view tests/automated/lisp-tests.el @ 4686:cdabd56ce1b5

Fix various small issues with the multiple-value implementation. lisp/ChangeLog addition: 2009-08-31 Aidan Kehoe <kehoea@parhasard.net> * byte-optimize.el (byte-optimize-form-code-walker): Be careful about discarding multiple values when optimising #'prog1 calls. (byte-optimize-or): Preserve any trailing nil, as this is a supported way to explicitly discard multiple values. (byte-optimize-cond-1): Discard multiple values with a singleton followed by no more clauses. * bytecomp.el (progn): (prog1): (prog2): Be careful about discarding multiple values in the byte-hunk handler of these three forms. * bytecomp.el (byte-compile-prog1, byte-compile-prog2): Don't call #'values explicitly, use `(or ,(pop form) nil) instead, since that compiles to bytecode, not a funcall. * bytecomp.el (byte-compile-values): With one non-const argument, byte-compile to `(or ,(second form) nil), not an explicit #'values call. * bytecomp.el (byte-compile-insert-header): Be nicer in the error message to emacs versions that don't understand our bytecode. src/ChangeLog addition: 2009-08-31 Aidan Kehoe <kehoea@parhasard.net> * eval.c (For, Fand): Don't declare val as REGISTER in these functions, for some reason it breaks the non-DEBUG union build. These functions are only called from interpreted code, the performance implication doesn't matter. Thank you Robert Delius Royar! * eval.c (Fmultiple_value_list_internal): Error on too many arguments. tests/ChangeLog addition: 2009-08-31 Aidan Kehoe <kehoea@parhasard.net> * automated/lisp-tests.el (Assert-rounding): Remove an overly-verbose failure message here. Correct a couple of tests which were buggy in themselves. Add three new tests, checking the behaviour of #'or and #'and when passed zero arguments, and a Known-Bug-Expect-Failure call involving letf and values. (The bug predates the C-level multiple-value implementation.)
author Aidan Kehoe <kehoea@parhasard.net>
date Sun, 06 Sep 2009 19:36:02 +0100
parents 2c64d2bbb316
children d0ea57eb3de4
line wrap: on
line source

;; Copyright (C) 1998 Free Software Foundation, Inc.

;; Author: Martin Buchholz <martin@xemacs.org>
;; Maintainer: Martin Buchholz <martin@xemacs.org>
;; Created: 1998
;; Keywords: tests

;; This file is part of XEmacs.

;; XEmacs is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; XEmacs is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with XEmacs; see the file COPYING.  If not, write to the Free
;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
;; 02111-1307, USA.

;;; Synched up with: Not in FSF.

;;; Commentary:

;;; Test basic Lisp engine functionality
;;; See test-harness.el for instructions on how to run these tests.

(eval-when-compile
  (condition-case nil
      (require 'test-harness)
    (file-error
     (push "." load-path)
     (when (and (boundp 'load-file-name) (stringp load-file-name))
       (push (file-name-directory load-file-name) load-path))
     (require 'test-harness))))

(Check-Error wrong-number-of-arguments (setq setq-test-foo))
(Check-Error wrong-number-of-arguments (setq setq-test-foo 1 setq-test-bar))
(Check-Error wrong-number-of-arguments (setq-default setq-test-foo))
(Check-Error wrong-number-of-arguments (setq-default setq-test-foo 1 setq-test-bar))
(Assert (eq (setq)         nil))
(Assert (eq (setq-default) nil))
(Assert (eq (setq         setq-test-foo 42) 42))
(Assert (eq (setq-default setq-test-foo 42) 42))
(Assert (eq (setq         setq-test-foo 42 setq-test-bar 99) 99))
(Assert (eq (setq-default setq-test-foo 42 setq-test-bar 99) 99))

(macrolet ((test-setq (expected-result &rest body)
		      `(progn
			 (defun test-setq-fun () ,@body)
			 (Assert (eq ,expected-result (test-setq-fun)))
			 (byte-compile 'test-setq-fun)
			 (Assert (eq ,expected-result (test-setq-fun))))))
  (test-setq nil (setq))
  (test-setq nil (setq-default))
  (test-setq 42  (setq         test-setq-var 42))
  (test-setq 42  (setq-default test-setq-var 42))
  (test-setq 42  (setq         test-setq-bar 99 test-setq-var 42))
  (test-setq 42  (setq-default test-setq-bar 99 test-setq-var 42))
  )

(let ((my-vector [1 2 3 4])
      (my-bit-vector (bit-vector 1 0 1 0))
      (my-string "1234")
      (my-list '(1 2 3 4)))

  ;;(Assert (fooooo)) ;; Generate Other failure
  ;;(Assert (eq 1 2)) ;; Generate Assertion failure

  (dolist (sequence (list my-vector my-bit-vector my-string my-list))
    (Assert (sequencep sequence))
    (Assert (eq 4 (length sequence))))

  (dolist (array (list my-vector my-bit-vector my-string))
    (Assert (arrayp array)))

  (Assert (eq (elt my-vector 0) 1))
  (Assert (eq (elt my-bit-vector 0) 1))
  (Assert (eq (elt my-string 0) ?1))
  (Assert (eq (elt my-list 0) 1))

  (fillarray my-vector 5)
  (fillarray my-bit-vector 1)
  (fillarray my-string ?5)

  (dolist (array (list my-vector my-bit-vector))
    (Assert (eq 4 (length array))))

  (Assert (eq (elt my-vector 0) 5))
  (Assert (eq (elt my-bit-vector 0) 1))
  (Assert (eq (elt my-string 0) ?5))

  (Assert (eq (elt my-vector 3) 5))
  (Assert (eq (elt my-bit-vector 3) 1))
  (Assert (eq (elt my-string 3) ?5))

  (fillarray my-bit-vector 0)
  (Assert (eq 4 (length my-bit-vector)))
  (Assert (eq (elt my-bit-vector 2) 0))
  )

(defun make-circular-list (length)
  "Create evil emacs-crashing circular list of length LENGTH"
  (let ((circular-list
	 (make-list
	  length
	  'you-are-trapped-in-a-twisty-maze-of-cons-cells-all-alike)))
    (setcdr (last circular-list) circular-list)
    circular-list))

;;-----------------------------------------------------
;; Test `nconc'
;;-----------------------------------------------------
(defun make-list-012 () (list 0 1 2))

(Check-Error wrong-type-argument (nconc 'foo nil))

(dolist (length '(1 2 3 4 1000 2000))
  (Check-Error circular-list (nconc (make-circular-list length) 'foo))
  (Check-Error circular-list (nconc '(1 . 2) (make-circular-list length) 'foo))
  (Check-Error circular-list (nconc '(1 . 2) '(3 . 4) (make-circular-list length) 'foo)))

(Assert (eq (nconc) nil))
(Assert (eq (nconc nil) nil))
(Assert (eq (nconc nil nil) nil))
(Assert (eq (nconc nil nil nil) nil))

(let ((x (make-list-012))) (Assert (eq (nconc nil x) x)))
(let ((x (make-list-012))) (Assert (eq (nconc x nil) x)))
(let ((x (make-list-012))) (Assert (eq (nconc nil x nil) x)))
(let ((x (make-list-012))) (Assert (eq (nconc x) x)))
(let ((x (make-list-012))) (Assert (eq (nconc x (make-circular-list 3)) x)))

(Assert (equal (nconc '(1 . 2) '(3 . 4) '(5 . 6)) '(1 3 5 . 6)))

(let ((y (nconc (make-list-012) nil (list 3 4 5) nil)))
  (Assert (eq (length y) 6))
  (Assert (eq (nth 3 y) 3)))

;;-----------------------------------------------------
;; Test `last'
;;-----------------------------------------------------
(Check-Error wrong-type-argument (last 'foo))
(Check-Error wrong-number-of-arguments (last))
(Check-Error wrong-number-of-arguments (last '(1 2) 1 1))
(Check-Error circular-list (last (make-circular-list 1)))
(Check-Error circular-list (last (make-circular-list 2000)))
(let ((x (list 0 1 2 3)))
  (Assert (eq (last nil) nil))
  (Assert (eq (last x 0) nil))
  (Assert (eq (last x  ) (cdddr x)))
  (Assert (eq (last x 1) (cdddr x)))
  (Assert (eq (last x 2) (cddr x)))
  (Assert (eq (last x 3) (cdr x)))
  (Assert (eq (last x 4) x))
  (Assert (eq (last x 9) x))
  (Assert (eq (last '(1 . 2) 0) 2))
  )

;;-----------------------------------------------------
;; Test `butlast' and `nbutlast'
;;-----------------------------------------------------
(Check-Error wrong-type-argument (butlast  'foo))
(Check-Error wrong-type-argument (nbutlast 'foo))
(Check-Error wrong-number-of-arguments (butlast))
(Check-Error wrong-number-of-arguments (nbutlast))
(Check-Error wrong-number-of-arguments (butlast  '(1 2) 1 1))
(Check-Error wrong-number-of-arguments (nbutlast '(1 2) 1 1))
(Check-Error circular-list (butlast  (make-circular-list 1)))
(Check-Error circular-list (nbutlast (make-circular-list 1)))
(Check-Error circular-list (butlast  (make-circular-list 2000)))
(Check-Error circular-list (nbutlast (make-circular-list 2000)))

(let* ((x (list 0 1 2 3))
       (y (butlast x))
       (z (nbutlast x)))
  (Assert (eq z x))
  (Assert (not (eq y x)))
  (Assert (equal y '(0 1 2)))
  (Assert (equal z y)))

(let* ((x (list 0 1 2 3 4))
       (y (butlast x 2))
       (z (nbutlast x 2)))
  (Assert (eq z x))
  (Assert (not (eq y x)))
  (Assert (equal y '(0 1 2)))
  (Assert (equal z y)))

(let* ((x (list 0 1 2 3))
       (y (butlast x 0))
       (z (nbutlast x 0)))
  (Assert (eq z x))
  (Assert (not (eq y x)))
  (Assert (equal y '(0 1 2 3)))
  (Assert (equal z y)))

(Assert (eq (butlast  '(x)) nil))
(Assert (eq (nbutlast '(x)) nil))
(Assert (eq (butlast  '()) nil))
(Assert (eq (nbutlast '()) nil))

