view src/hash.c @ 3063:d30cd499e445

[xemacs-hg @ 2005-11-13 10:48:01 by ben] further error-checking, etc. alloc.c, lrecord.h: Move around the handling of setting of lheader->uid so it's in set_lheader_implementation() -- that way, even non-MC-ALLOC builds get useful uid's in their bare lrecords. Redo related code for strings so the non-ascii count that is stored in the uid isn't hosed. events.c: Save and restore the uid around event zeroing/deadbeefing. lisp.h: Set the correct value of MAX_STRING_ASCII_BEGIN under MC_ALLOC. lisp.h: rearrange the basic code handling ints and chars. basic int stuff goes first, followed by basic char stuff, followed in turn by stuff that mixes ints and chars. this is required since some basic defn's have become inline functions. XCHAR and CHARP have additional error-checking in that they check to make sure that the value in question is not just a character but a valid character (i.e. its numeric value is valid). print.c: debug_p4 now has a useful UID in all cases and uses it; but it also prints the raw header address (previously, you just got one of them). text.h: some basic char defn's that belonged in lisp.h have been moved there. valid_ichar_p() is moved too since the inline functions need it.
author ben
date Sun, 13 Nov 2005 10:48:04 +0000
parents facf3239ba30
children 16112448d484
line wrap: on
line source

/* Hash tables.
   Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
   Copyright (C) 2003, 2004 Ben Wing.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

/* Author: Lost in the mists of history.  At least back to Lucid 19.3,
   circa Sep 1992. */

#include <config.h>
#include "lisp.h"
#include "hash.h"

#define NULL_ENTRY ((void *) 0xdeadbeef) /* -559038737 base 10 */

#define COMFORTABLE_SIZE(size) (21 * (size) / 16)

#define KEYS_DIFFER_P(old, new_, testfun) \
  (((old) != (new_)) && (!(testfun) || !(testfun) ((old),(new_))))

static void rehash (hentry *harray, struct hash_table *ht, Elemcount size);

Hashcode
memory_hash (const void *xv, Bytecount size)
{
  Hashcode h = 0;
  unsigned const char *x = (unsigned const char *) xv;

  if (!x) return 0;

  while (size--)
    {
      Hashcode g;
      h = (h << 4) + *x++;
      if ((g = h & 0xf0000000) != 0)
	h = (h ^ (g >> 24)) ^ g;
    }

  return h;
}

static int
string_equal (const void *st1, const void *st2)
{
  if (!st1)
    return st2 ? 0 : 1;
  else if (!st2)
    return 0;
  else
    return !strcmp ((const char *) st1, (const char *) st2);
}

static Hashcode
string_hash (const void *xv)
{
  Hashcode h = 0;
  unsigned const char *x = (unsigned const char *) xv;

  if (!x) return 0;

  while (*x)
    {
      Hashcode g;
      h = (h << 4) + *x++;
      if ((g = h & 0xf0000000) != 0)
	h = (h ^ (g >> 24)) ^ g;
    }

  return h;
}

/* Return a suitable size for a hash table, with at least SIZE slots. */
static Elemcount
hash_table_size (Elemcount requested_size)
{
  /* Return some prime near, but greater than or equal to, SIZE.
     Decades from the time of writing, someone will have a system large
     enough that the list below will be too short... */
  static const Elemcount primes [] =
  {
    19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
    1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
    19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
    204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
    1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
    10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
    50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
    243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
    1174703521, 1527114613, 1985248999 /* , 2580823717UL, 3355070839UL */
  };
  /* We've heard of binary search. */
  int low, high;
  for (low = 0, high = countof (primes) - 1; high - low > 1;)
    {
      /* Loop Invariant: size < primes [high] */
      int mid = (low + high) / 2;
      if (primes [mid] < requested_size)
	low = mid;
      else
	high = mid;
    }
  return primes [high];
}

