMPABLE_FROB_BLOCK_LISP_OBJECT ("string", string, mark_string, print_string, 0, string_equal, 0, string_description, Lisp_String); #endif /* not NEW_GC */ #ifdef NEW_GC #define STRING_FULLSIZE(size) \ ALIGN_SIZE (FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_String_Direct_Data, Lisp_Object, data, (size) + 1), sizeof (Lisp_Object *)); #else /* not NEW_GC */ /* String blocks contain this many useful bytes. */ #define STRING_CHARS_BLOCK_SIZE \ ((Bytecount) (8192 - MALLOC_OVERHEAD - \ ((2 * sizeof (struct string_chars_block *)) \ + sizeof (EMACS_INT)))) /* Block header for small strings. */ struct string_chars_block { EMACS_INT pos; struct string_chars_block *next; struct string_chars_block *prev; /* Contents of string_chars_block->string_chars are interleaved string_chars structures (see below) and the actual string data */ unsigned char string_chars[STRING_CHARS_BLOCK_SIZE]; }; static struct string_chars_block *first_string_chars_block; static struct string_chars_block *current_string_chars_block; /* If SIZE is the length of a string, this returns how many bytes * the string occupies in string_chars_block->string_chars * (including alignment padding). */ #define STRING_FULLSIZE(size) \ ALIGN_FOR_TYPE (((size) + 1 + sizeof (Lisp_String *)), Lisp_String *) #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE) #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size))) #define STRING_CHARS_FREE_P(ptr) ((ptr)->string == NULL) #define MARK_STRING_CHARS_AS_FREE(ptr) ((void) ((ptr)->string = NULL)) #endif /* not NEW_GC */ #ifdef NEW_GC DEFINE_DUMPABLE_LISP_OBJECT ("string", string, mark_string, print_string, 0, string_equal, 0, string_description, Lisp_String); static const struct memory_description string_direct_data_description[] = { { XD_BYTECOUNT, offsetof (Lisp_String_Direct_Data, size) }, { XD_END } }; static Bytecount size_string_direct_data (Lisp_Object obj) { return STRING_FULLSIZE (XSTRING_DIRECT_DATA (obj)->size); } DEFINE_DUMPABLE_SIZABLE_INTERNAL_LISP_OBJECT ("string-direct-data", string_direct_data, 0, string_direct_data_description, size_string_direct_data, Lisp_String_Direct_Data); static const struct memory_description string_indirect_data_description[] = { { XD_BYTECOUNT, offsetof (Lisp_String_Indirect_Data, size) }, { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String_Indirect_Data, data), XD_INDIRECT(0, 1) }, { XD_END } }; DEFINE_DUMPABLE_INTERNAL_LISP_OBJECT ("string-indirect-data", string_indirect_data, 0, string_indirect_data_description, Lisp_String_Indirect_Data); #endif /* NEW_GC */ #ifndef NEW_GC struct string_chars { Lisp_String *string; unsigned char chars[1]; }; struct unused_string_chars { Lisp_String *string; EMACS_INT fullsize; }; static void init_string_chars_alloc (void) { first_string_chars_block = xnew (struct string_chars_block); first_string_chars_block->prev = 0; first_string_chars_block->next = 0; first_string_chars_block->pos = 0; current_string_chars_block = first_string_chars_block; } static Ibyte * allocate_big_string_chars (Bytecount length) { Ibyte *p = xnew_array (Ibyte, length); INCREMENT_CONS_COUNTER (length, "string chars"); return p; } static struct string_chars * allocate_string_chars_struct (Lisp_Object string_it_goes_with, Bytecount fullsize) { struct string_chars *s_chars; if (fullsize <= (countof (current_string_chars_block->string_chars) - current_string_chars_block->pos)) { /* This string can fit in the current string chars block */ s_chars = (struct string_chars *) (current_string_chars_block->string_chars + current_string_chars_block->pos); current_string_chars_block->pos += fullsize; } else { /* Make a new current string chars block */ struct string_chars_block *new_scb = xnew (struct string_chars_block); current_string_chars_block->next = new_scb; new_scb->prev = current_string_chars_block; new_scb->next = 0; current_string_chars_block = new_scb; new_scb->pos = fullsize; s_chars = (struct string_chars *) current_string_chars_block->string_chars; } s_chars->string = XSTRING (string_it_goes_with); INCREMENT_CONS_COUNTER (fullsize, "string chars"); return s_chars; } #endif /* not NEW_GC */ #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN void sledgehammer_check_ascii_begin (Lisp_Object str) { Bytecount i; for (i = 0; i < XSTRING_LENGTH (str); i++) { if (!byte_ascii_p (string_byte (str, i))) break; } assert (i == (Bytecount) XSTRING_ASCII_BEGIN (str) || (i > MAX_STRING_ASCII_BEGIN && (Bytecount) XSTRING_ASCII_BEGIN (str) == (Bytecount) MAX_STRING_ASCII_BEGIN)); } #endif /* You do NOT want to be calling this! (And if you do, you must call XSET_STRING_ASCII_BEGIN() after modifying the string.) Use ALLOCA () instead and then call make_string() like the rest of the world. */ Lisp_Object make_uninit_string (Bytecount length) { Lisp_String *s; Bytecount fullsize = STRING_FULLSIZE (length); assert (length >= 0 && fullsize > 0); #ifdef NEW_GC s = XSTRING (ALLOC_NORMAL_LISP_OBJECT (string)); #else /* not NEW_GC */ /* Allocate the string header */ ALLOCATE_FIXED_TYPE (string, Lisp_String, s); xzero (*s); set_lheader_implementation (&s->u.lheader, &lrecord_string); #endif /* not NEW_GC */ /* The above allocations set the UID field, which overlaps with the ascii-length field, to some non-zero value. We need to zero it. */ XSET_STRING_ASCII_BEGIN (wrap_string (s), 0); #ifdef NEW_GC set_lispstringp_direct (s); STRING_DATA_OBJECT (s) = alloc_sized_lrecord (fullsize, &lrecord_string_direct_data); #else /* not NEW_GC */ set_lispstringp_data (s, BIG_STRING_FULLSIZE_P (fullsize) ? allocate_big_string_chars (length + 1) : allocate_string_chars_struct (wrap_string (s), fullsize)->chars); #endif /* not NEW_GC */ set_lispstringp_length (s, length); s->plist = Qnil; set_string_byte (wrap_string (s), length, 0); return wrap_string (s); } #ifdef VERIFY_STRING_CHARS_INTEGRITY static void verify_string_chars_integrity (void); #endif /* Resize the string S so that DELTA bytes can be inserted starting at POS. If DELTA < 0, it means deletion starting at POS. If POS < 0, resize the string but don't copy any characters. Use this if you're planning on completely overwriting the string. */ void resize_string (Lisp_Object s, Bytecount pos, Bytecount delta) { #ifdef NEW_GC Bytecount newfullsize, len; #else /* not NEW_GC */ Bytecount oldfullsize, newfullsize; #endif /* not NEW_GC */ #ifdef VERIFY_STRING_CHARS_INTEGRITY verify_string_chars_integrity (); #endif #ifdef ERROR_CHECK_TEXT if (pos >= 0) { assert (pos <= XSTRING_LENGTH (s)); if (delta < 0) assert (pos + (-delta) <= XSTRING_LENGTH (s)); } else { if (delta < 0) assert ((-delta) <= XSTRING_LENGTH (s)); } #endif /* ERROR_CHECK_TEXT */ if (delta == 0) /* simplest case: no size change. */ return; if (pos >= 0 && delta < 0) /* If DELTA < 0, the functions below will delete the characters before POS. We want to delete characters *after* POS, however, so convert this to the appropriate form. */ pos += -delta; #ifdef NEW_GC newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta); len = XSTRING_LENGTH (s) + 1 - pos; if (delta < 0 && pos >= 0) memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, len); XSTRING_DATA_OBJECT (s) = wrap_string_direct_data (mc_realloc (XPNTR (XSTRING_DATA_OBJECT (s)), newfullsize)); if (delta > 0 && pos >= 0) memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, len); #else /* not NEW_GC */ oldfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s)); newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta); if (BIG_STRING_FULLSIZE_P (oldfullsize)) { if (BIG_STRING_FULLSIZE_P (newfullsize)) { /* Both strings are big. We can just realloc(). But careful! If the string is shrinking, we have to memmove() _before_ realloc(), and if growing, we have to memmove() _after_ realloc() - otherwise the access is illegal, and we might crash. */ Bytecount len = XSTRING_LENGTH (s) + 1 - pos; if (delta < 0 && pos >= 0) memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, len); XSET_STRING_DATA (s, (Ibyte *) xrealloc (XSTRING_DATA (s), XSTRING_LENGTH (s) + delta + 1)); if (delta > 0 && pos >= 0) memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, len); /* Bump the cons counter. Conservative; Martin let the increment be delta. */ INCREMENT_CONS_COUNTER (newfullsize, "string chars"); } else /* String has been demoted from BIG_STRING. */ { Ibyte *new_data = allocate_string_chars_struct (s, newfullsize)->chars; Ibyte *old_data = XSTRING_DATA (s); if (pos >= 0) { memcpy (new_data, old_data, pos); memcpy (new_data + pos + delta, old_data + pos, XSTRING_LENGTH (s) + 1 - pos); } XSET_STRING_DATA (s, new_data); xfree (old_data); } } else /* old string is small */ { if (oldfullsize == newfullsize) { /* special case; size change but the necessary allocation size won't change (up or down; code somewhere depends on there not being any unused allocation space, modulo any alignment constraints). */ if (pos >= 0) { Ibyte *addroff = pos + XSTRING_DATA (s); memmove (addroff + delta, addroff, /* +1 due to zero-termination. */ XSTRING_LENGTH (s) + 1 - pos); } } else { Ibyte *old_data = XSTRING_DATA (s); Ibyte *new_data = BIG_STRING_FULLSIZE_P (newfullsize) ? allocate_big_string_chars (XSTRING_LENGTH (s) + delta + 1) : allocate_string_chars_struct (s, newfullsize)->chars; if (pos >= 0) { memcpy (new_data, old_data, pos); memcpy (new_data + pos + delta, old_data + pos, XSTRING_LENGTH (s) + 1 - pos); } XSET_STRING_DATA (s, new_data); if (!DUMPEDP (old_data)) /* Can't free dumped data. */ { /* We need to mark this chunk of the string_chars_block as unused so that compact_string_chars() doesn't freak. */ struct string_chars *old_s_chars = (struct string_chars *) ((char *) old_data - offsetof (struct string_chars, chars)); /* Sanity check to make sure we aren't hosed by strange alignment/padding. */ assert (old_s_chars->string == XSTRING (s)); MARK_STRING_CHARS_AS_FREE (old_s_chars); ((struct unused_string_chars *) old_s_chars)->fullsize = oldfullsize; } } } #endif /* not NEW_GC */ XSET_STRING_LENGTH (s, XSTRING_LENGTH (s) + delta); /* If pos < 0, the string won't be zero-terminated. Terminate now just to make sure. */ XSTRING_DATA (s)[XSTRING_LENGTH (s)] = '\0'; if (pos >= 0) /* We also have to adjust all of the extent indices after the place we did the change. We say "pos - 1" because adjust_extents() is exclusive of the starting position passed to it. */ adjust_extents (s, pos - 1, XSTRING_LENGTH (s), delta); #ifdef VERIFY_STRING_CHARS_INTEGRITY verify_string_chars_integrity (); #endif } #ifdef MULE /* WARNING: If you modify an existing string, you must call CHECK_LISP_WRITEABLE() before and bump_string_modiff() afterwards. */ void set_string_char (Lisp_Object s, Charcount i, Ichar c) { Ibyte newstr[MAX_ICHAR_LEN]; Bytecount bytoff = string_index_char_to_byte (s, i); Bytecount oldlen = itext_ichar_len (XSTRING_DATA (s) + bytoff); Bytecount newlen = set_itext_ichar (newstr, c); sledgehammer_check_ascii_begin (s); if (oldlen != newlen) resize_string (s, bytoff, newlen - oldlen); /* Remember, XSTRING_DATA (s) might have changed so we can't cache it. */ memcpy (XSTRING_DATA (s) + bytoff, newstr, newlen); if (oldlen != newlen) { if (newlen > 1 && i <= (Charcount) XSTRING_ASCII_BEGIN (s)) /* Everything starting with the new char is no longer part of ascii_begin */ XSET_STRING_ASCII_BEGIN (s, i); else if (newlen == 1 && i == (Charcount) XSTRING_ASCII_BEGIN (s)) /* We've extended ascii_begin, and we have to figure out how much by */ { Bytecount j; for (j = (Bytecount) i + 1; j < XSTRING_LENGTH (s); j++) { if (!byte_ascii_p (XSTRING_DATA (s)[j])) break; } XSET_STRING_ASCII_BEGIN (s, min (j, (Bytecount) MAX_STRING_ASCII_BEGIN)); } } sledgehammer_check_ascii_begin (s); } #endif /* MULE */ DEFUN ("make-string", Fmake_string, 2, 2, 0, /* Return a new string consisting of LENGTH copies of CHARACTER. LENGTH must be a non-negative integer. */ (length, character)) { check_integer_range (length, Qzero, make_fixnum (ARRAY_DIMENSION_LIMIT)); CHECK_CHAR_COERCE_INT (character); { Ibyte init_str[MAX_ICHAR_LEN]; int len = set_itext_ichar (init_str, XCHAR (character)); Lisp_Object val = make_uninit_string (len * XFIXNUM (length)); if (len == 1) { /* Optimize the single-byte case */ memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val)); XSET_STRING_ASCII_BEGIN (val, min (MAX_STRING_ASCII_BEGIN, len * XFIXNUM (length))); } else { EMACS_INT i; Ibyte *ptr = XSTRING_DATA (val); for (i = XFIXNUM (length); i; i--) { Ibyte *init_ptr = init_str; switch (len) { case 4: *ptr++ = *init_ptr++; case 3: *ptr++ = *init_ptr++; case 2: *ptr++ = *init_ptr++; case 1: *ptr++ = *init_ptr++; } } } sledgehammer_check_ascii_begin (val); return val; } } DEFUN ("string", Fstring, 0, MANY, 0, /* Concatenate all the argument characters and make the result a string. arguments: (&rest ARGS) */ (int nargs, Lisp_Object *args)) { Ibyte *storage = alloca_ibytes (nargs * MAX_ICHAR_LEN); Ibyte *p = storage; for (; nargs; nargs--, args++) { Lisp_Object lisp_char = *args; CHECK_CHAR_COERCE_INT (lisp_char); p += set_itext_ichar (p, XCHAR (lisp_char)); } return make_string (storage, p - storage); } /* Initialize the ascii_begin member of a string to the correct value. */ void init_string_ascii_begin (Lisp_Object string) { #ifdef MULE int i; Bytecount length = XSTRING_LENGTH (string); Ibyte *contents = XSTRING_DATA (string); for (i = 0; i < length; i++) { if (!byte_ascii_p (contents[i])) break; } XSET_STRING_ASCII_BEGIN (string, min (i, MAX_STRING_ASCII_BEGIN)); #else XSET_STRING_ASCII_BEGIN (string, min (XSTRING_LENGTH (string), MAX_STRING_ASCII_BEGIN)); #endif sledgehammer_check_ascii_begin (string); } /* Take some raw memory, which MUST already be in internal format, and package it up into a Lisp string. */ Lisp_Object make_string (const Ibyte *contents, Bytecount length) { Lisp_Object val; /* Make sure we find out about bad make_string's when they happen */ #if defined (ERROR_CHECK_TEXT) && defined (MULE) bytecount_to_charcount (contents, length); /* Just for the assertions */ #endif val = make_uninit_string (length); memcpy (XSTRING_DATA (val), contents, length); init_string_ascii_begin (val); sledgehammer_check_ascii_begin (val); return val; } /* Take some raw memory, encoded in some external data format, and convert it into a Lisp string. */ Lisp_Object make_extstring (const Extbyte *contents, EMACS_INT length, Lisp_Object coding_system) { Lisp_Object string; TO_INTERNAL_FORMAT (DATA, (contents, length), LISP_STRING, string, coding_system); return string; } Lisp_Object build_istring (const Ibyte *str) { /* Some strlen's crash and burn if passed null. */ return make_string (str, (str ? qxestrlen (str) : (Bytecount) 0)); } Lisp_Object build_cistring (const CIbyte *str) { return build_istring ((const Ibyte *) str); } Lisp_Object build_ascstring (const Ascbyte *str) { ASSERT_ASCTEXT_ASCII (str); return build_istring ((const Ibyte *) str); } Lisp_Object build_extstring (const Extbyte *str, Lisp_Object coding_system) { /* Some strlen's crash and burn if passed null. */ return make_extstring ((const Extbyte *) str, (str ? dfc_external_data_len (str, coding_system) : 0), coding_system); } /* Build a string whose content is a translatable message, and translate the message according to the current language environment. */ Lisp_Object build_msg_istring (const Ibyte *str) { return build_istring (IGETTEXT (str)); } /* Build a string whose content is a translatable message, and translate the message according to the current language environment. */ Lisp_Object build_msg_cistring (const CIbyte *str) { return build_msg_istring ((const Ibyte *) str); } /* Build a string whose content is a translatable message, and translate the message according to the current language environment. String must be pure-ASCII, and when compiled with error-checking, an abort will have if not pure-ASCII. */ Lisp_Object build_msg_ascstring (const Ascbyte *str) { ASSERT_ASCTEXT_ASCII (str); return build_msg_istring ((const Ibyte *) str); } /* Build a string whose content is a translatable message, but don't translate the message immediately. Perhaps do something else instead, such as put a property on the string indicating that it needs to be translated. This is useful for strings that are built at dump time or init time, rather than on-the-fly when the current language environment is set properly. */ Lisp_Object build_defer_istring (const Ibyte *str) { Lisp_Object retval = build_istring ((Ibyte *) str); /* Possibly do something to the return value */ return retval; } Lisp_Object build_defer_cistring (const CIbyte *str) { return build_defer_istring ((Ibyte *) str); } Lisp_Object build_defer_ascstring (const Ascbyte *str) { ASSERT_ASCTEXT_ASCII (str); return build_defer_istring ((Ibyte *) str); } Lisp_Object make_string_nocopy (const Ibyte *contents, Bytecount length) { Lisp_String *s; Lisp_Object val; /* Make sure we find out about bad make_string_nocopy's when they happen */ #if defined (ERROR_CHECK_TEXT) && defined (MULE) bytecount_to_charcount (contents, length); /* Just for the assertions */ #endif #ifdef NEW_GC s = XSTRING (ALLOC_NORMAL_LISP_OBJECT (string)); mcpro (wrap_pointer_1 (s)); /* otherwise nocopy_strings get collected and static data is tried to be freed. */ #else /* not NEW_GC */ /* Allocate the string header */ ALLOCATE_FIXED_TYPE (string, Lisp_String, s); set_lheader_implementation (&s->u.lheader, &lrecord_string); SET_C_READONLY_RECORD_HEADER (&s->u.lheader); #endif /* not NEW_GC */ /* Don't need to XSET_STRING_ASCII_BEGIN() here because it happens in init_string_ascii_begin(). */ s->plist = Qnil; #ifdef NEW_GC set_lispstringp_indirect (s); STRING_DATA_OBJECT (s) = ALLOC_NORMAL_LISP_OBJECT (string_indirect_data); XSTRING_INDIRECT_DATA_DATA (STRING_DATA_OBJECT (s)) = (Ibyte *) contents; XSTRING_INDIRECT_DATA_SIZE (STRING_DATA_OBJECT (s)) = length; #else /* not NEW_GC */ set_lispstringp_data (s, (Ibyte *) contents); set_lispstringp_length (s, length); #endif /* not NEW_GC */ val = wrap_string (s); init_string_ascii_begin (val); sledgehammer_check_ascii_begin (val); return val; } #ifndef NEW_GC /************************************************************************/ /* lcrecord lists */ /************************************************************************/ /* Lcrecord lists are used to manage the allocation of particular sorts of lcrecords, to avoid calling ALLOC_NORMAL_LISP_OBJECT() (and thus malloc() and garbage-collection junk) as much as possible. It is similar to the Blocktype class. See detailed comment in lcrecord.h. */ const struct memory_description free_description[] = { { XD_LISP_OBJECT, offsetof (struct free_lcrecord_header, chain), 0, { 0 }, XD_FLAG_FREE_LISP_OBJECT }, { XD_END } }; DEFINE_NODUMP_INTERNAL_LISP_OBJECT ("free", free, 0, free_description, struct free_lcrecord_header); const struct memory_description lcrecord_list_description[] = { { XD_LISP_OBJECT, offsetof (struct lcrecord_list, free), 0, { 0 }, XD_FLAG_FREE_LISP_OBJECT }, { XD_END } }; static Lisp_Object mark_lcrecord_list (Lisp_Object obj) { struct lcrecord_list *list = XLCRECORD_LIST (obj); Lisp_Object chain = list->free; while (!NILP (chain)) { struct lrecord_header *lheader = XRECORD_LHEADER (chain); struct free_lcrecord_header *free_header = (struct free_lcrecord_header *) lheader; gc_checking_assert (/* There should be no other pointers to the free list. */ ! MARKED_RECORD_HEADER_P (lheader) && /* Only lcrecords should be here. */ ! list->implementation->frob_block_p && /* Only free lcrecords should be here. */ lheader->free && /* The type of the lcrecord must be right. */ lheader->type == lrecord_type_free && /* So must the size. */ (list->implementation->static_size == 0 || list->implementation->static_size == list->size) ); MARK_RECORD_HEADER (lheader); chain = free_header->chain; } return Qnil; } DEFINE_NODUMP_INTERNAL_LISP_OBJECT ("lcrecord-list", lcrecord_list, mark_lcrecord_list, lcrecord_list_description, struct lcrecord_list); Lisp_Object make_lcrecord_list (Elemcount size, const struct lrecord_implementation *implementation) { /* Don't use alloc_automanaged_lcrecord() avoid infinite recursion allocating this. */ struct lcrecord_list *p = XLCRECORD_LIST (old_alloc_lcrecord (&lrecord_lcrecord_list)); p->implementation = implementation; p->size = size; p->free = Qnil; return wrap_lcrecord_list (p); } Lisp_Object alloc_managed_lcrecord (Lisp_Object lcrecord_list) { struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); if (!NILP (list->free)) { Lisp_Object val = list->free; struct free_lcrecord_header *free_header = (struct free_lcrecord_header *) XPNTR (val); struct lrecord_header *lheader = &free_header->lcheader.lheader; #ifdef ERROR_CHECK_GC /* Major overkill here. */ /* There should be no other pointers to the free list. */ assert (! MARKED_RECORD_HEADER_P (lheader)); /* Only free lcrecords should be here. */ assert (lheader->free); assert (lheader->type == lrecord_type_free); /* Only lcrecords should be here. */ assert (! (list->implementation->frob_block_p)); #if 0 /* Not used anymore, now that we set the type of the header to lrecord_type_free. */ /* The type of the lcrecord must be right. */ assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation); #endif /* 0 */ /* So must the size. */ assert (list->implementation->static_size == 0 || list->implementation->static_size == list->size); #endif /* ERROR_CHECK_GC */ list->free = free_header->chain; lheader->free = 0; /* Put back the correct type, as we set it to lrecord_type_free. */ lheader->type = list->implementation->lrecord_type_index; zero_sized_lisp_object (val, list->size); return val; } else return old_alloc_sized_lcrecord (list->size, list->implementation); } /* "Free" a Lisp object LCRECORD by placing it on its associated free list LCRECORD_LIST; next time alloc_managed_lcrecord() is called with the same LCRECORD_LIST as its parameter, it will return an object from the free list, which may be this one. Be VERY VERY SURE there are no pointers to this object hanging around anywhere where they might be used! The first thing this does before making any global state change is to call the finalize method of the object, if it exists. */ void free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord) { struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); struct