;;-----------------------------------------------------
;; Test `copy-list'
;;-----------------------------------------------------
(Check-Error wrong-type-argument (copy-list 'foo))
(Check-Error wrong-number-of-arguments (copy-list))
(Check-Error wrong-number-of-arguments (copy-list '(1 2) 1))
(Check-Error circular-list (copy-list (make-circular-list 1)))
(Check-Error circular-list (copy-list (make-circular-list 2000)))
(Assert (eq '() (copy-list '())))
(dolist (x '((1) (1 2) (1 2 3) (1 2 . 3)))
  (let ((y (copy-list x)))
    (Assert (and (equal x y) (not (eq x y))))))

;;-----------------------------------------------------
;; Arithmetic operations
;;-----------------------------------------------------

;; Test `+'
(Assert (eq (+ 1 1) 2))
(Assert (= (+ 1.0 1.0) 2.0))
(Assert (= (+ 1.0 3.0 0.0) 4.0))
(Assert (= (+ 1 1.0) 2.0))
(Assert (= (+ 1.0 1) 2.0))
(Assert (= (+ 1.0 1 1) 3.0))
(Assert (= (+ 1 1 1.0) 3.0))
(if (featurep 'bignum)
    (progn
      (Assert (bignump (1+ most-positive-fixnum)))
      (Assert (eq most-positive-fixnum (1- (1+ most-positive-fixnum))))
      (Assert (bignump (+ most-positive-fixnum 1)))
      (Assert (eq most-positive-fixnum (- (+ most-positive-fixnum 1) 1)))
      (Assert (= (1+ most-positive-fixnum) (- most-negative-fixnum)))
      (Assert (zerop (+ (* 3 most-negative-fixnum) (* 3 most-positive-fixnum)
			3))))
  (Assert (eq (1+ most-positive-fixnum) most-negative-fixnum))
  (Assert (eq (+ most-positive-fixnum 1) most-negative-fixnum)))

(when (featurep 'ratio)
  (let ((threefourths (read "3/4"))
	(threehalfs (read "3/2"))
	(bigpos (div (+ most-positive-fixnum 2) (1+ most-positive-fixnum)))
	(bigneg (div (+ most-positive-fixnum 2) most-negative-fixnum))
	(negone (div (1+ most-positive-fixnum) most-negative-fixnum)))
    (Assert (= negone -1))
    (Assert (= threehalfs (+ threefourths threefourths)))
    (Assert (zerop (+ bigpos bigneg)))))

;; Test `-'
(Check-Error wrong-number-of-arguments (-))
(Assert (eq (- 0) 0))
(Assert (eq (- 1) -1))
(dolist (one `(1 1.0 ?\1 ,(Int-to-Marker 1)))
  (Assert (= (+ 1 one) 2))
  (Assert (= (+ one) 1))
  (Assert (= (+ one) one))
  (Assert (= (- one) -1))
  (Assert (= (- one one) 0))
  (Assert (= (- one one one) -1))
  (Assert (= (- 0 one) -1))
  (Assert (= (- 0 one one) -2))
  (Assert (= (+ one 1) 2))
  (dolist (zero '(0 0.0 ?\0))
    (Assert (= (+ 1 zero) 1) zero)
    (Assert (= (+ zero 1) 1) zero)
    (Assert (= (- zero) zero) zero)
    (Assert (= (- zero) 0) zero)
    (Assert (= (- zero zero) 0) zero)
    (Assert (= (- zero one one) -2) zero)))

(Assert (= (- 1.5 1) .5))
(Assert (= (- 1 1.5) (- .5)))

(if (featurep 'bignum)
    (progn
      (Assert (bignump (1- most-negative-fixnum)))
      (Assert (eq most-negative-fixnum (1+ (1- most-negative-fixnum))))
      (Assert (bignump (- most-negative-fixnum 1)))
      (Assert (eq most-negative-fixnum (+ (- most-negative-fixnum 1) 1)))
      (Assert (= (1- most-negative-fixnum) (- 0 most-positive-fixnum 2)))
      (Assert (eq (- (- most-positive-fixnum most-negative-fixnum)
		     (* 2 most-positive-fixnum))
		  1)))
  (Assert (eq (1- most-negative-fixnum) most-positive-fixnum))
  (Assert (eq (- most-negative-fixnum 1) most-positive-fixnum)))

(when (featurep 'ratio)
  (let ((threefourths (read "3/4"))
	(threehalfs (read "3/2"))
	(bigpos (div (+ most-positive-fixnum 2) (1+ most-positive-fixnum)))
	(bigneg (div most-positive-fixnum most-negative-fixnum))
	(negone (div (1+ most-positive-fixnum) most-negative-fixnum)))
    (Assert (= (- negone) 1))
    (Assert (= threefourths (- threehalfs threefourths)))
    (Assert (= (- bigpos bigneg) 2))))

;; Test `/'

;; Test division by zero errors
(dolist (zero '(0 0.0 ?\0))
  (Check-Error arith-error (/ zero))
  (dolist (n1 `(42 42.0 ?\042 ,(Int-to-Marker 42)))
    (Check-Error arith-error (/ n1 zero))
    (dolist (n2 `(3 3.0 ?\03 ,(Int-to-Marker 3)))
      (Check-Error arith-error (/ n1 n2 zero)))))

;; Other tests for `/'
(Check-Error wrong-number-of-arguments (/))
(let (x)
  (Assert (= (/ (setq x 2))   0))
  (Assert (= (/ (setq x 2.0)) 0.5)))

(dolist (six '(6 6.0 ?\06))
  (dolist (two '(2 2.0 ?\02))
    (dolist (three '(3 3.0 ?\03))
      (Assert (= (/ six two) three) (list six two three)))))

(dolist (three '(3 3.0 ?\03))
  (Assert (= (/ three 2.0) 1.5) three))
(dolist (two '(2 2.0 ?\02))
  (Assert (= (/ 3.0 two) 1.5) two))

(when (featurep 'bignum)
  (let* ((million 1000000)
	 (billion (* million 1000))	;; American, not British, billion
	 (trillion (* billion 1000)))
    (Assert (= (/ billion 1000) (/ trillion million) million 1000000.0))
    (Assert (= (/ billion -1000) (/ trillion (- million)) (- million)))
    (Assert (= (/ trillion 1000) billion 1000000000.0))
    (Assert (= (/ trillion -1000) (- billion) -1000000000.0))
    (Assert (= (/ trillion 10) (* 100 billion) 100000000000.0))
    (Assert (= (/ (- trillion) 10) (* -100 billion) -100000000000.0))))

(when (featurep 'ratio)
  (let ((half (div 1 2))
	(fivefourths (div 5 4))
	(fivehalfs (div 5 2)))
    (Assert (= half (read "3000000000/6000000000")))
    (Assert (= (/ fivehalfs fivefourths) 2))
    (Assert (= (/ fivefourths fivehalfs) half))
    (Assert (= (- half) (read "-3000000000/6000000000")))
    (Assert (= (/ fivehalfs (- fivefourths)) -2))
    (Assert (= (/ (- fivefourths) fivehalfs) (- half)))))

;; Test `*'
(Assert (= 1 (*)))

(dolist (one `(1 1.0 ?\01 ,(Int-to-Marker 1)))
  (Assert (= 1 (* one)) one))

(dolist (two '(2 2.0 ?\02))
  (Assert (= 2 (* two)) two))

(dolist (six '(6 6.0 ?\06))
  (dolist (two '(2 2.0 ?\02))
    (dolist (three '(3 3.0 ?\03))
      (Assert (= (* three two) six) (list three two six)))))

(dolist (three '(3 3.0 ?\03))
  (dolist (two '(2 2.0 ?\02))
    (Assert (= (* 1.5 two) three) (list two three))
    (dolist (five '(5 5.0 ?\05))
      (Assert (= 30 (* five two three)) (list five two three)))))

(when (featurep 'bignum)
  (let ((64K 65536))
    (Assert (= (* 64K 64K) (read "4294967296")))
    (Assert (= (* (- 64K) 64K) (read "-4294967296")))
    (Assert (/= (* -1 most-negative-fixnum) most-negative-fixnum))))

(when (featurep 'ratio)
  (let ((half (div 1 2))
	(fivefourths (div 5 4))
	(twofifths (div 2 5)))
    (Assert (= (* fivefourths twofifths) half))
    (Assert (= (* half twofifths) (read "3/15")))))

;; Test `+'
(Assert (= 0 (+)))

(dolist (one `(1 1.0 ?\01 ,(Int-to-Marker 1)))
  (Assert (= 1 (+ one)) one))

(dolist (two '(2 2.0 ?\02))
  (Assert (= 2 (+ two)) two))

(dolist (five '(5 5.0 ?\05))
  (dolist (two '(2 2.0 ?\02))
    (dolist (three '(3 3.0 ?\03))
      (Assert (= (+ three two) five) (list three two five))
      (Assert (= 10 (+ five two three)) (list five two three)))))

;; Test `max', `min'
(dolist (one `(1 1.0 ?\01 ,(Int-to-Marker 1)))
  (Assert (= one (max one)) one)
  (Assert (= one (max one one)) one)
  (Assert (= one (max one one one)) one)
  (Assert (= one (min one)) one)
  (Assert (= one (min one one)) one)
  (Assert (= one (min one one one)) one)
  (dolist (two `(2 2.0 ?\02 ,(Int-to-Marker 2)))
    (Assert (= one (min one two)) (list one two))
    (Assert (= one (min one two two)) (list one two))
    (Assert (= one (min two two one)) (list one two))
    (Assert (= two (max one two)) (list one two))
    (Assert (= two (max one two two)) (list one two))
    (Assert (= two (max two two one)) (list one two))))

(when (featurep 'bignum)
  (let ((big (1+ most-positive-fixnum))
	(small (1- most-negative-fixnum)))
    (Assert (= big (max 1 1000000.0 most-positive-fixnum big)))
    (Assert (= small (min -1 -1000000.0 most-negative-fixnum small)))))

(when (featurep 'ratio)
  (let* ((big (1+ most-positive-fixnum))
	 (small (1- most-negative-fixnum))
	 (bigr (div (* 5 (1+ most-positive-fixnum)) 4))
	 (smallr (- bigr)))
    (Assert (= bigr (max 1 1000000.0 most-positive-fixnum big bigr)))
    (Assert (= smallr (min -1 -1000000.0 most-negative-fixnum small smallr)))))

