view lisp/term/linux.el @ 5043:d0c14ea98592

various frame-geometry fixes -------------------- ChangeLog entries follow: -------------------- src/ChangeLog addition: 2010-02-15 Ben Wing <ben@xemacs.org> * EmacsFrame.c: * EmacsFrame.c (EmacsFrameResize): * console-msw-impl.h: * console-msw-impl.h (struct mswindows_frame): * console-msw-impl.h (FRAME_MSWINDOWS_TARGET_RECT): * device-tty.c: * device-tty.c (tty_asynch_device_change): * event-msw.c: * event-msw.c (mswindows_wnd_proc): * faces.c (Fface_list): * faces.h: * frame-gtk.c: * frame-gtk.c (gtk_set_initial_frame_size): * frame-gtk.c (gtk_set_frame_size): * frame-msw.c: * frame-msw.c (mswindows_init_frame_1): * frame-msw.c (mswindows_set_frame_size): * frame-msw.c (mswindows_size_frame_internal): * frame-msw.c (msprinter_init_frame_3): * frame.c: * frame.c (enum): * frame.c (Fmake_frame): * frame.c (adjust_frame_size): * frame.c (store_minibuf_frame_prop): * frame.c (Fframe_property): * frame.c (Fframe_properties): * frame.c (Fframe_displayable_pixel_height): * frame.c (Fframe_displayable_pixel_width): * frame.c (internal_set_frame_size): * frame.c (Fset_frame_height): * frame.c (Fset_frame_pixel_height): * frame.c (Fset_frame_displayable_pixel_height): * frame.c (Fset_frame_width): * frame.c (Fset_frame_pixel_width): * frame.c (Fset_frame_displayable_pixel_width): * frame.c (Fset_frame_size): * frame.c (Fset_frame_pixel_size): * frame.c (Fset_frame_displayable_pixel_size): * frame.c (frame_conversion_internal_1): * frame.c (get_frame_displayable_pixel_size): * frame.c (change_frame_size_1): * frame.c (change_frame_size): * frame.c (generate_title_string): * frame.h: * gtk-xemacs.c: * gtk-xemacs.c (gtk_xemacs_size_request): * gtk-xemacs.c (gtk_xemacs_size_allocate): * gtk-xemacs.c (gtk_xemacs_paint): * gutter.c: * gutter.c (update_gutter_geometry): * redisplay.c (end_hold_frame_size_changes): * redisplay.c (redisplay_frame): * toolbar.c: * toolbar.c (update_frame_toolbars_geometry): * window.c: * window.c (frame_pixsize_valid_p): * window.c (check_frame_size): Various fixes to frame geometry to make it a bit easier to understand and fix some bugs. 1. IMPORTANT: Some renamings. Will need to be applied carefully to the carbon repository, in the following order: -- pixel_to_char_size -> pixel_to_frame_unit_size -- char_to_pixel_size -> frame_unit_to_pixel_size -- pixel_to_real_char_size -> pixel_to_char_size -- char_to_real_pixel_size -> char_to_pixel_size -- Reverse second and third arguments of change_frame_size() and change_frame_size_1() to try to make functions consistent in putting width before height. -- Eliminate old round_size_to_char, because it didn't really do anything differently from round_size_to_real_char() -- round_size_to_real_char -> round_size_to_char; any places that called the old round_size_to_char should just call the new one. 2. IMPORTANT FOR CARBON: The set_frame_size() method is now passed sizes in "frame units", like all other frame-sizing functions, rather than some hacked-up combination of char-cell units and total pixel size. This only affects window systems that use "pixelated geometry", and I'm not sure if Carbon is one of them. MS Windows is pixelated, X and GTK are not. For pixelated-geometry systems, the size in set_frame_size() is in displayable pixels rather than total pixels and needs to be converted appropriately; take a look at the changes made to mswindows_set_frame_size() method if necessary. 3. Add a big long comment in frame.c describing how frame geometry works. 4. Remove MS Windows-specific character height and width fields, duplicative and unused. 5. frame-displayable-pixel-* and set-frame-displayable-pixel-* didn't use to work on MS Windows, but they do now. 6. In general, clean up the handling of "pixelated geometry" so that fewer functions have to worry about this. This is really an abomination that should be removed entirely but that will have to happen later. Fix some buggy code in frame_conversion_internal() that happened to "work" because it was countered by oppositely buggy code in change_frame_size(). 7. Clean up some frame-size code in toolbar.c and use functions already provided in frame.c instead of rolling its own. 8. Fix check_frame_size() in window.c, which formerly didn't take pixelated geometry into account.
author Ben Wing <ben@xemacs.org>
date Mon, 15 Feb 2010 22:14:11 -0600
parents 8d7c4af1d6af
children 308d34e9f07d
line wrap: on
line source

;;; linux.el --- define function key sequences for the Linux console

;; Author: Ben Wing
;; Keywords: terminals

;; Copyright (C) 1996 Ben Wing.
;; This file is part of XEmacs.