const void *
gethash (const void *key, struct hash_table *hash_table, const void **ret_value)
{
  if (!key)
    {
      *ret_value = hash_table->zero_entry;
      return (void *) hash_table->zero_set;
    }
  else
    {
      hentry *harray = hash_table->harray;
      hash_table_test_function test_function = hash_table->test_function;
      Elemcount size = hash_table->size;
      Hashcode hcode_initial =
	hash_table->hash_function ?
	hash_table->hash_function (key) :
	(Hashcode) key;
      Elemcount hcode = (Elemcount) (hcode_initial % size);
      hentry *e = &harray [hcode];
      const void *e_key = e->key;

      if (e_key ?
	  KEYS_DIFFER_P (e_key, key, test_function) :
	  e->contents == NULL_ENTRY)
	{
	  Elemcount h2 = size - 2;
	  Elemcount incr = (Elemcount) (1 + (hcode_initial % h2));
	  do
	    {
	      hcode += incr; if (hcode >= size) hcode -= size;
	      e = &harray [hcode];
	      e_key = e->key;
	    }
	  while (e_key ?
		 KEYS_DIFFER_P (e_key, key, test_function) :
		 e->contents == NULL_ENTRY);
	}

      *ret_value = e->contents;
      return e->key;
    }
}

void
clrhash (struct hash_table *hash_table)
{
  memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size);
  hash_table->zero_entry = 0;
  hash_table->zero_set   = 0;
  hash_table->fullness   = 0;
}

void
free_hash_table (struct hash_table *hash_table)
{
  xfree (hash_table->harray, hentry *);
  xfree (hash_table, struct hash_table *);
}

struct hash_table *
make_hash_table (Elemcount size)
{
  struct hash_table *hash_table = xnew_and_zero (struct hash_table);
  hash_table->size = hash_table_size (COMFORTABLE_SIZE (size));
  hash_table->harray = xnew_array (hentry, hash_table->size);
  clrhash (hash_table);
  return hash_table;
}

struct hash_table *
make_string_hash_table (Elemcount size)
{
  return make_general_hash_table (size, string_hash, string_equal);
}

struct hash_table *
make_general_hash_table (Elemcount size,
			hash_table_hash_function hash_function,
			hash_table_test_function test_function)
{
  struct hash_table* hash_table = make_hash_table (size);
  hash_table->hash_function = hash_function;
  hash_table->test_function = test_function;
  return hash_table;
}

static void
grow_hash_table (struct hash_table *hash_table, Elemcount new_size)
{
  Elemcount old_size   = hash_table->size;
  hentry     *old_harray = hash_table->harray;

  hash_table->size   = hash_table_size (new_size);
  hash_table->harray = xnew_array (hentry, hash_table->size);

  /* do the rehash on the "grown" table */
  {
    long old_zero_set    = hash_table->zero_set;
    void *old_zero_entry = hash_table->zero_entry;
    clrhash (hash_table);
    hash_table->zero_set   = old_zero_set;
    hash_table->zero_entry = old_zero_entry;
    rehash (old_harray, hash_table, old_size);
  }

  xfree (old_harray, hentry *);
}

void
pregrow_hash_table_if_necessary (struct hash_table *hash_table,
				 Elemcount breathing_room)
{
  Elemcount comfortable_size = COMFORTABLE_SIZE (hash_table->fullness);
  if (hash_table->size < comfortable_size - breathing_room)
    grow_hash_table (hash_table, comfortable_size + 1);
}

void
puthash (const void *key, void *contents, struct hash_table *hash_table)
{
  if (!key)
    {
      hash_table->zero_entry = contents;
      hash_table->zero_set = 1;
    }
  else
    {
      hash_table_test_function test_function = hash_table->test_function;
      Elemcount size = hash_table->size;
      hentry *harray   = hash_table->harray;
      Hashcode hcode_initial =
	hash_table->hash_function ?
	hash_table->hash_function (key) :
	(Hashcode) key;
      Elemcount hcode = (Elemcount) (hcode_initial % size);
      Elemcount h2 = size - 2;
      Elemcount incr = (Elemcount) (1 + (hcode_initial % h2));
      const void *e_key = harray [hcode].key;
      const void *oldcontents;