;; The byte compiler has special handling for these constructs:
(let ((three 3) (five 5))
  (Assert (= (+ three five 1) 9))
  (Assert (= (+ 1 three five) 9))
  (Assert (= (+ three five -1) 7))
  (Assert (= (+ -1 three five) 7))
  (Assert (= (+ three 1) 4))
  (Assert (= (+ three -1) 2))
  (Assert (= (+ -1 three) 2))
  (Assert (= (+ -1 three) 2))
  (Assert (= (- three five 1) -3))
  (Assert (= (- 1 three five) -7))
  (Assert (= (- three five -1) -1))
  (Assert (= (- -1 three five) -9))
  (Assert (= (- three 1) 2))
  (Assert (= (- three 2 1) 0))
  (Assert (= (- 2 three 1) -2))
  (Assert (= (- three -1) 4))
  (Assert (= (- three 0) 3))
  (Assert (= (- three 0 five) -2))
  (Assert (= (- 0 three 0 five) -8))
  (Assert (= (- 0 three five) -8))
  (Assert (= (* three 2) 6))
  (Assert (= (* three -1 five) -15))
  (Assert (= (* three 1 five) 15))
  (Assert (= (* three 0 five) 0))
  (Assert (= (* three 2 five) 30))
  (Assert (= (/ three 1) 3))
  (Assert (= (/ three -1) -3))
  (Assert (= (/ (* five five) 2 2) 6))
  (Assert (= (/ 64 five 2) 6)))


;;-----------------------------------------------------
;; Logical bit-twiddling operations
;;-----------------------------------------------------
(Assert (= (logxor)  0))
(Assert (= (logior)  0))
(Assert (= (logand) -1))

(Check-Error wrong-type-argument (logxor 3.0))
(Check-Error wrong-type-argument (logior 3.0))
(Check-Error wrong-type-argument (logand 3.0))

(dolist (three '(3 ?\03))
  (Assert (eq 3 (logand three)) three)
  (Assert (eq 3 (logxor three)) three)
  (Assert (eq 3 (logior three)) three)
  (Assert (eq 3 (logand three three)) three)
  (Assert (eq 0 (logxor three three)) three)
  (Assert (eq 3 (logior three three))) three)

(dolist (one `(1 ?\01 ,(Int-to-Marker 1)))
  (dolist (two '(2 ?\02))
    (Assert (eq 0 (logand one two)) (list one two))
    (Assert (eq 3 (logior one two)) (list one two))
    (Assert (eq 3 (logxor one two)) (list one two)))
  (dolist (three '(3 ?\03))
    (Assert (eq 1 (logand one three)) (list one three))
    (Assert (eq 3 (logior one three)) (list one three))
    (Assert (eq 2 (logxor one three)) (list one three))))

;;-----------------------------------------------------
;; Test `%', mod
;;-----------------------------------------------------
(Check-Error wrong-number-of-arguments (%))
(Check-Error wrong-number-of-arguments (% 1))
(Check-Error wrong-number-of-arguments (% 1 2 3))

(Check-Error wrong-number-of-arguments (mod))
(Check-Error wrong-number-of-arguments (mod 1))
(Check-Error wrong-number-of-arguments (mod 1 2 3))

(Check-Error wrong-type-argument (% 10.0 2))
(Check-Error wrong-type-argument (% 10 2.0))

(flet ((test1 (x) (Assert (eql x (+ (% x 17) (* (/ x 17) 17))) x))
       (test2 (x) (Assert (eql (- x) (+ (% (- x) 17) (* (/ (- x) 17) 17))) x))
       (test3 (x) (Assert (eql x (+ (% (- x) 17) (* (/ (- x) 17) 17))) x))
       (test4 (x) (Assert (eql (% x -17) (- (% (- x) 17))) x))
       (test5 (x) (Assert (eql (% x -17) (% (- x) 17))) x))
  (test1 most-negative-fixnum)
  (if (featurep 'bignum)
      (progn
	(test2 most-negative-fixnum)
	(test4 most-negative-fixnum))
    (test3 most-negative-fixnum)
    (test5 most-negative-fixnum))
  (test1 most-positive-fixnum)
  (test2 most-positive-fixnum)
  (test4 most-positive-fixnum)
  (dotimes (j 30)
    (let ((x (random)))
      (if (eq x most-negative-fixnum) (setq x (1+ x)))
      (if (eq x most-positive-fixnum) (setq x (1- x)))
      (test1 x)
      (test2 x)
      (test4 x))))

(macrolet
    ((division-test (seven)
    `(progn
       (Assert (eq (% ,seven      2)  1))
       (Assert (eq (% ,seven     -2)  1))
       (Assert (eq (% (- ,seven)  2) -1))
       (Assert (eq (% (- ,seven) -2) -1))

       (Assert (eq (% ,seven      4)  3))
       (Assert (eq (% ,seven     -4)  3))
       (Assert (eq (% (- ,seven)  4) -3))
       (Assert (eq (% (- ,seven) -4) -3))

       (Assert (eq (%  35 ,seven)     0))
       (Assert (eq (% -35 ,seven)     0))
       (Assert (eq (%  35 (- ,seven)) 0))
       (Assert (eq (% -35 (- ,seven)) 0))

       (Assert (eq (mod ,seven      2)  1))
       (Assert (eq (mod ,seven     -2) -1))
       (Assert (eq (mod (- ,seven)  2)  1))
       (Assert (eq (mod (- ,seven) -2) -1))

       (Assert (eq (mod ,seven      4)  3))
       (Assert (eq (mod ,seven     -4) -1))
       (Assert (eq (mod (- ,seven)  4)  1))
       (Assert (eq (mod (- ,seven) -4) -3))

       (Assert (eq (mod  35 ,seven)     0))
       (Assert (eq (mod -35 ,seven)     0))
       (Assert (eq (mod  35 (- ,seven)) 0))
       (Assert (eq (mod -35 (- ,seven)) 0))

       (Assert (= (mod ,seven      2.0)  1.0))
       (Assert (= (mod ,seven     -2.0) -1.0))
       (Assert (= (mod (- ,seven)  2.0)  1.0))
       (Assert (= (mod (- ,seven) -2.0) -1.0))

       (Assert (= (mod ,seven      4.0)  3.0))
       (Assert (= (mod ,seven     -4.0) -1.0))
       (Assert (= (mod (- ,seven)  4.0)  1.0))
       (Assert (= (mod (- ,seven) -4.0) -3.0))

       (Assert (eq (% 0 ,seven) 0))
       (Assert (eq (% 0 (- ,seven)) 0))

       (Assert (eq (mod 0 ,seven) 0))
       (Assert (eq (mod 0 (- ,seven)) 0))

       (Assert (= (mod 0.0 ,seven) 0.0))
       (Assert (= (mod 0.0 (- ,seven)) 0.0)))))

  (division-test 7)
  (division-test ?\07)
  (division-test (Int-to-Marker 7)))

(when (featurep 'bignum)
  (let ((big (+ (* 7 most-positive-fixnum 6)))
	(negbig (- (* 7 most-negative-fixnum 6))))
    (= (% big (1+ most-positive-fixnum)) most-positive-fixnum)
    (= (% negbig (1- most-negative-fixnum)) most-negative-fixnum)
    (= (mod big (1+ most-positive-fixnum)) most-positive-fixnum)
    (= (mod negbig (1- most-negative-fixnum)) most-negative-fixnum)))

;;-----------------------------------------------------
;; Arithmetic comparison operations
;;-----------------------------------------------------
(Check-Error wrong-number-of-arguments (=))
(Check-Error wrong-number-of-arguments (<))
(Check-Error wrong-number-of-arguments (>))
(Check-Error wrong-number-of-arguments (<=))
(Check-Error wrong-number-of-arguments (>=))
(Check-Error wrong-number-of-arguments (/=))

;; One argument always yields t
(loop for x in `(1 1.0 ,(Int-to-Marker 1) ?z) do
  (Assert (eq t (=  x)) x)
  (Assert (eq t (<  x)) x)
  (Assert (eq t (>  x)) x)
  (Assert (eq t (>= x)) x)
  (Assert (eq t (<= x)) x)
  (Assert (eq t (/= x)) x)
  )

;; Type checking
(Check-Error wrong-type-argument (=  'foo 1))
(Check-Error wrong-type-argument (<= 'foo 1))
(Check-Error wrong-type-argument (>= 'foo 1))
(Check-Error wrong-type-argument (<  'foo 1))
(Check-Error wrong-type-argument (>  'foo 1))
(Check-Error wrong-type-argument (/= 'foo 1))

;; Meat
(dolist (one `(1 1.0 ,(Int-to-Marker 1) ?\01))
  (dolist (two '(2 2.0 ?\02))
    (Assert (<  one two) (list one two))
    (Assert (<= one two) (list one two))
    (Assert (<= two two) two)
    (Assert (>  two one) (list one two))
    (Assert (>= two one) (list one two))
    (Assert (>= two two) two)
    (Assert (/= one two) (list one two))
    (Assert (not (/= two two)) two)
    (Assert (not (< one one)) one)
    (Assert (not (> one one)) one)
    (Assert (<= one one two two) (list one two))
    (Assert (not (< one one two two)) (list one two))
    (Assert (>= two two one one) (list one two))
    (Assert (not (> two two one one)) (list one two))
    (Assert (= one one one) one)
    (Assert (not (= one one one two)) (list one two))
    (Assert (not (/= one two one)) (list one two))
    ))

(dolist (one `(1 1.0 ,(Int-to-Marker 1) ?\01))
  (dolist (two '(2 2.0 ?\02))
    (Assert (<  one two) (list one two))
    (Assert (<= one two) (list one two))
    (Assert (<= two two) two)
    (Assert (>  two one) (list one two))
    (Assert (>= two one) (list one two))
    (Assert (>= two two) two)
    (Assert (/= one two) (list one two))
    (Assert (not (/= two two)) two)
    (Assert (not (< one one)) one)
    (Assert (not (> one one)) one)
    (Assert (<= one one two two) (list one two))
    (Assert (not (< one one two two)) (list one two))
    (Assert (>= two two one one) (list one two))
    (Assert (not (> two two one one)) (list one two))
    (Assert (= one one one) one)
    (Assert (not (= one one one two)) (list one two))
    (Assert (not (/= one two one)) (list one two))
    ))

;; ad-hoc
(Assert (< 1 2))
(Assert (< 1 2 3 4 5 6))
(Assert (not (< 1 1)))
(Assert (not (< 2 1)))


(Assert (not (< 1 1)))
(Assert (< 1 2 3 4 5 6))
(Assert (<= 1 2 3 4 5 6))
(Assert (<= 1 2 3 4 5 6 6))
(Assert (not (< 1 2 3 4 5 6 6)))
(Assert (<= 1 1))