;; XEmacs is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; XEmacs is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with XEmacs; see the file COPYING.  If not, write to the Free
;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
;; 02111-1307, USA.

;;; Synched up with: FSF 21.0.103.
;;; (All the define-keys are our own.)

;;; Commentary:

;;; Code:

;; The Linux console handles Latin-1 by default.

(if-fboundp 'set-terminal-coding-system
    (unless (declare-fboundp (terminal-coding-system))
      (set-terminal-coding-system 'iso-8859-1)))

;; Make Latin-1 input characters work, too.
;; Meta will continue to work, because the kernel
;; turns that into Escape.

(let ((value (current-input-mode)))
  ;; The third arg only matters in that it is not t or nil.
  (set-input-mode (nth 0 value) (nth 1 value) 'iso-8859-1 (nth 3 value)))

;; The defines below seem to get automatically set in recent Termcaps.
;; It was probably the case that in 1996, there was no good Linux termcap,
;; which is why such a file was needed.

; ;; Termcap or terminfo should set these next four?
; (define-key function-key-map "\e[A" [up])
; (define-key function-key-map "\e[B" [down])
; (define-key function-key-map "\e[C" [right])
; (define-key function-key-map "\e[D" [left])

; (define-key function-key-map "\e[[A" [f1])
; (define-key function-key-map "\e[[B" [f2])
; (define-key function-key-map "\e[[C" [f3])
; (define-key function-key-map "\e[[D" [f4])
; (define-key function-key-map "\e[[E" [f5])
; (define-key function-key-map "\e[17~" [f6])
; (define-key function-key-map "\e[18~" [f7])
; (define-key function-key-map "\e[19~" [f8])
; (define-key function-key-map "\e[20~" [f9])
; (define-key function-key-map "\e[21~" [f10])
; (define-key function-key-map "\e[23~" [f11])
; (define-key function-key-map "\e[24~" [f12])
; (define-key function-key-map "\e[25~" [f13])
; (define-key function-key-map "\e[26~" [f14])
; (define-key function-key-map "\e[28~" [f15])
; (define-key function-key-map "\e[29~" [f16])
; (define-key function-key-map "\e[31~" [f17])
; (define-key function-key-map "\e[32~" [f18])
; (define-key function-key-map "\e[33~" [f19])
; (define-key function-key-map "\e[34~" [f20])

;; But they come out f13-f20 (see above), which are not what we
;; normally call the shifted function keys.  F11 = Shift-F1, F2 =
;; Shift-F2.  What a mess, see below.
(define-key function-key-map "\e[25~" [(shift f3)])
(define-key function-key-map "\e[26~" [(shift f4)])
(define-key function-key-map "\e[28~" [(shift f5)])
(define-key function-key-map "\e[29~" [(shift f6)])
(define-key function-key-map "\e[31~" [(shift f7)])
(define-key function-key-map "\e[32~" [(shift f8)])
(define-key function-key-map "\e[33~" [(shift f9)])
(define-key function-key-map "\e[34~" [(shift f10)])

;; I potentially considered these.  They would make people's Shift-F1 and
;; Shift-F2 bindings work -- but of course they would fail to work if the
;; person also put F11 and F12 bindings.  It might also be confusing because
;; the person with no bindings who hits f11 gets "error shift-f1 unbound".
;; #### If only there were a proper way around this.
;(define-key global-map 'f11 [(shift f1)])
;(define-key global-map 'f12 [(shift f2)])

; (define-key function-key-map "\e[1~" [home])
 ;; seems to not get handled correctly automatically
 (define-key function-key-map "\e[2~" [insert])
; (define-key function-key-map "\e[3~" [delete])
; (define-key function-key-map "\e[4~" [end])
; (define-key function-key-map "\e[5~" [prior])
; (define-key function-key-map "\e[6~" [next])
; (define-key function-key-map "\e[G" [kp-5])

; (define-key function-key-map "\eOp" [kp-0])
; (define-key function-key-map "\eOq" [kp-1])
; (define-key function-key-map "\eOr" [kp-2])
; (define-key function-key-map "\eOs" [kp-3])
; (define-key function-key-map "\eOt" [kp-4])
; (define-key function-key-map "\eOu" [kp-5])
; (define-key function-key-map "\eOv" [kp-6])
; (define-key function-key-map "\eOw" [kp-7])
; (define-key function-key-map "\eOx" [kp-8])
; (define-key function-key-map "\eOy" [kp-9])

; (define-key function-key-map "\eOl" [kp-add])
; (define-key function-key-map "\eOS" [kp-subtract])
; (define-key function-key-map "\eOM" [kp-enter])
; (define-key function-key-map "\eOR" [kp-multiply])
; (define-key function-key-map "\eOQ" [kp-divide])
; (define-key function-key-map "\eOn" [kp-decimal])
; (define-key function-key-map "\eOP" [kp-numlock])

;;; linux.el ends here