free_lcrecord_header *free_header = (struct free_lcrecord_header *) XPNTR (lcrecord); struct lrecord_header *lheader = &free_header->lcheader.lheader; const struct lrecord_implementation *implementation = LHEADER_IMPLEMENTATION (lheader); /* If we try to debug-print during GC, we'll likely get a crash on the following assert (called from Lstream_delete(), from prin1_to_string()). Instead, just don't do anything. Worst comes to worst, we have a small memory leak -- and programs being debugged usually won't be super long-lived afterwards, anyway. */ if (gc_in_progress && in_debug_print) return; /* Finalizer methods may try to free objects within them, which typically won't be marked and thus are scheduled for demolition. Putting them on the free list would be very bad, as we'd have xfree()d memory in the list. Even if for some reason the objects are still live (generally a logic error!), we still will have problems putting such an object on the free list right now (e.g. we'd have to avoid calling the finalizer twice, etc.). So basically, those finalizers should not be freeing any objects if during GC. Abort now to catch those problems. */ gc_checking_assert (!gc_in_progress); /* Make sure the size is correct. This will catch, for example, putting a window configuration on the wrong free list. */ gc_checking_assert (lisp_object_size (lcrecord) == list->size); /* Make sure the object isn't already freed. */ gc_checking_assert (!lheader->free); /* Freeing stuff in dumped memory is bad. If you trip this, you may need to check for this before freeing. */ gc_checking_assert (!OBJECT_DUMPED_P (lcrecord)); if (implementation->finalizer) implementation->finalizer (lcrecord); /* Yes, there are two ways to indicate freeness -- the type is lrecord_type_free or the ->free flag is set. We used to do only the latter; now we do the former as well for KKCC purposes. Probably safer in any case, as we will lose quicker this way than keeping around an lrecord of apparently correct type but bogus junk in it. */ MARK_LRECORD_AS_FREE (lheader); free_header->chain = list->free; lheader->free = 1; list->free = lcrecord; } static Lisp_Object all_lcrecord_lists[countof (lrecord_implementations_table)]; Lisp_Object alloc_automanaged_sized_lcrecord (Bytecount size, const struct lrecord_implementation *imp) { if (EQ (all_lcrecord_lists[imp->lrecord_type_index], Qzero)) all_lcrecord_lists[imp->lrecord_type_index] = make_lcrecord_list (size, imp); return alloc_managed_lcrecord (all_lcrecord_lists[imp->lrecord_type_index]); } Lisp_Object alloc_automanaged_lcrecord (const struct lrecord_implementation *imp) { type_checking_assert (imp->static_size > 0); return alloc_automanaged_sized_lcrecord (imp->static_size, imp); } void old_free_lcrecord (Lisp_Object rec) { int type = XRECORD_LHEADER (rec)->type; assert (!EQ (all_lcrecord_lists[type], Qzero)); free_managed_lcrecord (all_lcrecord_lists[type], rec); } #endif /* not NEW_GC */ /************************************************************************/ /* Staticpro, MCpro */ /************************************************************************/ /* We want the staticpro list relocated, but not the pointers found therein, because they refer to locations in the global data segment, not in the heap; we only dump heap objects. Hence we use a trivial description, as for pointerless objects. (Note that the data segment objects, which are global variables like Qfoo or Vbar, themselves are pointers to heap objects. Each needs to be described to pdump as a "root pointer"; this happens in the call to staticpro(). */ static const struct memory_description staticpro_description_1[] = { { XD_END } }; static const struct sized_memory_description staticpro_description = { sizeof (Lisp_Object *), staticpro_description_1 }; static const struct memory_description staticpros_description_1[] = { XD_DYNARR_DESC (Lisp_Object_ptr_dynarr, &staticpro_description), { XD_END } }; static const struct sized_memory_description staticpros_description = { sizeof (Lisp_Object_ptr_dynarr), staticpros_description_1 }; #ifdef DEBUG_XEMACS /* Help debug crashes gc-marking a staticpro'ed object. */ Lisp_Object_ptr_dynarr *staticpros; const_Ascbyte_ptr_dynarr *staticpro_names; /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for garbage collection, and for dumping. */ void staticpro_1 (Lisp_Object *varaddress, const Ascbyte *varname) { Dynarr_add (staticpros, varaddress); Dynarr_add (staticpro_names, varname); dump_add_root_lisp_object (varaddress); } const Ascbyte *staticpro_name (int count); /* External debugging function: Return the name of the variable at offset COUNT. */ const Ascbyte * staticpro_name (int count) { return Dynarr_at (staticpro_names, count); } Lisp_Object_ptr_dynarr *staticpros_nodump; const_Ascbyte_ptr_dynarr *staticpro_nodump_names; /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage collection, but not for dumping. (See below.) */ void staticpro_nodump_1 (Lisp_Object *varaddress, const Ascbyte *varname) { Dynarr_add (staticpros_nodump, varaddress); Dynarr_add (staticpro_nodump_names, varname); } const Ascbyte *staticpro_nodump_name (int count); /* External debugging function: Return the name of the variable at offset COUNT. */ const Ascbyte * staticpro_nodump_name (int count) { return Dynarr_at (staticpro_nodump_names, count); } #ifdef HAVE_SHLIB /* Stop treating the Lisp_Object at non-heap VARADDRESS as a root object for garbage collection, but not for dumping. */ void unstaticpro_nodump_1 (Lisp_Object *varaddress, const Ascbyte *varname) { Dynarr_delete_object (staticpros, varaddress); Dynarr_delete_object (staticpro_names, varname); } #endif #else /* not DEBUG_XEMACS */ Lisp_Object_ptr_dynarr *staticpros; /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for garbage collection, and for dumping. */ void staticpro (Lisp_Object *varaddress) { Dynarr_add (staticpros, varaddress); dump_add_root_lisp_object (varaddress); } Lisp_Object_ptr_dynarr *staticpros_nodump; /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage collection, but not for dumping. This is used for objects where the only sure pointer is in the heap (rather than in the global data segment, as must be the case for pdump root pointers), but not inside of another Lisp object (where it will be marked as a result of that Lisp object's mark method). The call to staticpro_nodump() must occur *BOTH* at initialization time and at "reinitialization" time (startup, after pdump load.) (For example, this is the case with the predicate symbols for specifier and coding system types. The pointer to this symbol is inside of a methods structure, which is allocated on the heap. The methods structure will be written out to the pdump data file, and may be reloaded at a different address.) #### The necessity for reinitialization is a bug in pdump. Pdump should automatically regenerate the staticpro()s for these symbols when it loads the data in. */ void staticpro_nodump (Lisp_Object *varaddress) { Dynarr_add (staticpros_nodump, varaddress); } #ifdef HAVE_SHLIB /* Unmark the Lisp_Object at non-heap VARADDRESS as a root object for garbage collection, but not for dumping. */ void unstaticpro_nodump (Lisp_Object *varaddress) { Dynarr_delete_object (staticpros, varaddress); } #endif #endif /* not DEBUG_XEMACS */ #ifdef NEW_GC static const struct memory_description mcpro_description_1[] = { { XD_END } }; static const struct sized_memory_description mcpro_description = { sizeof (Lisp_Object *), mcpro_description_1 }; static const struct memory_description mcpros_description_1[] = { XD_DYNARR_DESC (Lisp_Object_dynarr, &mcpro_description), { XD_END } }; static const struct sized_memory_description mcpros_description = { sizeof (Lisp_Object_dynarr), mcpros_description_1 }; #ifdef DEBUG_XEMACS /* Help debug crashes gc-marking a mcpro'ed object. */ Lisp_Object_dynarr *mcpros; const_Ascbyte_ptr_dynarr *mcpro_names; /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for garbage collection, and for dumping. */ void mcpro_1 (Lisp_Object varaddress, const Ascbyte *varname) { Dynarr_add (mcpros, varaddress); Dynarr_add (mcpro_names, varname); } const Ascbyte *mcpro_name (int count); /* External debugging function: Return the name of the variable at offset COUNT. */ const Ascbyte * mcpro_name (int count) { return Dynarr_at (mcpro_names, count); } #else /* not DEBUG_XEMACS */ Lisp_Object_dynarr *mcpros; /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for garbage collection, and for dumping. */ void mcpro (Lisp_Object varaddress) { Dynarr_add (mcpros, varaddress); } #endif /* not DEBUG_XEMACS */ #endif /* NEW_GC */ #ifdef ALLOC_TYPE_STATS /************************************************************************/ /* Determining allocation overhead */ /************************************************************************/ /* Attempt to determine the actual amount of space that is used for the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE". It seems that the following holds: 1. When using the old allocator (malloc.c): -- blocks are always allocated in chunks of powers of two. For each block, there is an overhead of 8 bytes if rcheck is not defined, 20 bytes if it is defined. In other words, a one-byte allocation needs 8 bytes of overhead for a total of 9 bytes, and needs to have 16 bytes of memory chunked out for it. 2. When using the new allocator (gmalloc.c): -- blocks are always allocated in chunks of powers of two up to 4096 bytes. Larger blocks are allocated in chunks of an integral multiple of 4096 bytes. The minimum block size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG is defined. There is no per-block overhead, but there is an overhead of 3*sizeof (size_t) for each 4096 bytes allocated. 