(Assert (not (eq (point) (point-marker))))
(Assert (= 1 (Int-to-Marker 1)))
(Assert (= (point) (point-marker)))

(when (featurep 'bignum)
  (let ((big1 (1+ most-positive-fixnum))
	(big2 (* 10 most-positive-fixnum))
	(small1 (1- most-negative-fixnum))
	(small2 (* 10 most-negative-fixnum)))
    (Assert (< small2 small1 most-negative-fixnum most-positive-fixnum big1
	       big2))
    (Assert (<= small2 small1 most-negative-fixnum most-positive-fixnum big1
		big2))
    (Assert (> big2 big1 most-positive-fixnum most-negative-fixnum small1
	       small2))
    (Assert (>= big2 big1 most-positive-fixnum most-negative-fixnum small1
		small2))
    (Assert (/= small2 small1 most-negative-fixnum most-positive-fixnum big1
		big2))))

(when (featurep 'ratio)
  (let ((big1 (div (* 10 most-positive-fixnum) 4))
	(big2 (div (* 5 most-positive-fixnum) 2))
	(big3 (div (* 7 most-positive-fixnum) 2))
	(small1 (div (* 10 most-negative-fixnum) 4))
	(small2 (div (* 5 most-negative-fixnum) 2))
	(small3 (div (* 7 most-negative-fixnum) 2)))
    (Assert (= big1 big2))
    (Assert (= small1 small2))
    (Assert (< small3 small1 most-negative-fixnum most-positive-fixnum big1
	       big3))
    (Assert (<= small3 small2 small1 most-negative-fixnum most-positive-fixnum
		big1 big2 big3))
    (Assert (> big3 big1 most-positive-fixnum most-negative-fixnum small1
	       small3))
    (Assert (>= big3 big2 big1 most-positive-fixnum most-negative-fixnum
		small1 small2 small3))
    (Assert (/= big3 big1 most-positive-fixnum most-negative-fixnum small1
		small3))))

;;-----------------------------------------------------
;; testing list-walker functions
;;-----------------------------------------------------
(macrolet
    ((test-fun
      (fun)
      `(progn
	 (Check-Error wrong-number-of-arguments (,fun))
	 (Check-Error wrong-number-of-arguments (,fun nil))
	 (Check-Error malformed-list (,fun nil 1))
	 ,@(loop for n in '(1 2 2000)
	     collect `(Check-Error circular-list (,fun 1 (make-circular-list ,n))))))
     (test-funs (&rest funs) `(progn ,@(loop for fun in funs collect `(test-fun ,fun)))))

  (test-funs member old-member
	     memq   old-memq
	     assoc  old-assoc
	     rassoc old-rassoc
	     rassq  old-rassq
	     delete old-delete
	     delq   old-delq
	     remassoc remassq remrassoc remrassq))

(let ((x '((1 . 2) 3 (4 . 5))))
  (Assert (eq (assoc  1 x) (car x)))
  (Assert (eq (assq   1 x) (car x)))
  (Assert (eq (rassoc 1 x) nil))
  (Assert (eq (rassq  1 x) nil))
  (Assert (eq (assoc  2 x) nil))
  (Assert (eq (assq   2 x) nil))
  (Assert (eq (rassoc 2 x) (car x)))
  (Assert (eq (rassq  2 x) (car x)))
  (Assert (eq (assoc  3 x) nil))
  (Assert (eq (assq   3 x) nil))
  (Assert (eq (rassoc 3 x) nil))
  (Assert (eq (rassq  3 x) nil))
  (Assert (eq (assoc  4 x) (caddr x)))
  (Assert (eq (assq   4 x) (caddr x)))
  (Assert (eq (rassoc 4 x) nil))
  (Assert (eq (rassq  4 x) nil))
  (Assert (eq (assoc  5 x) nil))
  (Assert (eq (assq   5 x) nil))
  (Assert (eq (rassoc 5 x) (caddr x)))
  (Assert (eq (rassq  5 x) (caddr x)))
  (Assert (eq (assoc  6 x) nil))
  (Assert (eq (assq   6 x) nil))
  (Assert (eq (rassoc 6 x) nil))
  (Assert (eq (rassq  6 x) nil)))

(let ((x '(("1" . "2") "3" ("4" . "5"))))
  (Assert (eq (assoc  "1" x) (car x)))
  (Assert (eq (assq   "1" x) nil))
  (Assert (eq (rassoc "1" x) nil))
  (Assert (eq (rassq  "1" x) nil))
  (Assert (eq (assoc  "2" x) nil))
  (Assert (eq (assq   "2" x) nil))
  (Assert (eq (rassoc "2" x) (car x)))
  (Assert (eq (rassq  "2" x) nil))
  (Assert (eq (assoc  "3" x) nil))
  (Assert (eq (assq   "3" x) nil))
  (Assert (eq (rassoc "3" x) nil))
  (Assert (eq (rassq  "3" x) nil))
  (Assert (eq (assoc  "4" x) (caddr x)))
  (Assert (eq (assq   "4" x) nil))
  (Assert (eq (rassoc "4" x) nil))
  (Assert (eq (rassq  "4" x) nil))
  (Assert (eq (assoc  "5" x) nil))
  (Assert (eq (assq   "5" x) nil))
  (Assert (eq (rassoc "5" x) (caddr x)))
  (Assert (eq (rassq  "5" x) nil))
  (Assert (eq (assoc  "6" x) nil))
  (Assert (eq (assq   "6" x) nil))
  (Assert (eq (rassoc "6" x) nil))
  (Assert (eq (rassq  "6" x) nil)))

(flet ((a () (list '(1 . 2) 3 '(4 . 5))))
  (Assert (let* ((x (a)) (y (remassoc  1 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (remassq   1 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (remrassoc 1 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  1 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  2 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   2 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 2 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (remrassq  2 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))

  (Assert (let* ((x (a)) (y (remassoc  3 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   3 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 3 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  3 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  4 x))) (and (eq x y) (equal y '((1 . 2) 3)))))
  (Assert (let* ((x (a)) (y (remassq   4 x))) (and (eq x y) (equal y '((1 . 2) 3)))))
  (Assert (let* ((x (a)) (y (remrassoc 4 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  4 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  5 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   5 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 5 x))) (and (eq x y) (equal y '((1 . 2) 3)))))
  (Assert (let* ((x (a)) (y (remrassq  5 x))) (and (eq x y) (equal y '((1 . 2) 3)))))

  (Assert (let* ((x (a)) (y (remassoc  6 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   6 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 6 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  6 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (delete     3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))
  (Assert (let* ((x (a)) (y (delq       3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))
  (Assert (let* ((x (a)) (y (old-delete 3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))
  (Assert (let* ((x (a)) (y (old-delq   3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))

  (Assert (let* ((x (a)) (y (delete     '(1 . 2) x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (delq       '(1 . 2) x))) (and      (eq x y)  (equal y (a)))))
  (Assert (let* ((x (a)) (y (old-delete '(1 . 2) x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (old-delq   '(1 . 2) x))) (and      (eq x y)  (equal y (a)))))
  )



(flet ((a () (list '("1" . "2") "3" '("4" . "5"))))
  (Assert (let* ((x (a)) (y (remassoc  "1" x))) (and (not (eq x y)) (equal y '("3" ("4" . "5"))))))
  (Assert (let* ((x (a)) (y (remassq   "1" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "1" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "1" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "2" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "2" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "2" x))) (and (not (eq x y)) (equal y '("3" ("4" . "5"))))))
  (Assert (let* ((x (a)) (y (remrassq  "2" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "3" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "3" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "3" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "3" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "4" x))) (and (eq x y) (equal y '(("1" . "2") "3")))))
  (Assert (let* ((x (a)) (y (remassq   "4" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "4" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "4" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "5" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "5" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "5" x))) (and (eq x y) (equal y '(("1" . "2") "3")))))
  (Assert (let* ((x (a)) (y (remrassq  "5" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "6" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "6" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "6" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "6" x))) (and (eq x y) (equal y (a))))))

;;-----------------------------------------------------
;; function-max-args, function-min-args
;;-----------------------------------------------------
(defmacro check-function-argcounts (fun min max)
  `(progn
     (Assert (eq (function-min-args ,fun) ,min))
     (Assert (eq (function-max-args ,fun) ,max))))

(check-function-argcounts 'prog1 1 nil)         ; special form
(check-function-argcounts 'command-execute 1 3)	; normal subr
(check-function-argcounts 'funcall 1 nil)       ; `MANY' subr
(check-function-argcounts 'garbage-collect 0 0) ; no args subr

;; Test interpreted and compiled functions
(loop for (arglist min max) in
  '(((arg1 arg2 &rest args) 2 nil)
    ((arg1 arg2 &optional arg3 arg4) 2 4)
    ((arg1 arg2 &optional arg3 arg4 &rest args) 2 nil)
    (() 0 0))
  do
  (eval
   `(progn
      (defun test-fun ,arglist nil)
      (check-function-argcounts '(lambda ,arglist nil) ,min ,max)
      (check-function-argcounts (byte-compile '(lambda ,arglist nil)) ,min ,max))))

;; Test subr-arity. 
(loop for (function-name arity) in
  '((let (1 . unevalled))
    (prog1 (1 . unevalled))
    (list (0 . many))
    (type-of (1 . 1))
    (garbage-collect (0 . 0)))
  do (Assert (equal (subr-arity (symbol-function function-name)) arity)))
  
(Check-Error wrong-type-argument (subr-arity
                                  (lambda () (message "Hi there!"))))
  
