view modules/README @ 5327:d1b17a33450b

Move the heavy lifting from cl-seq.el to C. src/ChangeLog addition: 2010-12-30 Aidan Kehoe <kehoea@parhasard.net> Move the heavy lifting from cl-seq.el to C, finally making those functions first-class XEmacs citizens, with circularity checking, built-in support for tests other than #'eql, and as much compatibility with current Common Lisp as Paul Dietz' tests require. * fns.c (check_eq_nokey, check_eq_key, check_eql_nokey) (check_eql_key, check_equal_nokey, check_equal_key) (check_equalp_nokey, check_equalp_key, check_string_match_nokey) (check_string_match_key, check_other_nokey, check_other_key) (check_if_nokey, check_if_key, check_match_eq_key) (check_match_eql_key, check_match_equal_key) (check_match_equalp_key, check_match_other_key): New. These are basically to provide function pointers to be used by Lisp functions that take TEST, TEST-NOT and KEY arguments. (get_check_match_function_1, get_check_test_function) (get_check_match_function): These functions work out which of the previous list of functions to use, given the keywords supplied by the user. (count_with_tail): New. This is the bones of #'count. (list_count_from_end, string_count_from_end): Utility functions for #'count. (Fcount): New, moved from cl-seq.el. (list_position_cons_before): New. The implementation of #'member*, and important in implementing various other functions. (FmemberX, Fadjoin, FassocX, FrassocX, Fposition, Ffind) (FdeleteX, FremoveX, Fdelete_duplicates, Fremove_duplicates) (Fnsubstitute, Fsubstitute, Fsublis, Fnsublis, Fsubst, Fnsubst) (Ftree_equal, Fmismatch, Fsearch, Fintersection, Fnintersection) (Fsubsetp, Fset_difference, Fnset_difference, Fnunion, Funion) (Fset_exclusive_or, Fnset_exclusive_or): New, moved here from cl-seq.el. (position): New. The implementation of #'find and #'position. (list_delete_duplicates_from_end, subst, sublis, nsublis) (tree_equal, mismatch_from_end, mismatch_list_list) (mismatch_list_string, mismatch_list_array) (mismatch_string_array, mismatch_string_string) (mismatch_array_array, get_mismatch_func): Helper C functions for the Lisp-visible functions. (venn, nvenn): New. The implementation of the main Lisp functions that treat lists as sets. lisp/ChangeLog addition: 2010-12-30 Aidan Kehoe <kehoea@parhasard.net> * cl-seq.el: Move the heavy lifting from this file to C. Dump the cl-parsing-keywords macro, but don't use defun* for the functions we define that do take keywords, dynamic scope lossage makes that not practical. * subr.el (sort, fillarray): Move these aliases here. (map-plist): #'nsublis is now built-in, but at this point #'eql isn't necessarily available as a test; use #'eq. * obsolete.el (cl-delete-duplicates): Make this available for old compiler macros and old code. (memql): Document that this is equivalent to #'member*, and worse. * cl.el (adjoin, subst): Removed. These are in C.
author Aidan Kehoe <kehoea@parhasard.net>
date Thu, 30 Dec 2010 01:59:52 +0000
parents 25e260cb7994
children da1365dd3f07
line wrap: on
line source

This directory contains a number of XEmacs dynamic modules.  These
modules can be loaded directly with the command 'M-x load-module'.
However, the preferred method of loading a module is to issue a
"(require 'module-name)" command to the Lisp interpreter.  This will
store information so that a later "(unload-feature 'module-name)" can
succeed.

To compile one of these modules, simply enter the desired directory,
type 'configure', and then 'make'.  If you are building the module for
an installed XEmacs, then 'make install' will place the module in the
appropriate directory for XEmacs to find it later (assuming you have
permission to write to that directory).  A subsequent 'load-module' or
'require' will then load the module, as described above.

Each of these demonstrates different features and limitations of the
XEmacs module loading technology.  For a complete discussion on XEmacs
dynamic modules, please consult the XEmacs Module Writers Guide, which
can be found in the ../info directory.

For those wanting to get started with module writing, please see the
'sample' directory.  It contains two subdirectories: internal and
external.  The 'internal' subdirectory contains the framework needed to
migrate some core piece of XEmacs functionality into code that can
either be compiled into the core or built as a separate module.  The
'external' subdirectory contains the somewhat simpler framework needed
to build a module separately from XEmacs.  These should be considered
starting places for module writing.