3. When using the system malloc, anything goes, but they are generally slower and more space-efficient than the GNU allocators. One possibly reasonable assumption to make for want of better data is that sizeof (void *), or maybe 2 * sizeof (void *), is required as overhead and that blocks are allocated in the minimum required size except that some minimum block size is imposed (e.g. 16 bytes). */ Bytecount malloced_storage_size (void * UNUSED (ptr), Bytecount claimed_size, struct usage_stats *stats) { Bytecount orig_claimed_size = claimed_size; #ifndef SYSTEM_MALLOC if (claimed_size < (Bytecount) (2 * sizeof (void *))) claimed_size = 2 * sizeof (void *); # ifdef SUNOS_LOCALTIME_BUG if (claimed_size < 16) claimed_size = 16; # endif if (claimed_size < 4096) { /* fxg: rename log->log2 to suppress gcc3 shadow warning */ int log2 = 1; /* compute the log base two, more or less, then use it to compute the block size needed. */ claimed_size--; /* It's big, it's heavy, it's wood! */ while ((claimed_size /= 2) != 0) ++log2; claimed_size = 1; /* It's better than bad, it's good! */ while (log2 > 0) { claimed_size *= 2; log2--; } /* We have to come up with some average about the amount of blocks used. */ if ((Bytecount) (rand () & 4095) < claimed_size) claimed_size += 3 * sizeof (void *); } else { claimed_size += 4095; claimed_size &= ~4095; claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t); } #else if (claimed_size < 16) claimed_size = 16; claimed_size += 2 * sizeof (void *); #endif /* system allocator */ if (stats) { stats->was_requested += orig_claimed_size; stats->malloc_overhead += claimed_size - orig_claimed_size; } return claimed_size; } #ifndef NEW_GC static Bytecount fixed_type_block_overhead (Bytecount size, Bytecount per_block) { Bytecount overhead = 0; Bytecount storage_size = malloced_storage_size (0, per_block, 0); while (size >= per_block) { size -= per_block; overhead += storage_size - per_block; } if (rand () % per_block < size) overhead += storage_size - per_block; return overhead; } #endif /* not NEW_GC */ Bytecount lisp_object_storage_size (Lisp_Object obj, struct usage_stats *ustats) { #ifndef NEW_GC const struct lrecord_implementation *imp; #endif /* not NEW_GC */ Bytecount size; if (!LRECORDP (obj)) return 0; size = lisp_object_size (obj); #ifdef NEW_GC return mc_alloced_storage_size (size, ustats); #else imp = XRECORD_LHEADER_IMPLEMENTATION (obj); if (imp->frob_block_p) { Bytecount overhead = /* #### Always using cons_block is incorrect but close; only string_chars_block is significantly different in size, and it won't ever be seen in this function */ fixed_type_block_overhead (size, sizeof (struct cons_block)); if (ustats) { ustats->was_requested += size; ustats->malloc_overhead += overhead; } return size + overhead; } else return malloced_storage_size (XPNTR (obj), size, ustats); #endif } /************************************************************************/ /* Allocation Statistics: Accumulate */ /************************************************************************/ #ifdef NEW_GC void init_lrecord_stats (void) { xzero (lrecord_stats); } void inc_lrecord_stats (Bytecount size, const struct lrecord_header *h) { int type_index = h->type; if (!size) size = detagged_lisp_object_size (h); lrecord_stats[type_index].instances_in_use++; lrecord_stats[type_index].bytes_in_use += size; lrecord_stats[type_index].bytes_in_use_including_overhead #ifdef MEMORY_USAGE_STATS += mc_alloced_storage_size (size, 0); #else /* not MEMORY_USAGE_STATS */ += size; #endif /* not MEMORY_USAGE_STATS */ } void dec_lrecord_stats (Bytecount size_including_overhead, const struct lrecord_header *h) { int type_index = h->type; int size = detagged_lisp_object_size (h); lrecord_stats[type_index].instances_in_use--; lrecord_stats[type_index].bytes_in_use -= size; lrecord_stats[type_index].bytes_in_use_including_overhead -= size_including_overhead; DECREMENT_CONS_COUNTER (size); } int lrecord_stats_heap_size (void) { int i; int size = 0; for (i = 0; i < countof (lrecord_implementations_table); i++) size += lrecord_stats[i].bytes_in_use; return size; } #else /* not NEW_GC */ static void clear_lrecord_stats (void) { xzero (lrecord_stats); gc_count_num_short_string_in_use = 0; gc_count_string_total_size = 0; gc_count_short_string_total_size = 0; gc_count_long_string_storage_including_overhead = 0; } /* Keep track of extra statistics for strings -- length of the string characters for short and long strings, number of short and long strings. */ static void tick_string_stats (Lisp_String *p, int from_sweep) { Bytecount size = p->size_; gc_count_string_total_size += size; if (!BIG_STRING_SIZE_P (size)) { gc_count_short_string_total_size += size; gc_count_num_short_string_in_use++; } else gc_count_long_string_storage_including_overhead += malloced_storage_size (p->data_, p->size_, NULL); /* During the sweep stage, we count the total number of strings in use. This gets those not stored in pdump storage. For pdump storage, we need to bump the number of strings in use so as to get an accurate count of all strings in use (pdump or not). But don't do this when called from the sweep stage, or we will double-count. */ if (!from_sweep) gc_count_num_string_in_use++; } /* As objects are sweeped, we record statistics about their memory usage. Currently, all lcrecords are processed this way as well as any frob-block objects that were saved and restored as a result of the pdump process. (See pdump_objects_unmark().) Other frob-block objects do NOT get their statistics noted this way -- instead, as the frob blocks are swept, COPY_INTO_LRECORD_STATS() is called, and notes statistics about the frob blocks. */ void tick_lrecord_stats (const struct lrecord_header *h, enum lrecord_alloc_status status) { int type_index = h->type; Lisp_Object obj = wrap_pointer_1 (h); Bytecount sz = lisp_object_size (obj); Bytecount sz_with_overhead = lisp_object_storage_size (obj, NULL); Bytecount overhead = sz_with_overhead - sz; switch (status) { case ALLOC_IN_USE: lrecord_stats[type_index].instances_in_use++; lrecord_stats[type_index].bytes_in_use += sz; lrecord_stats[type_index].bytes_in_use_overhead += overhead; if (STRINGP (obj)) tick_string_stats (XSTRING (obj), 0); #ifdef MEMORY_USAGE_STATS { struct generic_usage_stats stats; if (HAS_OBJECT_METH_P (obj, memory_usage)) { int i; int total_stats = OBJECT_PROPERTY (obj, num_extra_memusage_stats); xzero (stats); OBJECT_METH (obj, memory_usage, (obj, &stats)); for (i = 0; i < total_stats; i++) lrecord_stats[type_index].stats.othervals[i] += stats.othervals[i]; } } #endif break; case ALLOC_FREE: lrecord_stats[type_index].instances_freed++; lrecord_stats[type_index].bytes_freed += sz; lrecord_stats[type_index].bytes_freed_overhead += overhead; break; case ALLOC_ON_FREE_LIST: lrecord_stats[type_index].instances_on_free_list++; lrecord_stats[type_index].bytes_on_free_list += sz; lrecord_stats[type_index].bytes_on_free_list_overhead += overhead; break; default: ABORT (); } } inline static void tick_lcrecord_stats (const struct lrecord_header *h, int free_p) { if (h->free) { gc_checking_assert (!free_p); tick_lrecord_stats (h, ALLOC_ON_FREE_LIST); } else tick_lrecord_stats (h, free_p ? ALLOC_FREE : ALLOC_IN_USE); } #endif /* (not) NEW_GC */ void finish_object_memory_usage_stats (void) { /* Here we add up the aggregate values for each statistic, previously computed during tick_lrecord_stats(), to get a single combined value of non-Lisp memory usage for all objects of each type. We can't do this if NEW_GC because nothing like tick_lrecord_stats() gets called -- instead, statistics are computed when objects are allocated, which is too early to be calling the memory_usage() method. */ #if defined (MEMORY_USAGE_STATS) && !defined (NEW_GC) int i; for (i = 0; i < countof (lrecord_implementations_table); i++) { struct lrecord_implementation *imp = lrecord_implementations_table[i]; if (imp && imp->num_extra_nonlisp_memusage_stats) { int j; for (j = 0; j < imp->num_extra_nonlisp_memusage_stats; j++) lrecord_stats[i].nonlisp_bytes_in_use += lrecord_stats[i].stats.othervals[j]; } if (imp && imp->num_extra_lisp_ancillary_memusage_stats) { int j; for (j = 0; j < imp->num_extra_lisp_ancillary_memusage_stats; j++) lrecord_stats[i].lisp_ancillary_bytes_in_use += lrecord_stats[i].stats.othervals [j + imp->offset_lisp_ancillary_memusage_stats]; } } #endif /* defined (MEMORY_USAGE_STATS) && !defined (NEW_GC) */ } #define COUNT_FROB_BLOCK_USAGE(type) \ EMACS_INT s = 0; \ EMACS_INT s_overhead = 0; \ struct type##_block *x = current_##type##_block; \ while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \ s_overhead = fixed_type_block_overhead (s, sizeof (struct type##_block)); \ DO_NOTHING #define COPY_INTO_LRECORD_STATS(type) \ do { \ COUNT_FROB_BLOCK_USAGE (type); \ lrecord_stats[lrecord_type_##type].bytes_in_use += s; \ lrecord_stats[lrecord_type_##type].bytes_in_use_overhead += \ s_overhead; \ lrecord_stats[lrecord_type_##type].instances_on_free_list += \ gc_count_num_##type##_freelist; \ lrecord_stats[lrecord_type_##type].instances_in_use += \ gc_count_num_##type##_in_use; \ } while (0) /************************************************************************/ /* Allocation statistics: format nicely */ /************************************************************************/ static Lisp_Object gc_plist_hack (const Ascbyte *name, EMACS_INT value, Lisp_Object tail) { /* C doesn't have local functions (or closures, or GC, or readable syntax, or portable numeric datatypes, or bit-vectors, or characters, or arrays, or exceptions, or ...) */ return cons3 (intern (name), make_fixnum (value), tail); } /* Pluralize a lowercase English word stored in BUF, assuming BUF has enough space to hold the extra letters (at most 2). */ static void pluralize_word (Ascbyte *buf) { Bytecount len = strlen (buf); int upper = 0; Ascbyte d, e; if (len == 0 || len == 1) goto pluralize_apostrophe_s; e = buf[len - 1]; d = buf[len - 2]; upper = isupper (e); e = tolower (e); d = tolower (d); if (e == 'y') { switch (d) { case 'a': case 'e': case 'i': case 'o': case 'u': goto pluralize_s; default: buf[len - 1] = (upper ? 'I' : 'i'); goto pluralize_es; } } else if (e == 's' || e == 'x' || (e == 'h' && (d == 's' || d == 'c'))) { pluralize_es: buf[len++] = (upper ? 'E' : 'e'); } pluralize_s: buf[len++] = (upper ? 'S' : 's'); buf[len] = '\0'; return; pluralize_apostrophe_s: buf[len++] = '\''; goto pluralize_s; } static void pluralize_and_append (Ascbyte *buf, const Ascbyte *name, const Ascbyte *suffix) { strcpy (buf, name); pluralize_word (buf); strcat (buf, suffix); } static Lisp_Object object_memory_usage_stats (int set_total_gc_usage) { Lisp_Object pl = Qnil; int i; EMACS_INT tgu_val = 0; #ifdef NEW_GC for (i = 0; i < countof (lrecord_implementations_table); i++) { if (lrecord_stats[i].instances_in_use != 0) { Ascbyte buf[255]; const Ascbyte *name = lrecord_implementations_table[i]->name; if (lrecord_stats[i].bytes_in_use_including_overhead != lrecord_stats[i].bytes_in_use) { sprintf (buf, "%s-storage-including-overhead", name); pl = gc_plist_hack (buf, lrecord_stats[i] .bytes_in_use_including_overhead, pl); } sprintf (buf, "%s-storage", name); pl = gc_plist_hack (buf, lrecord_stats[i].bytes_in_use, pl); tgu_val += lrecord_stats[i].bytes_in_use_including_overhead; pluralize_and_append (buf, name, "-used"); pl = gc_plist_hack (buf, lrecord_stats[i].instances_in_use, pl); } } #else /* not NEW_GC */ for (i = 0; i < lrecord_type_count; i++) { if (lrecord_stats[i].bytes_in_use != 0 || lrecord_stats[i].bytes_freed != 0 || lrecord_stats[i].instances_on_free_list != 0) { Ascbyte buf[255]; const Ascbyte *name = lrecord_implementations_table[i]->name; sprintf (buf, "%s-storage-overhead", name); pl = gc_plist_hack (buf, lrecord_stats[i].bytes_in_use_overhead, pl); tgu_val += lrecord_stats[i].bytes_in_use_overhead; sprintf (buf, "%s-storage", name); pl = gc_plist_hack (buf, lrecord_stats[i].bytes_in_use, pl); tgu_val += lrecord_stats[i].bytes_in_use; #ifdef MEMORY_USAGE_STATS if (lrecord_stats[i].nonlisp_bytes_in_use) { sprintf (buf, "%s-non-lisp-storage", name); pl = gc_plist_hack (buf, lrecord_stats[i].nonlisp_bytes_in_use, pl); tgu_val += lrecord_stats[i].nonlisp_bytes_in_use; } if (lrecord_stats[i].lisp_ancillary_bytes_in_use) { sprintf (buf, "%s-lisp-ancillary-storage", name); pl = gc_plist_hack (buf, lrecord_stats[i]. lisp_ancillary_bytes_in_use, pl); tgu_val += lrecord_stats[i].lisp_ancillary_bytes_in_use; } #endif /* MEMORY_USAGE_STATS */ pluralize_and_append (buf, name, "-freed"); if (lrecord_stats[i].instances_freed != 0) pl = gc_plist_hack (buf, lrecord_stats[i].instances_freed, pl); pluralize_and_append (buf, name, "-on-free-list"); if (lrecord_stats[i].instances_on_free_list != 0) pl = gc_plist_hack (buf, lrecord_stats[i].instances_on_free_list, pl); pluralize_and_append (buf, name, "-used"); pl = gc_plist_hack (buf, lrecord_stats[i].instances_in_use, pl); } } pl = gc_plist_hack ("long-string-chars-storage-overhead", gc_count_long_string_storage_including_overhead - (gc_count_string_total_size - gc_count_short_string_total_size), pl); pl = gc_plist_hack ("long-string-chars-storage", gc_count_string_total_size - gc_count_short_string_total_size, pl); do { COUNT_FROB_BLOCK_USAGE (string_chars); tgu_val += s + s_overhead; pl = gc_plist_hack ("short-string-chars-storage-overhead", s_overhead, pl); pl = gc_plist_hack ("short-string-chars-storage", s, pl); } while (0); pl = gc_plist_hack ("long-strings-total-length", gc_count_string_total_size - gc_count_short_string_total_size, pl); pl = gc_plist_hack ("short-strings-total-length", gc_count_short_string_total_size, pl); pl = gc_plist_hack ("long-strings-used", gc_count_num_string_in_use - gc_count_num_short_string_in_use, pl); pl = gc_plist_hack ("short-strings-used", gc_count_num_short_string_in_use, pl); #endif /* NEW_GC */ if (set_total_gc_usage) { total_gc_usage = tgu_val; total_gc_usage_set = 1; } return pl; } static Lisp_Object garbage_collection_statistics (void) { /* The things we do for backwards-compatibility */ #ifdef NEW_GC return list6 (Fcons (make_fixnum (lrecord_stats[lrecord_type_cons].instances_in_use), make_fixnum (lrecord_stats[lrecord_type_cons] .bytes_in_use_including_overhead)), Fcons (make_fixnum (lrecord_stats[lrecord_type_symbol].instances_in_use), make_fixnum (lrecord_stats[lrecord_type_symbol] .bytes_in_use_including_overhead)), Fcons (make_fixnum (lrecord_stats[lrecord_type_marker].instances_in_use), make_fixnum (lrecord_stats[lrecord_type_marker] .bytes_in_use_including_overhead)), make_fixnum (lrecord_stats[lrecord_type_string] .bytes_in_use_including_overhead), make_fixnum (lrecord_stats[lrecord_type_vector] .bytes_in_use_including_overhead), object_memory_usage_stats (1)); #else /* not NEW_GC */ return list6 (Fcons (make_fixnum (gc_count_num_cons_in_use), make_fixnum (gc_count_num_cons_freelist)), Fcons (make_fixnum (gc_count_num_symbol_in_use), make_fixnum (gc_count_num_symbol_freelist)), Fcons (make_fixnum (gc_count_num_marker_in_use), make_fixnum (gc_count_num_marker_freelist)), make_fixnum (gc_count_string_total_size), make_fixnum (lrecord_stats[lrecord_type_vector].bytes_in_use + lrecord_stats[lrecord_type_vector].bytes_freed + lrecord_stats[lrecord_type_vector].bytes_on_free_list), object_memory_usage_stats (1)); #endif /* not NEW_GC */ } DEFUN ("object-memory-usage-stats", Fobject_memory_usage_stats, 0, 0, 0, /* Return statistics about memory usage of Lisp objects. */ ()) { return object_memory_usage_stats (0); } #endif /* ALLOC_TYPE_STATS */ #ifdef MEMORY_USAGE_STATS DEFUN ("object-memory-usage", Fobject_memory_usage, 1, 1, 0, /* Return stats about the memory usage of OBJECT. The values returned are in the form of an alist of usage types and byte counts. The byte counts attempt to encompass all the memory used by the object (separate from the memory logically associated with any other object), including internal structures and any malloc() overhead associated with them. In practice, the byte counts are underestimated because certain memory usage is very hard to determine \(e.g. the amount of memory used inside the Xt library or inside the X server). Multiple slices of the total memory usage may be returned, separated by a nil. Each slice represents a particular view of the memory, a particular way of partitioning it into groups. Within a slice, there is no overlap between the groups of memory, and each slice collectively represents all the memory concerned. The rightmost slice typically represents the total memory used plus malloc and dynarr overhead. Slices describing other Lisp objects logically associated with the object may be included, separated from other slices by `t' and from each other by nil if there is more than one. #### We have to figure out how to handle the memory used by the object itself vs. the memory used by substructures. Probably the memory_usage method should return info only about substructures and related Lisp objects, since the caller can always find and all info about the object itself. */ (object)) { struct generic_usage_stats gustats; struct usage_stats object_stats; int i; Lisp_Object val = Qnil; Lisp_Object stats_list; if (!LRECORDP (object)) invalid_argument ("No memory associated with immediate objects (int or char)", object); stats_list = OBJECT_PROPERTY (object, memusage_stats_list); xzero (object_stats); lisp_object_storage_size (object, &object_stats); val = Facons (Qobject_actually_requested, make_fixnum (object_stats.was_requested), val); val = Facons (Qobject_malloc_overhead, make_fixnum (object_stats.malloc_overhead), val); assert (!object_stats.dynarr_overhead); assert (!object_stats.gap_overhead); if (!NILP (stats_list)) { xzero (gustats); MAYBE_OBJECT_METH (object, memory_usage, (object, &gustats)); val = Fcons (Qt, val); val = Facons (Qother_memory_actually_requested, make_fixnum (gustats.u.was_requested), val); val = Facons (Qother_memory_malloc_overhead, make_fixnum (gustats.u.malloc_overhead), val); if (gustats.u.dynarr_overhead) val = Facons (Qother_memory_dynarr_overhead, make_fixnum (gustats.u.dynarr_overhead), val); if (gustats.u.gap_overhead) val = Facons (Qother_memory_gap_overhead, make_fixnum (gustats.u.gap_overhead), val); val = Fcons (Qnil, val); i = 0; { LIST_LOOP_2 (item, stats_list) { if (NILP (item) || EQ (item, Qt)) val = Fcons (item, val); else { val = Facons (item, make_fixnum (gustats.othervals[i]), val); i++; } } } } return Fnreverse (val); } /* Compute total memory usage associated with an object, including (a) Storage (including overhead) allocated to the object itself (b) Storage (including overhead) for ancillary non-Lisp structures attached to the object (c) Storage (including overhead) for ancillary Lisp objects attached to the object Store the three types of memory into the return values provided they aren't NULL, and return a sum of the three values. Also store the structure of individual statistics into STATS if non-zero. Note that the value for type (c) is the sum of all three types of memory associated with the ancillary Lisp objects. */ Bytecount lisp_object_memory_usage_full (Lisp_Object object, Bytecount *storage_size, Bytecount *extra_nonlisp_storage, Bytecount *extra_lisp_ancillary_storage, struct generic_usage_stats *stats) { Bytecount total; total = lisp_object_storage_size (object, NULL); if (storage_size) *storage_size = total; if (LRECORDP (object) && HAS_OBJECT_METH_P (object, memory_usage)) { int i; struct generic_usage_stats gustats; Bytecount sum; struct lrecord_implementation *imp = XRECORD_LHEADER_IMPLEMENTATION (object); xzero (gustats); OBJECT_METH (object, memory_usage, (object, &gustats)); if (stats) *stats = gustats; sum = 0; for (i = 0; i < imp->num_extra_nonlisp_memusage_stats; i++) sum += gustats.othervals[i]; total += sum; if (extra_nonlisp_storage) *extra_nonlisp_storage = sum; sum = 0; for (i = 0; i < imp->num_extra_lisp_ancillary_memusage_stats; i++) sum += gustats.othervals[imp->offset_lisp_ancillary_memusage_stats + i]; total += sum; if (extra_lisp_ancillary_storage) *extra_lisp_ancillary_storage = sum; } else { if (extra_nonlisp_storage) *extra_nonlisp_storage = 0; if (extra_lisp_ancillary_storage) *extra_lisp_ancillary_storage = 0; } return total; } Bytecount lisp_object_memory_usage (Lisp_Object object) { return lisp_object_memory_usage_full (object, NULL, NULL, NULL, NULL); } static Bytecount tree_memory_usage_1 (Lisp_Object arg, int vectorp, int depth) { Bytecount total = 0; if (depth > 200) return total; if (CONSP (arg)) { SAFE_LIST_LOOP_3 (elt, arg, tail) { total += lisp_object_memory_usage (tail); if (CONSP (elt) || VECTORP (elt)) total += tree_memory_usage_1 (elt, vectorp, depth + 1); if (VECTORP (XCDR (tail))) /* hack for (a b . [c d]) */ total += tree_memory_usage_1 (XCDR (tail), vectorp, depth +1); } } else if (VECTORP (arg) && vectorp) { int i = XVECTOR_LENGTH (arg); int j; total += lisp_object_memory_usage (arg); for (j = 0; j < i; j++) { Lisp_Object elt = XVECTOR_DATA (arg) [j]; if (CONSP (elt) || VECTORP (elt)) total += tree_memory_usage_1 (elt, vectorp, depth + 1); } } return total; } Bytecount tree_memory_usage (Lisp_Object arg, int vectorp) { return tree_memory_usage_1 (arg, vectorp, 0); } #endif /* MEMORY_USAGE_STATS */ #ifdef ALLOC_TYPE_STATS DEFUN ("total-object-memory-usage", Ftotal_object_memory_usage, 0, 0, 0, /* Return total number of bytes used for object storage in XEmacs. This may be helpful in debugging XEmacs's memory usage. See also `consing-since-gc' and `object-memory-usage-stats'. */ ()) { return make_fixnum (total_gc_usage + consing_since_gc); } #endif /* ALLOC_TYPE_STATS */ /************************************************************************/ /* Allocation statistics: Initialization */ /************************************************************************/ #ifdef MEMORY_USAGE_STATS /* Compute the number of extra memory-usage statistics associated with an object. We can't compute this at the time INIT_LISP_OBJECT() is called because the value of the `memusage_stats_list' property is generally set afterwards. So we compute the values for all types of objects after all objects have been initialized. */ static void compute_memusage_stats_length (void) { int i; for (i = 0; i < countof (lrecord_implementations_table); i++) { struct lrecord_implementation *imp = lrecord_implementations_table[i]; if (!imp) continue; /* For some of the early objects, Qnil was not yet initialized at the time of object initialization, so it came up as Qnull_pointer. Fix that now. */ if (EQ (imp->memusage_stats_list, Qnull_pointer)) imp->memusage_stats_list = Qnil; { Elemcount len = 0; Elemcount nonlisp_len = 0; Elemcount lisp_len = 0; Elemcount lisp_offset = 0; int group_num = 0; int slice_num = 0; LIST_LOOP_2 (item, imp->memusage_stats_list) { if (EQ (item, Qt)) { group_num++; if (group_num == 1) lisp_offset = len; slice_num = 0; } else if (EQ (item, Qnil)) { slice_num++; } else { if (slice_num == 0) { if (group_num == 0) nonlisp_len++; else if (group_num == 1) lisp_len++; } len++; } } imp->num_extra_memusage_stats = len; imp->num_extra_nonlisp_memusage_stats = nonlisp_len; imp->num_extra_lisp_ancillary_memusage_stats = lisp_len; imp->offset_lisp_ancillary_memusage_stats = lisp_offset; } } } #endif /* MEMORY_USAGE_STATS */ /************************************************************************/ /* Garbage Collection -- Sweep/Compact */ /************************************************************************/ #ifndef NEW_GC /* Free all unmarked records */ static void sweep_lcrecords_1 (struct