(Check-Error wrong-type-argument (subr-arity nil))

;;-----------------------------------------------------
;; Detection of cyclic variable indirection loops
;;-----------------------------------------------------
(fset 'test-sym1 'test-sym1)
(Check-Error cyclic-function-indirection (test-sym1))

(fset 'test-sym1 'test-sym2)
(fset 'test-sym2 'test-sym1)
(Check-Error cyclic-function-indirection (test-sym1))
(fmakunbound 'test-sym1) ; else macroexpand-internal infloops!
(fmakunbound 'test-sym2)

;;-----------------------------------------------------
;; Test `type-of'
;;-----------------------------------------------------
(Assert (eq (type-of load-path) 'cons))
(Assert (eq (type-of obarray) 'vector))
(Assert (eq (type-of 42) 'integer))
(Assert (eq (type-of ?z) 'character))
(Assert (eq (type-of "42") 'string))
(Assert (eq (type-of 'foo) 'symbol))
(Assert (eq (type-of (selected-device)) 'device))

;;-----------------------------------------------------
;; Test mapping functions
;;-----------------------------------------------------
(Check-Error wrong-type-argument (mapcar #'identity (current-buffer)))
(Assert (equal (mapcar #'identity load-path) load-path))
(Assert (equal (mapcar #'identity '(1 2 3)) '(1 2 3)))
(Assert (equal (mapcar #'identity "123") '(?1 ?2 ?3)))
(Assert (equal (mapcar #'identity [1 2 3]) '(1 2 3)))
(Assert (equal (mapcar #'identity #*010) '(0 1 0)))

(let ((z 0) (list (make-list 1000 1)))
  (mapc (lambda (x) (incf z x)) list)
  (Assert (eq 1000 z)))

(Check-Error wrong-type-argument (mapvector #'identity (current-buffer)))
(Assert (equal (mapvector #'identity '(1 2 3)) [1 2 3]))
(Assert (equal (mapvector #'identity "123") [?1 ?2 ?3]))
(Assert (equal (mapvector #'identity [1 2 3]) [1 2 3]))
(Assert (equal (mapvector #'identity #*010) [0 1 0]))

(Check-Error wrong-type-argument (mapconcat #'identity (current-buffer) "foo"))
(Assert (equal (mapconcat #'identity '("1" "2" "3") "|") "1|2|3"))
(Assert (equal (mapconcat #'identity ["1" "2" "3"]  "|") "1|2|3"))

;; The following 2 functions used to crash XEmacs via mapcar1().
;; We don't test the actual values of the mapcar, since they're undefined.
(Assert
 (let ((x (list (cons 1 1) (cons 2 2) (cons 3 3))))
   (mapcar
    (lambda (y)
      "Devious evil mapping function"
      (when (eq (car y) 2) ; go out onto a limb
	(setcdr x nil)     ; cut it off behind us
	(garbage-collect)) ; are we riding a magic broomstick?
      (car y))             ; sorry, hard landing
    x)))

(Assert
 (let ((x (list (cons 1 1) (cons 2 2) (cons 3 3))))
   (mapcar
    (lambda (y)
      "Devious evil mapping function"
      (when (eq (car y) 1)
	(setcdr (cdr x) 42)) ; drop a brick wall onto the freeway
      (car y))
    x)))

;;-----------------------------------------------------
;; Test vector functions
;;-----------------------------------------------------
(Assert (equal [1 2 3] [1 2 3]))
(Assert (equal [] []))
(Assert (not (equal [1 2 3] [])))
(Assert (not (equal [1 2 3] [1 2 4])))
(Assert (not (equal [0 2 3] [1 2 3])))
(Assert (not (equal [1 2 3] [1 2 3 4])))
(Assert (not (equal [1 2 3 4] [1 2 3])))
(Assert (equal (vector 1 2 3) [1 2 3]))
(Assert (equal (make-vector 3 1) [1 1 1]))

;;-----------------------------------------------------
;; Test bit-vector functions
;;-----------------------------------------------------
(Assert (equal #*010 #*010))
(Assert (equal #* #*))
(Assert (not (equal #*010 #*011)))
(Assert (not (equal #*010 #*)))
(Assert (not (equal #*110 #*010)))
(Assert (not (equal #*010 #*0100)))
(Assert (not (equal #*0101 #*010)))
(Assert (equal (bit-vector 0 1 0) #*010))
(Assert (equal (make-bit-vector 3 1) #*111))
(Assert (equal (make-bit-vector 3 0) #*000))

;;-----------------------------------------------------
;; Test buffer-local variables used as (ugh!) function parameters
;;-----------------------------------------------------
(make-local-variable 'test-emacs-buffer-local-variable)
(byte-compile
 (defun test-emacs-buffer-local-parameter (test-emacs-buffer-local-variable)
   (setq test-emacs-buffer-local-variable nil)))
(test-emacs-buffer-local-parameter nil)

;;-----------------------------------------------------
;; Test split-string
;;-----------------------------------------------------
;; Keep nulls, explicit SEPARATORS
;; Hrvoje didn't like the next 3 tests so I'm disabling them for now. -sb
;; I assume Hrvoje worried about the possibility of infloops. -sjt
(when test-harness-risk-infloops
  (Assert (equal (split-string "foo" "") '("" "f" "o" "o" "")))
  (Assert (equal (split-string "foo" "^") '("" "foo")))
  (Assert (equal (split-string "foo" "$") '("foo" ""))))
(Assert (equal (split-string "foo,bar" ",") '("foo" "bar")))
(Assert (equal (split-string ",foo,bar," ",") '("" "foo" "bar" "")))
(Assert (equal (split-string ",foo,bar," "^,") '("" "foo,bar,")))
(Assert (equal (split-string ",foo,bar," ",$") '(",foo,bar" "")))
(Assert (equal (split-string ",foo,,bar," ",") '("" "foo" "" "bar" "")))
(Assert (equal (split-string "foo,,,bar" ",") '("foo" "" "" "bar")))
(Assert (equal (split-string "foo,,bar,," ",") '("foo" "" "bar" "" "")))
(Assert (equal (split-string "foo,,bar" ",+") '("foo" "bar")))
(Assert (equal (split-string ",foo,,bar," ",+") '("" "foo" "bar" "")))
;; Omit nulls, explicit SEPARATORS
(when test-harness-risk-infloops
  (Assert (equal (split-string "foo" "" t) '("f" "o" "o")))
  (Assert (equal (split-string "foo" "^" t) '("foo")))
  (Assert (equal (split-string "foo" "$" t) '("foo"))))
(Assert (equal (split-string "foo,bar" "," t) '("foo" "bar")))
(Assert (equal (split-string ",foo,bar," "," t) '("foo" "bar")))
(Assert (equal (split-string ",foo,bar," "^," t) '("foo,bar,")))
(Assert (equal (split-string ",foo,bar," ",$" t) '(",foo,bar")))
(Assert (equal (split-string ",foo,,bar," "," t) '("foo" "bar")))
(Assert (equal (split-string "foo,,,bar" "," t) '("foo" "bar")))
(Assert (equal (split-string "foo,,bar,," "," t) '("foo" "bar")))
(Assert (equal (split-string "foo,,bar" ",+" t) '("foo" "bar")))
(Assert (equal (split-string ",foo,,bar," ",+" t) '("foo" "bar")))
;; "Double-default" case
(Assert (equal (split-string "foo bar") '("foo" "bar")))
(Assert (equal (split-string " foo bar ") '("foo" "bar")))
(Assert (equal (split-string " foo  bar ") '("foo" "bar")))
(Assert (equal (split-string "foo   bar") '("foo" "bar")))
(Assert (equal (split-string "foo  bar  ") '("foo" "bar")))
(Assert (equal (split-string "foobar") '("foobar")))
;; Semantics are identical to "double-default" case!  Fool ya?
(Assert (equal (split-string "foo bar" nil t) '("foo" "bar")))
(Assert (equal (split-string " foo bar " nil t) '("foo" "bar")))
(Assert (equal (split-string " foo  bar " nil t) '("foo" "bar")))
(Assert (equal (split-string "foo   bar" nil t) '("foo" "bar")))
(Assert (equal (split-string "foo  bar  " nil t) '("foo" "bar")))
(Assert (equal (split-string "foobar" nil t) '("foobar")))
;; Perverse "anti-double-default" case
(Assert (equal (split-string "foo bar" split-string-default-separators)
	       '("foo" "bar")))
(Assert (equal (split-string " foo bar " split-string-default-separators)
	       '("" "foo" "bar" "")))
(Assert (equal (split-string " foo  bar " split-string-default-separators)
	       '("" "foo" "bar" "")))
(Assert (equal (split-string "foo   bar" split-string-default-separators)
	       '("foo" "bar")))
(Assert (equal (split-string "foo  bar  " split-string-default-separators)
	       '("foo" "bar" "")))
(Assert (equal (split-string "foobar" split-string-default-separators)
	       '("foobar")))

(Assert (not (string-match "\\(\\.\\=\\)" ".")))
(Assert (string= "" (let ((str "test string"))
		      (if (string-match "^.*$" str)
			  (replace-match "\\U" t nil str)))))
(with-temp-buffer
  (erase-buffer)
  (insert "test string")
  (re-search-backward "^.*$")
  (replace-match "\\U" t)
  (Assert (and (bobp) (eobp))))

;;-----------------------------------------------------
;; Test near-text buffer functions.
;;-----------------------------------------------------
(with-temp-buffer
  (erase-buffer)
  (Assert (eq (char-before) nil))
  (Assert (eq (char-before (point)) nil))
  (Assert (eq (char-before (point-marker)) nil))
  (Assert (eq (char-before (point) (current-buffer)) nil))
  (Assert (eq (char-before (point-marker) (current-buffer)) nil))
  (Assert (eq (char-after) nil))
  (Assert (eq (char-after (point)) nil))
  (Assert (eq (char-after (point-marker)) nil))
  (Assert (eq (char-after (point) (current-buffer)) nil))
  (Assert (eq (char-after (point-marker) (current-buffer)) nil))
  (Assert (eq (preceding-char) 0))
  (Assert (eq (preceding-char (current-buffer)) 0))
  (Assert (eq (following-char) 0))
  (Assert (eq (following-char (current-buffer)) 0))
  (insert "foobar")
  (Assert (eq (char-before) ?r))
  (Assert (eq (char-after) nil))
  (Assert (eq (preceding-char) ?r))
  (Assert (eq (following-char) 0))
  (goto-char (point-min))
  (Assert (eq (char-before) nil))
  (Assert (eq (char-after) ?f))
  (Assert (eq (preceding-char) 0))
  (Assert (eq (following-char) ?f))
  )

;;-----------------------------------------------------
;; Test plist manipulation functions.
;;-----------------------------------------------------
(let ((sym (make-symbol "test-symbol")))
  (Assert (eq t (get* sym t t)))
  (Assert (eq t (get  sym t t)))
  (Assert (eq t (getf nil t t)))
  (Assert (eq t (plist-get nil t t)))
  (put sym 'bar 'baz)
  (Assert (eq 'baz (get sym 'bar)))
  (Assert (eq 'baz (getf '(bar baz) 'bar)))
  (Assert (eq 'baz (getf (symbol-plist sym) 'bar)))
  (Assert (eq 2 (getf '(1 2) 1)))
  (Assert (eq 4 (put sym 3 4)))
  (Assert (eq 4 (get sym 3)))
  (Assert (eq t (remprop sym 3)))
  (Assert (eq nil (remprop sym 3)))
  (Assert (eq 5 (get sym 3 5)))
  )