      if (e_key && KEYS_DIFFER_P (e_key, key, test_function))
	{
	  do
	    {
	      hcode += incr; if (hcode >= size) hcode -= size;
	      e_key = harray [hcode].key;
	    }
	  while (e_key && KEYS_DIFFER_P (e_key, key, test_function));
	}
      oldcontents = harray [hcode].contents;
      harray [hcode].key = key;
      harray [hcode].contents = contents;
      /* If the entry that we used was a deleted entry,
	 check for a non deleted entry of the same key,
	 then delete it. */
      if (!e_key && oldcontents == NULL_ENTRY)
	{
	  hentry *e;

	  do
	    {
	      hcode += incr; if (hcode >= size) hcode -= size;
	      e = &harray [hcode];
	      e_key = e->key;
	    }
	  while (e_key ?
		 KEYS_DIFFER_P (e_key, key, test_function):
		 e->contents == NULL_ENTRY);

	  if (e_key)
	    {
	      e->key = 0;
	      e->contents = NULL_ENTRY;
	    }
	}

      /* only increment the fullness when we used up a new hentry */
      if (!e_key || KEYS_DIFFER_P (e_key, key, test_function))
	{
	  Elemcount comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness));
	  if (hash_table->size < comfortable_size)
	    grow_hash_table (hash_table, comfortable_size + 1);
	}
    }
}

static void
rehash (hentry *harray, struct hash_table *hash_table, Elemcount size)
{
  hentry *limit = harray + size;
  hentry *e;
  for (e = harray; e < limit; e++)
    {
      if (e->key)
	puthash (e->key, e->contents, hash_table);
    }
}

void
remhash (const void *key, struct hash_table *hash_table)
{
  if (!key)
    {
      hash_table->zero_entry = 0;
      hash_table->zero_set = 0;
    }
  else
    {
      hentry *harray = hash_table->harray;
      hash_table_test_function test_function = hash_table->test_function;
      Elemcount size = hash_table->size;
      Hashcode hcode_initial =
	(hash_table->hash_function) ?
	(hash_table->hash_function (key)) :
	((Hashcode) key);
      Elemcount hcode = (Elemcount) (hcode_initial % size);
      hentry *e = &harray [hcode];
      const void *e_key = e->key;

      if (e_key ?
	  KEYS_DIFFER_P (e_key, key, test_function) :
	  e->contents == NULL_ENTRY)
	{
	  Elemcount h2 = size - 2;
	  Elemcount incr = (Elemcount) (1 + (hcode_initial % h2));
	  do
	    {
	      hcode += incr; if (hcode >= size) hcode -= size;
	      e = &harray [hcode];
	      e_key = e->key;
	    }
	  while (e_key?
		 KEYS_DIFFER_P (e_key, key, test_function):
		 e->contents == NULL_ENTRY);
	}
      if (e_key)
	{
	  e->key = 0;
	  e->contents = NULL_ENTRY;
	  /* Note: you can't do fullness-- here, it breaks the world. */
	}
    }
}

void
maphash (maphash_function mf, struct hash_table *hash_table, void *arg)
{
  hentry *e;
  hentry *limit;

  if (hash_table->zero_set)
    {
      if (mf (0, hash_table->zero_entry, arg))
	return;
    }

  for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
    {
      if (e->key && mf (e->key, e->contents, arg))
	return;
    }
}

void
map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg)
{
  hentry *e;
  hentry *limit;

  if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg))
    {
      hash_table->zero_set = 0;
      hash_table->zero_entry = 0;
    }

  for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
    if (predicate (e->key, e->contents, arg))
      {
        e->key = 0;
        e->contents = NULL_ENTRY;
      }
}