old_lcrecord_header **prev, int *used) { struct old_lcrecord_header *header; int num_used = 0; /* int total_size = 0; */ /* First go through and call all the finalize methods. Then go through and free the objects. There used to be only one loop here, with the call to the finalizer occurring directly before the xfree() below. That is marginally faster but much less safe -- if the finalize method for an object needs to reference any other objects contained within it (and many do), we could easily be screwed by having already freed that other object. */ for (header = *prev; header; header = header->next) { struct lrecord_header *h = &(header->lheader); GC_CHECK_LHEADER_INVARIANTS (h); if (! MARKED_RECORD_HEADER_P (h) && !h->free) { if (LHEADER_IMPLEMENTATION (h)->finalizer) LHEADER_IMPLEMENTATION (h)->finalizer (wrap_pointer_1 (h)); } } for (header = *prev; header; ) { struct lrecord_header *h = &(header->lheader); if (MARKED_RECORD_HEADER_P (h)) { if (! C_READONLY_RECORD_HEADER_P (h)) UNMARK_RECORD_HEADER (h); num_used++; /* total_size += n->implementation->size_in_bytes (h);*/ /* #### May modify header->next on a C_READONLY lcrecord */ prev = &(header->next); header = *prev; tick_lcrecord_stats (h, 0); } else { struct old_lcrecord_header *next = header->next; *prev = next; tick_lcrecord_stats (h, 1); /* used to call finalizer right here. */ xfree (header); header = next; } } *used = num_used; /* *total = total_size; */ } /* And the Lord said: Thou shalt use the `c-backslash-region' command to make macros prettier. */ #ifdef ERROR_CHECK_GC #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ do { \ struct typename##_block *SFTB_current; \ int SFTB_limit; \ int num_free = 0, num_used = 0; \ \ for (SFTB_current = current_##typename##_block, \ SFTB_limit = current_##typename##_block_index; \ SFTB_current; \ ) \ { \ int SFTB_iii; \ \ for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ { \ obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ \ if (LRECORD_FREE_P (SFTB_victim)) \ { \ num_free++; \ } \ else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ { \ num_used++; \ } \ else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ { \ num_free++; \ FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ } \ else \ { \ num_used++; \ UNMARK_##typename (SFTB_victim); \ } \ } \ SFTB_current = SFTB_current->prev; \ SFTB_limit = countof (current_##typename##_block->block); \ } \ \ gc_count_num_##typename##_in_use = num_used; \ gc_count_num_##typename##_freelist = num_free; \ COPY_INTO_LRECORD_STATS (typename); \ } while (0) #else /* !ERROR_CHECK_GC */ #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ do { \ struct typename##_block *SFTB_current; \ struct typename##_block **SFTB_prev; \ int SFTB_limit; \ int num_free = 0, num_used = 0; \ \ typename##_free_list = 0; \ \ for (SFTB_prev = ¤t_##typename##_block, \ SFTB_current = current_##typename##_block, \ SFTB_limit = current_##typename##_block_index; \ SFTB_current; \ ) \ { \ int SFTB_iii; \ int SFTB_empty = 1; \ Lisp_Free *SFTB_old_free_list = typename##_free_list; \ \ for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ { \ obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ \ if (LRECORD_FREE_P (SFTB_victim)) \ { \ num_free++; \ PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \ } \ else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ { \ SFTB_empty = 0; \ num_used++; \ } \ else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ { \ num_free++; \ FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ } \ else \ { \ SFTB_empty = 0; \ num_used++; \ UNMARK_##typename (SFTB_victim); \ } \ } \ if (!SFTB_empty) \ { \ SFTB_prev = &(SFTB_current->prev); \ SFTB_current = SFTB_current->prev; \ } \ else if (SFTB_current == current_##typename##_block \ && !SFTB_current->prev) \ { \ /* No real point in freeing sole allocation block */ \ break; \ } \ else \ { \ struct typename##_block *SFTB_victim_block = SFTB_current; \ if (SFTB_victim_block == current_##typename##_block) \ current_##typename##_block_index \ = countof (current_##typename##_block->block); \ SFTB_current = SFTB_current->prev; \ { \ *SFTB_prev = SFTB_current; \ xfree (SFTB_victim_block); \ /* Restore free list to what it was before victim was swept */ \ typename##_free_list = SFTB_old_free_list; \ num_free -= SFTB_limit; \ } \ } \ SFTB_limit = countof (current_##typename##_block->block); \ } \ \ gc_count_num_##typename##_in_use = num_used; \ gc_count_num_##typename##_freelist = num_free; \ COPY_INTO_LRECORD_STATS (typename); \ } while (0) #endif /* !ERROR_CHECK_GC */ #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \ SWEEP_FIXED_TYPE_BLOCK_1 (typename, obj_type, lheader) #endif /* not NEW_GC */ #ifndef NEW_GC static void sweep_conses (void) { #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_cons(ptr) SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons); } #endif /* not NEW_GC */ /* Explicitly free a cons cell. */ void free_cons (Lisp_Object cons) { #ifndef NEW_GC /* to avoid compiler warning */ Lisp_Cons *ptr = XCONS (cons); #endif /* not NEW_GC */ #ifdef ERROR_CHECK_GC #ifdef NEW_GC Lisp_Cons *ptr = XCONS (cons); #endif /* NEW_GC */ /* If the CAR is not an int, then it will be a pointer, which will always be four-byte aligned. If this cons cell has already been placed on the free list, however, its car will probably contain a chain pointer to the next cons on the list, which has cleverly had all its 0's and 1's inverted. This allows for a quick check to make sure we're not freeing something already freed. NOTE: This check may not be necessary. Freeing an object sets its type to lrecord_type_free, which will trip up the XCONS() above -- as well as a check in FREE_FIXED_TYPE(). */ if (POINTER_TYPE_P (XTYPE (cons_car (ptr)))) ASSERT_VALID_POINTER (XPNTR (cons_car (ptr))); #endif /* ERROR_CHECK_GC */ FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, cons, Lisp_Cons, ptr); } /* explicitly free a list. You **must make sure** that you have created all the cons cells that make up this list and that there are no pointers to any of these cons cells anywhere else. If there are, you will lose. */ void free_list (Lisp_Object list) { Lisp_Object rest, next; for (rest = list; !NILP (rest); rest = next) { next = XCDR (rest); free_cons (rest); } } /* explicitly free an alist. You **must make sure** that you have created all the cons cells that make up this alist and that there are no pointers to any of these cons cells anywhere else. If there are, you will lose. */ void free_alist (Lisp_Object alist) { Lisp_Object rest, next; for (rest = alist; !NILP (rest); rest = next) { next = XCDR (rest); free_cons (XCAR (rest)); free_cons (rest); } } #ifndef NEW_GC static void sweep_compiled_functions (void) { #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_compiled_function(ptr) \ if (ptr->args_in_array) xfree (ptr->args) SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function); } static void sweep_floats (void) { #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_float(ptr) SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float); } #ifdef HAVE_BIGNUM static void sweep_bignums (void) { #define UNMARK_bignum(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_bignum(ptr) bignum_fini (ptr->data) SWEEP_FIXED_TYPE_BLOCK (bignum, Lisp_Bignum); } #endif /* HAVE_BIGNUM */ #ifdef HAVE_RATIO static void sweep_ratios (void) { #define UNMARK_ratio(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_ratio(ptr) ratio_fini (ptr->data) SWEEP_FIXED_TYPE_BLOCK (ratio, Lisp_Ratio); } #endif /* HAVE_RATIO */ #ifdef HAVE_BIGFLOAT static void sweep_bigfloats (void) { #define UNMARK_bigfloat(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_bigfloat(ptr) bigfloat_fini (ptr->bf) SWEEP_FIXED_TYPE_BLOCK (bigfloat, Lisp_Bigfloat); } #endif static void sweep_symbols (void) { #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&(((ptr)->u.lheader))) #define ADDITIONAL_FREE_symbol(ptr) SWEEP_FIXED_TYPE_BLOCK_1 (symbol, Lisp_Symbol, u.lheader); } static void sweep_extents (void) { #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_extent(ptr) SWEEP_FIXED_TYPE_BLOCK (extent, struct extent); } static void sweep_events (void) { #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_event(ptr) SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event); } #endif /* not NEW_GC */ #ifdef EVENT_DATA_AS_OBJECTS #ifndef NEW_GC static void sweep_key_data (void) { #define UNMARK_key_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_key_data(ptr) SWEEP_FIXED_TYPE_BLOCK (key_data, Lisp_Key_Data); } #endif /* not NEW_GC */ void free_key_data (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, key_data, Lisp_Key_Data, XKEY_DATA (ptr)); } #ifndef NEW_GC static void sweep_button_data (void) { #define UNMARK_button_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_button_data(ptr) SWEEP_FIXED_TYPE_BLOCK (button_data, Lisp_Button_Data); } #endif /* not NEW_GC */ void free_button_data (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, button_data, Lisp_Button_Data, XBUTTON_DATA (ptr)); } #ifndef NEW_GC static void sweep_motion_data (void) { #define UNMARK_motion_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_motion_data(ptr) SWEEP_FIXED_TYPE_BLOCK (motion_data, Lisp_Motion_Data); } #endif /* not NEW_GC */ void free_motion_data (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, motion_data, Lisp_Motion_Data, XMOTION_DATA (ptr)); } #ifndef NEW_GC static void sweep_process_data (void) { #define UNMARK_process_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_process_data(ptr) SWEEP_FIXED_TYPE_BLOCK (process_data, Lisp_Process_Data); } #endif /* not NEW_GC */ void free_process_data (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, process_data, Lisp_Process_Data, XPROCESS_DATA (ptr)); } #ifndef NEW_GC static void sweep_timeout_data (void) { #define UNMARK_timeout_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_timeout_data(ptr) SWEEP_FIXED_TYPE_BLOCK (timeout_data, Lisp_Timeout_Data); } #endif /* not NEW_GC */ void free_timeout_data (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, timeout_data, Lisp_Timeout_Data, XTIMEOUT_DATA (ptr)); } #ifndef NEW_GC static void sweep_magic_data (void) { #define UNMARK_magic_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_magic_data(ptr) SWEEP_FIXED_TYPE_BLOCK (magic_data, Lisp_Magic_Data); } #endif /* not NEW_GC */ void free_magic_data (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, magic_data, Lisp_Magic_Data, XMAGIC_DATA (ptr)); } #ifndef NEW_GC static void sweep_magic_eval_data (void) { #define UNMARK_magic_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_magic_eval_data(ptr) SWEEP_FIXED_TYPE_BLOCK (magic_eval_data, Lisp_Magic_Eval_Data); } #endif /* not NEW_GC */ void free_magic_eval_data (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, magic_eval_data, Lisp_Magic_Eval_Data, XMAGIC_EVAL_DATA (ptr)); } #ifndef NEW_GC static void sweep_eval_data (void) { #define UNMARK_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_eval_data(ptr) SWEEP_FIXED_TYPE_BLOCK (eval_data, Lisp_Eval_Data); } #endif /* not NEW_GC */ void free_eval_data (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, eval_data, Lisp_Eval_Data, XEVAL_DATA (ptr)); } #ifndef NEW_GC static void sweep_misc_user_data (void) { #define UNMARK_misc_user_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_misc_user_data(ptr) SWEEP_FIXED_TYPE_BLOCK (misc_user_data, Lisp_Misc_User_Data); } #endif /* not NEW_GC */ void free_misc_user_data (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, misc_user_data, Lisp_Misc_User_Data, XMISC_USER_DATA (ptr)); } #endif /* EVENT_DATA_AS_OBJECTS */ #ifndef NEW_GC static void sweep_markers (void) { #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) #define ADDITIONAL_FREE_marker(ptr) \ do { Lisp_Object tem; \ tem = wrap_marker (ptr); \ unchain_marker (tem); \ } while (0) SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker); } #endif /* not NEW_GC */ /* Explicitly free a marker. */ void free_marker (Lisp_Object ptr) { FREE_FIXED_TYPE_WHEN_NOT_IN_GC (ptr, marker, Lisp_Marker, XMARKER (ptr)); } #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) static void verify_string_chars_integrity (void) { struct string_chars_block *sb; /* Scan each existing string block sequentially, string by string. */ for (sb = first_string_chars_block; sb; sb = sb->next) { int pos = 0; /* POS is the index of the next string in the block. */ while (pos < sb->pos) { struct string_chars *s_chars = (struct string_chars *) &(sb->string_chars[pos]); Lisp_String *string; int size; int fullsize; /* If the string_chars struct is marked as free (i.e. the STRING pointer is NULL) then this is an unused chunk of string storage. (See below.) */ if (STRING_CHARS_FREE_P (s_chars)) { fullsize = ((struct unused_string_chars *) s_chars)->fullsize; pos += fullsize; continue; } string = s_chars->string; /* Must be 32-bit aligned. */ assert ((((int) string) & 3) == 0); size = string->size_; fullsize = STRING_FULLSIZE (size); assert (!BIG_STRING_FULLSIZE_P (fullsize)); assert (XSTRING_DATA (string) == s_chars->chars); pos += fullsize; } assert (pos == sb->pos); } } #endif /* defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) */ #ifndef NEW_GC /* Compactify string chars, relocating the reference to each -- free any empty string_chars_block we see. */ static void compact_string_chars (void) { struct string_chars_block *to_sb = first_string_chars_block; int to_pos = 0; struct string_chars_block *from_sb; /* Scan each existing string block sequentially, string by string. */ for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next) { int from_pos = 0; /* FROM_POS is the index of the next string in the block. */ while (from_pos < from_sb->pos) { struct string_chars *from_s_chars = (struct string_chars *) &(from_sb->string_chars[from_pos]); struct string_chars *to_s_chars; Lisp_String *string; int size; int fullsize; /* If the string_chars struct is marked as free (i.e. the STRING pointer is NULL) then this is an unused chunk of string storage. This happens under Mule when a string's size changes in such a way that its fullsize changes. (Strings can change size because a different-length character can be substituted for another character.) In this case, after the bogus string pointer is the "fullsize" of this entry, i.e. how many bytes to skip. */ if (STRING_CHARS_FREE_P (from_s_chars)) { fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize; from_pos += fullsize; continue; } string = from_s_chars->string; gc_checking_assert (!(LRECORD_FREE_P (string))); size = string->size_; fullsize = STRING_FULLSIZE (size); gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize)); /* Just skip it if it isn't marked. */ if (! MARKED_RECORD_HEADER_P (&(string->u.lheader))) { from_pos += fullsize; continue; } /* If it won't fit in what's left of TO_SB, close TO_SB out and go on to the next string_chars_block. We know that TO_SB cannot advance past FROM_SB here since FROM_SB is large enough to currently contain this string. */ if ((to_pos + fullsize) > countof (to_sb->string_chars)) { to_sb->pos = to_pos; to_sb = to_sb->next; to_pos = 0; } /* Compute new address of this string and update TO_POS for the space being used. */ to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]); /* Copy the string_chars to the new place. */ if (from_s_chars != to_s_chars) memmove (to_s_chars, from_s_chars, fullsize); /* Relocate FROM_S_CHARS's reference */ set_lispstringp_data (string, &(to_s_chars->chars[0])); from_pos += fullsize; to_pos += fullsize; } } /* Set current to the last string chars block still used and free any that follow. */ { struct string_chars_block *victim; for (victim = to_sb->next; victim; ) { struct string_chars_block *next = victim->next; xfree (victim); victim = next; } current_string_chars_block = to_sb; current_string_chars_block->pos = to_pos; current_string_chars_block->next = 0; } } #endif /* not NEW_GC */ #ifndef NEW_GC #if 1 /* Hack to debug missing purecopy's */ static int debug_string_purity; static void debug_string_purity_print (Lisp_Object p) { Charcount i; Charcount s = string_char_length (p); stderr_out ("\""); for (i = 0; i < s; i++) { Ichar ch = string_ichar (p, i); if (ch < 32 || ch >= 126) stderr_out ("\\%03o", ch); else if (ch == '\\' || ch == '\"') stderr_out ("\\%c", ch); else stderr_out ("%c", ch); } stderr_out ("\"\n"); } #endif /* 1 */ #endif /* not NEW_GC */ #ifndef NEW_GC static void sweep_strings (void) { int debug = debug_string_purity; #define UNMARK_string(ptr) do { \ Lisp_String *p = (ptr); \ UNMARK_RECORD_HEADER (&(p->u.lheader)); \ tick_string_stats (p, 1); \ if (debug) \ debug_string_purity_print (wrap_string (p)); \ } while (0) #define ADDITIONAL_FREE_string(ptr) do { \ Bytecount size = ptr->size_; \ if (BIG_STRING_SIZE_P (size)) \ xfree (ptr->data_); \ } while (0) SWEEP_FIXED_TYPE_BLOCK_1 (string, Lisp_String, u.lheader); } #endif /* not NEW_GC */ #ifndef NEW_GC void gc_sweep_1 (void) { /* Reset all statistics to 0. They will be incremented when sweeping lcrecords, frob-block lrecords and dumped objects. */ clear_lrecord_stats (); /* Free all unmarked records. Do this at the very beginning, before anything else, so that the finalize methods can safely examine items in the objects. sweep_lcrecords_1() makes sure to call all the finalize methods *before* freeing anything, to complete the safety. */ { int ignored; sweep_lcrecords_1 (&all_lcrecords, &ignored); } compact_string_chars (); /* Finalize methods below (called through the ADDITIONAL_FREE_foo macros) must be *extremely* careful to make sure they're not referencing freed objects. The only two existing finalize methods (for strings and markers) pass muster -- the string finalizer doesn't look at anything but its own specially- created block, and the marker finalizer only looks at live buffers (which will never be freed) and at the markers before and after it in the chain (which, by induction, will never be freed because if so, they would have already removed themselves from the chain). */ /* Put all unmarked strings on free list, free'ing the string chars of large unmarked strings */ sweep_strings (); /* Put all unmarked conses on free list */ sweep_conses (); /* Free all unmarked compiled-function objects */ sweep_compiled_functions (); /* Put all unmarked floats on free list */ sweep_floats (); #ifdef HAVE_BIGNUM /* Put all unmarked bignums on free list */ sweep_bignums (); #endif #ifdef HAVE_RATIO /* Put all unmarked ratios on free list */ sweep_ratios (); #endif #ifdef HAVE_BIGFLOAT /* Put all unmarked bigfloats on free list */ sweep_bigfloats (); #endif /* Put all unmarked symbols on free list */ sweep_symbols (); /* Put all unmarked extents on free list */ sweep_extents (); /* Put all unmarked markers on free list. Dechain each one first from the buffer into which it points. */ sweep_markers (); sweep_events (); #ifdef EVENT_DATA_AS_OBJECTS sweep_key_data (); sweep_button_data (); sweep_motion_data (); sweep_process_data (); sweep_timeout_data (); sweep_magic_data (); sweep_magic_eval_data (); sweep_eval_data (); sweep_misc_user_data (); #endif /* EVENT_DATA_AS_OBJECTS */ #ifdef PDUMP pdump_objects_unmark (); #endif } #endif /* not NEW_GC */ /************************************************************************/ /* "Disksave Finalization" -- Preparing for Dumping */ /************************************************************************/ static void disksave_object_finalization_1 (void) { #ifdef NEW_GC mc_finalize_for_disksave (); #else /* not NEW_GC */ struct old_lcrecord_header *header; for (header = all_lcrecords; header; header = header->next) { struct lrecord_header *objh = &header->lheader; const struct lrecord_implementation *imp = LHEADER_IMPLEMENTATION (objh); #if 0 /* possibly useful for debugging */ if (!RECORD_DUMPABLE (objh) && !objh->free) { stderr_out ("Disksaving a non-dumpable object: "); debug_print (wrap_pointer_1 (header)); } #endif if (imp->disksave && !objh->free) (imp->disksave) (wrap_pointer_1 (header)); } #endif /* not NEW_GC */ } void disksave_object_finalization (void) { /* It's important that certain information from the environment not get dumped with the executable (pathnames, environment variables, etc.). To make it easier to tell when this has happened with strings(1) we clear some known-to-be-garbage blocks of memory, so that leftover results of old evaluation don't look like potential problems. But first we set some notable variables to nil and do one more GC, to turn those strings into garbage. */ /* Yeah, this list is pretty ad-hoc... */ Vprocess_environment = Qnil; env_initted = 0; Vexec_directory = Qnil; Vdata_directory = Qnil; Vsite_directory = Qnil; Vdoc_directory = Qnil; Vexec_path = Qnil; Vload_path = Qnil; /* Vdump_load_path = Qnil; */ /* Release hash tables for locate_file */ Flocate_file_clear_hashing (Qt); uncache_home_directory (); zero_out_command_line_status_vars (); clear_default_devices (); #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \ defined(LOADHIST_BUILTIN)) Vload_history = Qnil; #endif Vshell_file_name = Qnil; #ifdef NEW_GC gc_full (); #else /* not NEW_GC */ garbage_collect_1 (); #endif /* not NEW_GC */ /* Run the disksave finalization methods of all live objects. */ disksave_object_finalization_1 (); #ifndef NEW_GC /* Zero out the uninitialized (really, unused) part of the containers for the live strings. */ { struct string_chars_block *scb; for (scb = first_string_chars_block; scb; scb = scb->next) { int count = sizeof (scb->string_chars) - scb->pos; assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE); if (count != 0) { /* from the block's fill ptr to the end */ memset ((scb->string_chars + scb->pos), 0, count); } } } #endif /* not NEW_GC */ /* There, that ought to be enough... */ } /************************************************************************/ /* Lisp interface onto garbage collection */ /************************************************************************/ /* Debugging aids. */ DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /* Reclaim storage for Lisp objects no longer needed. Return info on amount of space in use: ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS) (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS PLIST) where `PLIST' is a list of alternating keyword/value pairs providing more detailed information. Garbage collection happens automatically if you cons more than `gc-cons-threshold' bytes of Lisp data since previous garbage collection. */ ()) { /* Record total usage for purposes of determining next GC */ #ifdef NEW_GC gc_full (); #else /* not NEW_GC */ garbage_collect_1 (); #endif /* not NEW_GC */ /* This will get set to 1, and total_gc_usage computed, as part of the call to object_memory_usage_stats() -- if ALLOC_TYPE_STATS is enabled. */ total_gc_usage_set = 0; #ifdef ALLOC_TYPE_STATS return garbage_collection_statistics (); #else return Qnil; #endif } DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /* Return the number of bytes consed since the last garbage collection. \"Consed\" is a misnomer in that this actually counts allocation of all different kinds of objects, not just conses. If this value exceeds `gc-cons-threshold', a garbage collection happens. */ ()) { return make_fixnum (consing_since_gc); } #if 0 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /* Return the address of the last byte XEmacs has allocated, divided by 1024. This may be helpful in debugging XEmacs's memory usage. The value is divided by 1024 to make sure it will fit in a lisp integer. */ ()) { return make_fixnum ((EMACS_INT) sbrk (0) / 1024); } #endif DEFUN ("total-memory-usage", Ftotal_memory_usage, 0, 0, 0, /* Return the total number of bytes used by the data segment in XEmacs. This may be helpful in debugging XEmacs's memory usage. NOTE: This may or may not be accurate! It is hard to determine this value in a system-independent fashion. On Windows, for example, the returned number tends to be much greater than reality. */ ()) { return make_fixnum (total_data_usage ()); } #ifdef USE_VALGRIND DEFUN ("valgrind-leak-check", Fvalgrind_leak_check, 0, 0, "", /* Ask valgrind to perform a memory leak check. The results of the leak check are sent to stderr. */ ()) { VALGRIND_DO_LEAK_CHECK; return Qnil; } DEFUN ("valgrind-quick-leak-check", Fvalgrind_quick_leak_check, 0, 0, "", /* Ask valgrind to perform a quick memory leak check. This just prints a summary of leaked memory, rather than all the details. The results of the leak check are sent to stderr. */ ()) { VALGRIND_DO_QUICK_LEAK_CHECK; return Qnil; } #endif /* USE_VALGRIND */ /************************************************************************/ /* Initialization */ /************************************************************************/ /* Initialization */ static void common_init_alloc_early (void) { #ifndef Qzero Qzero = make_fixnum (0); /* Only used if Lisp_Object is a union type */ #endif #ifndef Qnull_pointer /* C guarantees that Qnull_pointer will be initialized to all 0 bits, so the following is actually a no-op. */ Qnull_pointer = wrap_pointer_1 (0); #endif #ifndef NEW_GC breathing_space = 0; all_lcrecords = 0; #endif /* not NEW_GC */ ignore_malloc_warnings = 1; #ifdef DOUG_LEA_MALLOC mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */ mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */ #if 0 /* Moved to emacs.c */ mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */ #endif #endif #ifndef NEW_GC init_string_chars_alloc (); init_string_alloc (); /* #### Is it intentional that this is called twice? --ben */ init_string_chars_alloc (); init_cons_alloc (); init_symbol_alloc (); init_compiled_function_alloc (); init_float_alloc (); #ifdef HAVE_BIGNUM init_bignum_alloc (); #endif #ifdef HAVE_RATIO init_ratio_alloc (); #endif #ifdef HAVE_BIGFLOAT init_bigfloat_alloc (); #endif init_marker_alloc (); init_extent_alloc (); init_event_alloc (); #ifdef EVENT_DATA_AS_OBJECTS init_key_data_alloc (); init_button_data_alloc (); init_motion_data_alloc (); init_process_data_alloc (); init_timeout_data_alloc (); init_magic_data_alloc (); init_magic_eval_data_alloc (); init_eval_data_alloc (); init_misc_user_data_alloc (); #endif /* EVENT_DATA_AS_OBJECTS */ #endif /* not NEW_GC */ ignore_malloc_warnings = 0; if (staticpros_nodump) Dynarr_free (staticpros_nodump); staticpros_nodump = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); Dynarr_resize (staticpros_nodump, 100); /* merely a small optimization */ #ifdef DEBUG_XEMACS if (staticpro_nodump_names) Dynarr_free (staticpro_nodump_names); staticpro_nodump_names = Dynarr_new2 (const_Ascbyte_ptr_dynarr, const Ascbyte *); Dynarr_resize (staticpro_nodump_names, 100); /* ditto */ #endif #ifdef NEW_GC mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); Dynarr_resize (mcpros, 1410); /* merely a small optimization */ dump_add_root_block_ptr (&mcpros, &mcpros_description); #ifdef DEBUG_XEMACS mcpro_names = Dynarr_new2 (const_Ascbyte_ptr_dynarr, const Ascbyte *); Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ dump_add_root_block_ptr (&mcpro_names, &const_Ascbyte_ptr_dynarr_description); #endif #endif /* NEW_GC */ consing_since_gc = 0; need_to_check_c_alloca = 0; funcall_allocation_flag = 0; funcall_alloca_count = 0; #ifndef NEW_GC debug_string_purity = 0; #endif /* not NEW_GC */ #ifdef ERROR_CHECK_TYPES ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 666; ERROR_ME_NOT. really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42; ERROR_ME_WARN. really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 3333632; ERROR_ME_DEBUG_WARN. really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 8675309; #endif /* ERROR_CHECK_TYPES */ } #ifndef NEW_GC static void init_lcrecord_lists (void) { int i; for (i = 0; i < countof (lrecord_implementations_table); i++) { all_lcrecord_lists[i] = Qzero; /* Qnil not yet set */ staticpro_nodump (&all_lcrecord_lists[i]); } } #endif /* not NEW_GC */ void init_alloc_early (void) { #if defined (__cplusplus) && defined (ERROR_CHECK_GC) static struct gcpro initial_gcpro; initial_gcpro.next = 0; initial_gcpro.var = &Qnil; initial_gcpro.nvars = 1; gcprolist = &initial_gcpro; #else gcprolist = 0; #endif /* defined (__cplusplus) && defined (ERROR_CHECK_GC) */ } static void reinit_alloc_objects_early (void) { OBJECT_HAS_METHOD (string, getprop); OBJECT_HAS_METHOD (string, putprop); OBJECT_HAS_METHOD (string, remprop); OBJECT_HAS_METHOD (string, plist); OBJECT_HAS_METHOD (cons, print_preprocess); OBJECT_HAS_METHOD (cons, nsubst_structures_descend); OBJECT_HAS_METHOD (vector, print_preprocess); OBJECT_HAS_METHOD (vector, nsubst_structures_descend); } void reinit_alloc_early (void) { common_init_alloc_early (); #ifndef NEW_GC init_lcrecord_lists (); #endif /* not NEW_GC */ reinit_alloc_objects_early (); } void init_alloc_once_early (void) { common_init_alloc_early (); { int i; for (i = 0; i < countof (lrecord_implementations_table); i++) lrecord_implementations_table[i] = 0; } dump_add_opaque (lrecord_uid_counter, sizeof (lrecord_uid_counter)); staticpros = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); Dynarr_resize (staticpros, 1410); /* merely a small optimization */ dump_add_root_block_ptr (&staticpros, &staticpros_description); #ifdef DEBUG_XEMACS staticpro_names = Dynarr_new2 (const_Ascbyte_ptr_dynarr, const Ascbyte *); Dynarr_resize (staticpro_names, 1410); /* merely a small optimization */ dump_add_root_block_ptr (&staticpro_names, &const_Ascbyte_ptr_dynarr_description); #endif #ifdef NEW_GC mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); Dynarr_resize (mcpros, 1410); /* merely a small optimization */ dump_add_root_block_ptr (&mcpros, &mcpros_description); #ifdef DEBUG_XEMACS mcpro_names = Dynarr_new2 (const_Ascbyte_ptr_dynarr, const Ascbyte *); Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ dump_add_root_block_ptr (&mcpro_names, &const_Ascbyte_ptr_dynarr_description); #endif #else /* not NEW_GC */ init_lcrecord_lists (); #endif /* not NEW_GC */ INIT_LISP_OBJECT (cons); INIT_LISP_OBJECT (vector); INIT_LISP_OBJECT (bit_vector); INIT_LISP_OBJECT (string); #ifdef NEW_GC INIT_LISP_OBJECT (string_indirect_data); INIT_LISP_OBJECT (string_direct_data); #endif /* NEW_GC */ #ifndef NEW_GC INIT_LISP_OBJECT (lcrecord_list); INIT_LISP_OBJECT (free); #endif /* not NEW_GC */ reinit_alloc_objects_early (); } void syms_of_alloc (void) { DEFSYMBOL (Qgarbage_collecting); #ifdef MEMORY_USAGE_STATS DEFSYMBOL (Qobject_actually_requested); DEFSYMBOL (Qobject_malloc_overhead); DEFSYMBOL (Qother_memory_actually_requested); DEFSYMBOL (Qother_memory_malloc_overhead); DEFSYMBOL (Qother_memory_dynarr_overhead); DEFSYMBOL (Qother_memory_gap_overhead); #endif /* MEMORY_USAGE_STATS */ DEFSUBR (Fcons); DEFSUBR (Flist); DEFSUBR (Facons); DEFSUBR (Fvector); DEFSUBR (Fbit_vector); DEFSUBR (Fmake_byte_code); DEFSUBR (Fmake_list); DEFSUBR (Fmake_vector); DEFSUBR (Fmake_bit_vector); DEFSUBR (Fmake_string); DEFSUBR (Fstring); DEFSUBR (Fmake_symbol); DEFSUBR (Fmake_marker); #ifdef ALLOC_TYPE_STATS DEFSUBR (Fobject_memory_usage_stats); DEFSUBR (Ftotal_object_memory_usage); #endif /* ALLOC_TYPE_STATS */ #ifdef MEMORY_USAGE_STATS DEFSUBR (Fobject_memory_usage); #endif /* MEMORY_USAGE_STATS */ DEFSUBR (Fgarbage_collect); #if 0 DEFSUBR (Fmemory_limit); #endif DEFSUBR (Ftotal_memory_usage); DEFSUBR (Fconsing_since_gc); #ifdef USE_VALGRIND DEFSUBR (Fvalgrind_leak_check); DEFSUBR (Fvalgrind_quick_leak_check); #endif } void reinit_vars_of_alloc (void) { #ifdef MEMORY_USAGE_STATS compute_memusage_stats_length (); #endif /* MEMORY_USAGE_STATS */ } void vars_of_alloc (void) { DEFVAR_CONST_INT ("array-rank-limit", &Varray_rank_limit /* The exclusive upper bound on the number of dimensions an array may have. XEmacs does not support multidimensional arrays, meaning this constant is, for the moment, 2. */); Varray_rank_limit = 2; DEFVAR_CONST_INT ("array-dimension-limit", &Varray_dimension_limit /* The exclusive upper bound of an array's dimension. Note that XEmacs may not have enough memory available to create an array with this dimension. */); Varray_dimension_limit = ARRAY_DIMENSION_LIMIT; DEFVAR_CONST_INT ("array-total-size-limit", &Varray_total_size_limit /* The exclusive upper bound on the number of elements an array may contain. In Common Lisp, this is distinct from `array-dimension-limit', because arrays can have more than one dimension. In XEmacs this is not the case, and multi-dimensional arrays need to be implemented by the user with arrays of arrays. Note that XEmacs may not have enough memory available to create an array with this dimension. */); Varray_total_size_limit = ARRAY_DIMENSION_LIMIT; #ifdef DEBUG_XEMACS DEFVAR_INT ("debug-allocation", &debug_allocation /* If non-zero, print out information to stderr about all objects allocated. See also `debug-allocation-backtrace-length'. */ ); debug_allocation = 0; DEFVAR_INT ("debug-allocation-backtrace-length", &debug_allocation_backtrace_length /* Length (in stack frames) of short backtrace printed out by `debug-allocation'. */ ); debug_allocation_backtrace_length = 2; #endif DEFVAR_BOOL ("purify-flag", &purify_flag /* Non-nil means loading Lisp code in order to dump an executable. This means that certain objects should be allocated in readonly space. */ ); }