(loop for obj in
  (list (make-symbol "test-symbol")
	"test-string"
	(make-extent nil nil nil)
	(make-face 'test-face))
  do
  (Assert (eq 2 (get obj ?1 2)) obj)
  (Assert (eq 4 (put obj ?3 4)) obj)
  (Assert (eq 4 (get obj ?3)) obj)
  (when (or (stringp obj) (symbolp obj))
    (Assert (equal '(?3 4) (object-plist obj)) obj))
  (Assert (eq t (remprop obj ?3)) obj)
  (when (or (stringp obj) (symbolp obj))
    (Assert (eq '() (object-plist obj)) obj))
  (Assert (eq nil (remprop obj ?3)) obj)
  (when (or (stringp obj) (symbolp obj))
    (Assert (eq '() (object-plist obj)) obj))
  (Assert (eq 5 (get obj ?3 5)) obj)
  )

(Check-Error-Message
 error "Object type has no properties"
 (get 2 'property))

(Check-Error-Message
 error "Object type has no settable properties"
 (put (current-buffer) 'property 'value))

(Check-Error-Message
 error "Object type has no removable properties"
 (remprop ?3 'property))

(Check-Error-Message
 error "Object type has no properties"
 (object-plist (symbol-function 'car)))

(Check-Error-Message
 error "Can't remove property from object"
 (remprop (make-extent nil nil nil) 'detachable))

;;-----------------------------------------------------
;; Test subseq
;;-----------------------------------------------------
(Assert (equal (subseq nil 0) nil))
(Assert (equal (subseq [1 2 3] 0) [1 2 3]))
(Assert (equal (subseq [1 2 3] 1 -1) [2]))
(Assert (equal (subseq "123" 0) "123"))
(Assert (equal (subseq "1234" -3 -1) "23"))
(Assert (equal (subseq #*0011 0) #*0011))
(Assert (equal (subseq #*0011 -3 3) #*01))
(Assert (equal (subseq '(1 2 3) 0) '(1 2 3)))
(Assert (equal (subseq '(1 2 3 4) -3 nil) '(2 3 4)))

(Check-Error wrong-type-argument (subseq 3 2))
(Check-Error args-out-of-range (subseq [1 2 3] -42))
(Check-Error args-out-of-range (subseq [1 2 3] 0 42))

;;-----------------------------------------------------
;; Time-related tests
;;-----------------------------------------------------
(Assert (= (length (current-time-string)) 24))

;;-----------------------------------------------------
;; format test
;;-----------------------------------------------------
(Assert (string= (format "%d" 10) "10"))
(Assert (string= (format "%o" 8) "10"))
(Assert (string= (format "%x" 31) "1f"))
(Assert (string= (format "%X" 31) "1F"))
;; MS-Windows uses +002 in its floating-point numbers.  #### We should
;; perhaps fix this, but writing our own floating-point support in doprnt.c
;; is very hard.
(Assert (or (string= (format "%e" 100) "1.000000e+02")
	    (string= (format "%e" 100) "1.000000e+002")))
(Assert (or (string= (format "%E" 100) "1.000000E+02")
	    (string= (format "%E" 100) "1.000000E+002")))
(Assert (or (string= (format "%E" 100) "1.000000E+02")
	    (string= (format "%E" 100) "1.000000E+002")))
(Assert (string= (format "%f" 100) "100.000000"))
(Assert (string= (format "%7.3f" 12.12345) " 12.123"))
(Assert (string= (format "%07.3f" 12.12345) "012.123"))
(Assert (string= (format "%-7.3f" 12.12345) "12.123 "))
(Assert (string= (format "%-07.3f" 12.12345) "12.123 "))
(Assert (string= (format "%g" 100.0) "100"))
(Assert (or (string= (format "%g" 0.000001) "1e-06")
	    (string= (format "%g" 0.000001) "1e-006")))
(Assert (string= (format "%g" 0.0001) "0.0001"))
(Assert (string= (format "%G" 100.0) "100"))
(Assert (or (string= (format "%G" 0.000001) "1E-06")
	    (string= (format "%G" 0.000001) "1E-006")))
(Assert (string= (format "%G" 0.0001) "0.0001"))

(Assert (string= (format "%2$d%1$d" 10 20) "2010"))
(Assert (string= (format "%-d" 10) "10"))
(Assert (string= (format "%-4d" 10) "10  "))
(Assert (string= (format "%+d" 10) "+10"))
(Assert (string= (format "%+d" -10) "-10"))
(Assert (string= (format "%+4d" 10) " +10"))
(Assert (string= (format "%+4d" -10) " -10"))
(Assert (string= (format "% d" 10) " 10"))
(Assert (string= (format "% d" -10) "-10"))
(Assert (string= (format "% 4d" 10) "  10"))
(Assert (string= (format "% 4d" -10) " -10"))
(Assert (string= (format "%0d" 10) "10"))
(Assert (string= (format "%0d" -10) "-10"))
(Assert (string= (format "%04d" 10) "0010"))
(Assert (string= (format "%04d" -10) "-010"))
(Assert (string= (format "%*d" 4 10) "  10"))
(Assert (string= (format "%*d" 4 -10) " -10"))
(Assert (string= (format "%*d" -4 10) "10  "))
(Assert (string= (format "%*d" -4 -10) "-10 "))
(Assert (string= (format "%#d" 10) "10"))
(Assert (string= (format "%#o" 8) "010"))
(Assert (string= (format "%#x" 16) "0x10"))
(Assert (or (string= (format "%#e" 100) "1.000000e+02")
	    (string= (format "%#e" 100) "1.000000e+002")))
(Assert (or (string= (format "%#E" 100) "1.000000E+02")
	    (string= (format "%#E" 100) "1.000000E+002")))
(Assert (string= (format "%#f" 100) "100.000000"))
(Assert (string= (format "%#g" 100.0) "100.000"))
(Assert (or (string= (format "%#g" 0.000001) "1.00000e-06")
	    (string= (format "%#g" 0.000001) "1.00000e-006")))
(Assert (string= (format "%#g" 0.0001) "0.000100000"))
(Assert (string= (format "%#G" 100.0) "100.000"))
(Assert (or (string= (format "%#G" 0.000001) "1.00000E-06")
	    (string= (format "%#G" 0.000001) "1.00000E-006")))
(Assert (string= (format "%#G" 0.0001) "0.000100000"))
(Assert (string= (format "%.1d" 10) "10"))
(Assert (string= (format "%.4d" 10) "0010"))
;; Combination of `-', `+', ` ', `0', `#', `.', `*'
(Assert (string= (format "%-04d" 10) "10  "))
(Assert (string= (format "%-*d" 4 10) "10  "))
;; #### Correctness of this behavior is questionable.
;; It might be better to signal error.
(Assert (string= (format "%-*d" -4 10) "10  "))
;; These behavior is not specified.
;; (format "%-+d" 10)
;; (format "%- d" 10)
;; (format "%-01d" 10)
;; (format "%-#4x" 10)
;; (format "%-.1d" 10)

(Assert (string= (format "%01.1d" 10) "10"))
(Assert (string= (format "%03.1d" 10) " 10"))
(Assert (string= (format "%01.3d" 10) "010"))
(Assert (string= (format "%1.3d" 10) "010"))
(Assert (string= (format "%3.1d" 10) " 10"))

;;; The following two tests used to use 1000 instead of 100,
;;; but that merely found buffer overflow bugs in Solaris sprintf().
(Assert (= 102 (length (format "%.100f" 3.14))))
(Assert (= 100 (length (format "%100f" 3.14))))

;;; Check for 64-bit cleanness on LP64 platforms.
(Assert (= (read (format "%d"  most-positive-fixnum)) most-positive-fixnum))
(Assert (= (read (format "%ld" most-positive-fixnum)) most-positive-fixnum))
(Assert (= (read (format "%u"  most-positive-fixnum)) most-positive-fixnum))
(Assert (= (read (format "%lu" most-positive-fixnum)) most-positive-fixnum))
(Assert (= (read (format "%d"  most-negative-fixnum)) most-negative-fixnum))
(Assert (= (read (format "%ld" most-negative-fixnum)) most-negative-fixnum))

;; These used to crash. 
(Assert (eql (read (format "%f" 1.2e+302)) 1.2e+302))
(Assert (eql (read (format "%.1000d" 1)) 1))

;;; "%u" is undocumented, and Emacs Lisp has no unsigned type.
;;; What to do if "%u" is used with a negative number?
;;; For non-bignum XEmacsen, the most reasonable thing seems to be to print an
;;; un-read-able number.  The printed value might be useful to a human, if not
;;; to Emacs Lisp.
;;; For bignum XEmacsen, we make %u with a negative value throw an error.
(if (featurep 'bignum)
    (progn
      (Check-Error wrong-type-argument (format "%u" most-negative-fixnum))
      (Check-Error wrong-type-argument (format "%u" -1)))
  (Check-Error invalid-read-syntax (read (format "%u" most-negative-fixnum)))
  (Check-Error invalid-read-syntax (read (format "%u" -1))))

;; Check all-completions ignore element start with space.
(Assert (not (all-completions "" '((" hidden" . "object")))))
(Assert (all-completions " " '((" hidden" . "object"))))

(let* ((literal-with-uninterned
	'(first-element
	  [#1=#:G32976 #2=#:G32974 #3=#:G32971 #4=#:G32969 alias
		       #s(hash-table size 256 data (969 ?\xF9 55 ?7 166 ?\xA6))
		       #5=#:G32970 #6=#:G32972]))
       (print-readably t)
       (print-gensym t)
       (printed-with-uninterned (prin1-to-string literal-with-uninterned))
       (awkward-regexp "#1=#")
       (first-match-start (string-match awkward-regexp
					printed-with-uninterned)))
  (Assert (null (string-match awkward-regexp printed-with-uninterned
			      (1+ first-match-start)))))

(let ((char-table-with-string #s(char-table data (?\x00 "text")))
      (char-table-with-symbol #s(char-table data (?\x00 text))))
  (Assert (not (string-equal (prin1-to-string char-table-with-string)
                             (prin1-to-string char-table-with-symbol)))
          "Check that char table elements are quoted correctly when printing"))


(let ((test-file-name
       (make-temp-file (expand-file-name "sR4KDwU" (temp-directory))
		       nil ".el")))
  (find-file test-file-name)
  (erase-buffer)
  (insert 
       "\
;; Lisp should not be able to modify #$, which is
;; Vload_file_name_internal of lread.c.
(Check-Error setting-constant (aset #$ 0 ?\\ ))

;; But modifying load-file-name should work:
(let ((new-char ?\\ )
      old-char)
  (setq old-char (aref load-file-name 0))
  (if (= new-char old-char)
      (setq new-char ?/))
  (aset load-file-name 0 new-char)
  (Assert (= new-char (aref load-file-name 0))
	  \"Check that we can modify the string value of load-file-name\"))

(let* ((new-load-file-name \"hi there\")
       (load-file-name new-load-file-name))
  (Assert (eq new-load-file-name load-file-name)
	  \"Checking that we can bind load-file-name successfully.\"))

")
   (write-region (point-min) (point-max) test-file-name nil 'quiet)
   (set-buffer-modified-p nil)
   (kill-buffer nil)
   (load test-file-name nil t nil)
   (delete-file test-file-name))

(flet ((cl-floor (x &optional y)
	 (let ((q (floor x y)))
	   (list q (- x (if y (* y q) q)))))
       (cl-ceiling (x &optional y)
	 (let ((res (cl-floor x y)))
	   (if (= (car (cdr res)) 0) res
	     (list (1+ (car res)) (- (car (cdr res)) (or y 1))))))
       (cl-truncate (x &optional y)
	 (if (eq (>= x 0) (or (null y) (>= y 0)))
	     (cl-floor x y) (cl-ceiling x y)))
       (cl-round (x &optional y)
	 (if y
	     (if (and (integerp x) (integerp y))
		 (let* ((hy (/ y 2))
			(res (cl-floor (+ x hy) y)))
		   (if (and (= (car (cdr res)) 0)
			    (= (+ hy hy) y)
			    (/= (% (car res) 2) 0))
		       (list (1- (car res)) hy)
		     (list (car res) (- (car (cdr res)) hy))))
	       (let ((q (round (/ x y))))
		 (list q (- x (* q y)))))
	   (if (integerp x) (list x 0)
	     (let ((q (round x)))
	       (list q (- x q))))))
       (Assert-rounding (first second &key
			 one-floor-result two-floor-result 
			 one-ffloor-result two-ffloor-result 
			 one-ceiling-result two-ceiling-result
			 one-fceiling-result two-fceiling-result
			 one-round-result two-round-result
			 one-fround-result two-fround-result
			 one-truncate-result two-truncate-result
			 one-ftruncate-result two-ftruncate-result)
	 (Assert (equal one-floor-result (multiple-value-list
					  (floor first)))
		 (format "checking (floor %S) gives %S"
			 first one-floor-result))
	 (Assert (equal one-floor-result (multiple-value-list
					  (floor first 1)))
		 (format "checking (floor %S 1) gives %S"
			 first one-floor-result))
	 (Check-Error arith-error (floor first 0))
	 (Check-Error arith-error (floor first 0.0))
	 (Assert (equal two-floor-result (multiple-value-list
					  (floor first second)))
		 (format
		  "checking (floor %S %S) gives %S"
		  first second two-floor-result))
	 (Assert (equal (cl-floor first second)
			(multiple-value-list (floor first second)))
		 (format
		  "checking (floor %S %S) gives the same as the old code"
		  first second))
	 (Assert (equal one-ffloor-result (multiple-value-list
					   (ffloor first)))
		 (format "checking (ffloor %S) gives %S"
			 first one-ffloor-result))
	 (Assert (equal one-ffloor-result (multiple-value-list
					   (ffloor first 1)))
		 (format "checking (ffloor %S 1) gives %S"
			 first one-ffloor-result))
	 (Check-Error arith-error (ffloor first 0))
	 (Check-Error arith-error (ffloor first 0.0))
	 (Assert (equal two-ffloor-result (multiple-value-list
					   (ffloor first second)))
		 (format "checking (ffloor %S %S) gives %S"
			 first second two-ffloor-result))
	 (Assert (equal one-ceiling-result (multiple-value-list
					    (ceiling first)))
		 (format "checking (ceiling %S) gives %S"
			 first one-ceiling-result))
	 (Assert (equal one-ceiling-result (multiple-value-list
					    (ceiling first 1)))
		 (format "checking (ceiling %S 1) gives %S"
			 first one-ceiling-result))
	 (Check-Error arith-error (ceiling first 0))
	 (Check-Error arith-error (ceiling first 0.0))
	 (Assert (equal two-ceiling-result (multiple-value-list
					    (ceiling first second)))
		 (format "checking (ceiling %S %S) gives %S"
			 first second two-ceiling-result))
	 (Assert (equal (cl-ceiling first second)
			(multiple-value-list (ceiling first second)))
		 (format
		  "checking (ceiling %S %S) gives the same as the old code"
		  first second))
	 (Assert (equal one-fceiling-result (multiple-value-list
					     (fceiling first)))
		 (format "checking (fceiling %S) gives %S"
			 first one-fceiling-result))
	 (Assert (equal one-fceiling-result (multiple-value-list
					     (fceiling first 1)))
		 (format "checking (fceiling %S 1) gives %S"
			 first one-fceiling-result))
	 (Check-Error arith-error (fceiling first 0))
	 (Check-Error arith-error (fceiling first 0.0))
	 (Assert (equal two-fceiling-result (multiple-value-list
					  (fceiling first second)))
		 (format "checking (fceiling %S %S) gives %S"
			 first second two-fceiling-result))
	 (Assert (equal one-round-result (multiple-value-list
					  (round first)))
		 (format "checking (round %S) gives %S"
			 first one-round-result))
	 (Assert (equal one-round-result (multiple-value-list
					  (round first 1)))
		 (format "checking (round %S 1) gives %S"
			 first one-round-result))
	 (Check-Error arith-error (round first 0))
	 (Check-Error arith-error (round first 0.0))
	 (Assert (equal two-round-result (multiple-value-list
					  (round first second)))
		 (format "checking (round %S %S) gives %S"
			 first second two-round-result))
	 (Assert (equal one-fround-result (multiple-value-list
					   (fround first)))
		 (format "checking (fround %S) gives %S"
			 first one-fround-result))
	 (Assert (equal one-fround-result (multiple-value-list
					   (fround first 1)))
		 (format "checking (fround %S 1) gives %S"
			 first one-fround-result))
	 (Check-Error arith-error (fround first 0))
	 (Check-Error arith-error (fround first 0.0))
	 (Assert (equal two-fround-result (multiple-value-list
					   (fround first second)))
		 (format "checking (fround %S %S) gives %S"
			 first second two-fround-result))
	 (Assert (equal (cl-round first second)
			(multiple-value-list (round first second)))
		 (format
		  "checking (round %S %S) gives the same as the old code"
		  first second))
	 (Assert (equal one-truncate-result (multiple-value-list
					     (truncate first)))
		 (format "checking (truncate %S) gives %S"
			 first one-truncate-result))
	 (Assert (equal one-truncate-result (multiple-value-list
					     (truncate first 1)))
		 (format "checking (truncate %S 1) gives %S"
			 first one-truncate-result))
	 (Check-Error arith-error (truncate first 0))
	 (Check-Error arith-error (truncate first 0.0))
	 (Assert (equal two-truncate-result (multiple-value-list
					     (truncate first second)))
		 (format "checking (truncate %S %S) gives %S"
			 first second two-truncate-result))
	 (Assert (equal (cl-truncate first second)
			(multiple-value-list (truncate first second)))
		 (format
		  "checking (truncate %S %S) gives the same as the old code"
		  first second))
	 (Assert (equal one-ftruncate-result (multiple-value-list
					      (ftruncate first)))
		 (format "checking (ftruncate %S) gives %S"
			 first one-ftruncate-result))
	 (Assert (equal one-ftruncate-result (multiple-value-list
					      (ftruncate first 1)))
		 (format "checking (ftruncate %S 1) gives %S"
			 first one-ftruncate-result))
	 (Check-Error arith-error (ftruncate first 0))
	 (Check-Error arith-error (ftruncate first 0.0))
	 (Assert (equal two-ftruncate-result (multiple-value-list
					      (ftruncate first second)))
		 (format "checking (ftruncate %S %S) gives %S"
			 first second two-ftruncate-result)))
       (Assert-rounding-floating (pie ee)
	 (let ((pie-type (type-of pie)))
	   (assert (eq pie-type (type-of ee)) t
		   "This code assumes the two arguments have the same type.")
	   (Assert-rounding pie ee
  	    :one-floor-result (list 3 (- pie 3))
            :two-floor-result (list 1 (- pie (* 1 ee)))
            :one-ffloor-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-ffloor-result (list (coerce 1 pie-type) (- pie (* 1.0 ee)))
            :one-ceiling-result (list 4 (- pie 4))
            :two-ceiling-result (list 2 (- pie (* 2 ee)))
            :one-fceiling-result (list (coerce 4 pie-type) (- pie 4.0))
            :two-fceiling-result (list (coerce 2 pie-type) (- pie (* 2.0 ee)))
            :one-round-result (list 3 (- pie 3))
            :two-round-result (list 1 (- pie (* 1 ee)))
            :one-fround-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-fround-result (list (coerce 1 pie-type) (- pie (* 1.0 ee)))
            :one-truncate-result (list 3 (- pie 3))
            :two-truncate-result (list 1 (- pie (* 1 ee)))
            :one-ftruncate-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-ftruncate-result (list (coerce 1 pie-type)
					(- pie (* 1.0 ee))))
  	 (Assert-rounding pie (- ee)
            :one-floor-result (list 3 (- pie 3))
            :two-floor-result (list -2 (- pie (* -2 (- ee))))
            :one-ffloor-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-ffloor-result (list (coerce -2 pie-type)
				     (- pie (* -2.0 (- ee))))
            :one-ceiling-result (list 4 (- pie 4))
            :two-ceiling-result (list -1 (- pie (* -1 (- ee))))
            :one-fceiling-result (list (coerce 4 pie-type) (- pie 4.0))
            :two-fceiling-result (list (coerce -1 pie-type)
				       (- pie (* -1.0 (- ee))))
            :one-round-result (list 3 (- pie 3))
            :two-round-result (list -1 (- pie (* -1 (- ee))))
            :one-fround-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-fround-result (list (coerce -1 pie-type)
				     (- pie (* -1.0 (- ee))))
            :one-truncate-result (list 3 (- pie 3))
            :two-truncate-result (list -1 (- pie (* -1 (- ee))))
            :one-ftruncate-result (list (coerce 3 pie-type) (- pie 3.0))
            :two-ftruncate-result (list (coerce -1 pie-type)
					(- pie (* -1.0 (- ee)))))
  	 (Assert-rounding (- pie) ee
            :one-floor-result (list -4 (- (- pie) -4))
            :two-floor-result (list -2 (- (- pie) (* -2 ee)))
            :one-ffloor-result (list (coerce -4 pie-type) (- (- pie) -4.0))
            :two-ffloor-result (list (coerce -2 pie-type)
				     (- (- pie) (* -2.0 ee)))
            :one-ceiling-result (list -3 (- (- pie) -3))
            :two-ceiling-result (list -1 (- (- pie) (* -1 ee)))
            :one-fceiling-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-fceiling-result (list (coerce -1 pie-type)
				       (- (- pie) (* -1.0 ee)))
            :one-round-result (list -3 (- (- pie) -3))
            :two-round-result (list -1 (- (- pie) (* -1 ee)))
            :one-fround-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-fround-result (list (coerce -1 pie-type)
				     (- (- pie) (* -1.0 ee)))
            :one-truncate-result (list -3 (- (- pie) -3))
            :two-truncate-result (list -1 (- (- pie) (* -1 ee)))
            :one-ftruncate-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-ftruncate-result (list (coerce -1 pie-type)
					(- (- pie) (* -1.0 ee))))
  	 (Assert-rounding (- pie) (- ee)
            :one-floor-result (list -4 (- (- pie) -4))
            :two-floor-result (list 1 (- (- pie) (* 1 (- ee))))
            :one-ffloor-result (list (coerce -4 pie-type) (- (- pie) -4.0))
            :two-ffloor-result (list (coerce 1 pie-type)
				     (- (- pie) (* 1.0 (- ee))))
            :one-ceiling-result (list -3 (- (- pie) -3))
            :two-ceiling-result (list 2 (- (- pie) (* 2 (- ee))))
            :one-fceiling-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-fceiling-result (list (coerce 2 pie-type)
				       (- (- pie) (* 2.0 (- ee))))
            :one-round-result (list -3 (- (- pie) -3))
            :two-round-result (list 1 (- (- pie) (* 1 (- ee))))
            :one-fround-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-fround-result (list (coerce 1 pie-type)
				     (- (- pie) (* 1.0 (- ee))))
            :one-truncate-result (list -3 (- (- pie) -3))
            :two-truncate-result (list 1 (- (- pie) (* 1 (- ee))))
            :one-ftruncate-result (list (coerce -3 pie-type) (- (- pie) -3.0))
            :two-ftruncate-result (list (coerce 1 pie-type)
					(- (- pie) (* 1.0 (- ee)))))
  	 (Assert-rounding ee pie
            :one-floor-result (list 2 (- ee 2))
            :two-floor-result (list 0 ee)
            :one-ffloor-result (list (coerce 2 pie-type) (- ee 2.0))
            :two-ffloor-result (list (coerce 0 pie-type) ee)
            :one-ceiling-result (list 3 (- ee 3))
            :two-ceiling-result (list 1 (- ee pie))
            :one-fceiling-result (list (coerce 3 pie-type) (- ee 3.0))
            :two-fceiling-result (list (coerce 1 pie-type) (- ee pie))
            :one-round-result (list 3 (- ee 3))
            :two-round-result (list 1 (- ee (* 1 pie)))
            :one-fround-result (list (coerce 3 pie-type) (- ee 3.0))
            :two-fround-result (list (coerce 1 pie-type) (- ee (* 1.0 pie)))
            :one-truncate-result (list 2 (- ee 2))
            :two-truncate-result (list 0 ee)
            :one-ftruncate-result (list (coerce 2 pie-type) (- ee 2.0))
            :two-ftruncate-result (list (coerce 0 pie-type) ee))
  	 (Assert-rounding ee (- pie)
            :one-floor-result (list 2 (- ee 2))
            :two-floor-result (list -1 (- ee (* -1 (- pie))))
            :one-ffloor-result (list (coerce 2 pie-type) (- ee 2.0))
            :two-ffloor-result (list (coerce -1 pie-type)
				     (- ee (* -1.0 (- pie))))
            :one-ceiling-result (list 3 (- ee 3))
            :two-ceiling-result (list 0 ee)
            :one-fceiling-result (list (coerce 3 pie-type) (- ee 3.0))
            :two-fceiling-result (list (coerce 0 pie-type) ee)
            :one-round-result (list 3 (- ee 3))
            :two-round-result (list -1 (- ee (* -1 (- pie))))
            :one-fround-result (list (coerce 3 pie-type) (- ee 3.0))
            :two-fround-result (list (coerce -1 pie-type)
				     (- ee (* -1.0 (- pie))))
            :one-truncate-result (list 2 (- ee 2))
            :two-truncate-result (list 0 ee)
            :one-ftruncate-result (list (coerce 2 pie-type) (- ee 2.0))
            :two-ftruncate-result (list (coerce 0 pie-type) ee)))))
    ;; First, two integers: 
  (Assert-rounding 27 8 :one-floor-result '(27 0) :two-floor-result '(3 3)
    :one-ffloor-result '(27.0 0) :two-ffloor-result '(3.0 3)
    :one-ceiling-result '(27 0) :two-ceiling-result '(4 -5)
    :one-fceiling-result '(27.0 0) :two-fceiling-result '(4.0 -5)
    :one-round-result '(27 0) :two-round-result '(3 3)
    :one-fround-result '(27.0 0) :two-fround-result '(3.0 3)
    :one-truncate-result '(27 0) :two-truncate-result '(3 3)
    :one-ftruncate-result '(27.0 0) :two-ftruncate-result '(3.0 3))
  (Assert-rounding 27 -8 :one-floor-result '(27 0)  :two-floor-result '(-4 -5)
    :one-ffloor-result '(27.0 0) :two-ffloor-result '(-4.0 -5) 
    :one-ceiling-result '(27 0) :two-ceiling-result '(-3 3)
    :one-fceiling-result '(27.0 0)  :two-fceiling-result '(-3.0 3)
    :one-round-result '(27 0) :two-round-result '(-3 3)
    :one-fround-result '(27.0 0) :two-fround-result '(-3.0 3)
    :one-truncate-result '(27 0) :two-truncate-result '(-3 3)
    :one-ftruncate-result '(27.0 0)  :two-ftruncate-result '(-3.0 3))
  (Assert-rounding -27 8
    :one-floor-result '(-27 0) :two-floor-result '(-4 5)
    :one-ffloor-result '(-27.0 0) :two-ffloor-result '(-4.0 5)
    :one-ceiling-result '(-27 0) :two-ceiling-result '(-3 -3)
    :one-fceiling-result '(-27.0 0) :two-fceiling-result '(-3.0 -3)
    :one-round-result '(-27 0) :two-round-result '(-3 -3)
    :one-fround-result '(-27.0 0) :two-fround-result '(-3.0 -3)
    :one-truncate-result '(-27 0) :two-truncate-result '(-3 -3)
    :one-ftruncate-result '(-27.0 0) :two-ftruncate-result '(-3.0 -3))
  (Assert-rounding -27 -8
    :one-floor-result '(-27 0) :two-floor-result '(3 -3)
    :one-ffloor-result '(-27.0 0) :two-ffloor-result '(3.0 -3)
    :one-ceiling-result '(-27 0) :two-ceiling-result '(4 5)
    :one-fceiling-result '(-27.0 0) :two-fceiling-result '(4.0 5)
    :one-round-result '(-27 0) :two-round-result '(3 -3)
    :one-fround-result '(-27.0 0) :two-fround-result '(3.0 -3)
    :one-truncate-result '(-27 0) :two-truncate-result '(3 -3)
    :one-ftruncate-result '(-27.0 0) :two-ftruncate-result '(3.0 -3))
  (Assert-rounding 8 27
    :one-floor-result '(8 0) :two-floor-result '(0 8)
    :one-ffloor-result '(8.0 0) :two-ffloor-result '(0.0 8)
    :one-ceiling-result '(8 0) :two-ceiling-result '(1 -19)
    :one-fceiling-result '(8.0 0) :two-fceiling-result '(1.0 -19)
    :one-round-result '(8 0) :two-round-result '(0 8)
    :one-fround-result '(8.0 0) :two-fround-result '(0.0 8)
    :one-truncate-result '(8 0) :two-truncate-result '(0 8)
    :one-ftruncate-result '(8.0 0) :two-ftruncate-result '(0.0 8))
  (Assert-rounding 8 -27
    :one-floor-result '(8 0) :two-floor-result '(-1 -19)
    :one-ffloor-result '(8.0 0) :two-ffloor-result '(-1.0 -19)
    :one-ceiling-result '(8 0) :two-ceiling-result '(0 8)
    :one-fceiling-result '(8.0 0) :two-fceiling-result '(0.0 8)
    :one-round-result '(8 0) :two-round-result '(0 8)
    :one-fround-result '(8.0 0) :two-fround-result '(0.0 8)
    :one-truncate-result '(8 0) :two-truncate-result '(0 8)
    :one-ftruncate-result '(8.0 0) :two-ftruncate-result '(0.0 8))
  (Assert-rounding -8 27
    :one-floor-result '(-8 0) :two-floor-result '(-1 19)
    :one-ffloor-result '(-8.0 0) :two-ffloor-result '(-1.0 19)
    :one-ceiling-result '(-8 0) :two-ceiling-result '(0 -8)
    :one-fceiling-result '(-8.0 0) :two-fceiling-result '(0.0 -8)
    :one-round-result '(-8 0) :two-round-result '(0 -8)
    :one-fround-result '(-8.0 0) :two-fround-result '(0.0 -8)
    :one-truncate-result '(-8 0) :two-truncate-result '(0 -8)
    :one-ftruncate-result '(-8.0 0) :two-ftruncate-result '(0.0 -8))
  (Assert-rounding -8 -27
    :one-floor-result '(-8 0) :two-floor-result '(0 -8)
    :one-ffloor-result '(-8.0 0) :two-ffloor-result '(0.0 -8)
    :one-ceiling-result '(-8 0) :two-ceiling-result '(1 19)
    :one-fceiling-result '(-8.0 0) :two-fceiling-result '(1.0 19)
    :one-round-result '(-8 0) :two-round-result '(0 -8)
    :one-fround-result '(-8.0 0) :two-fround-result '(0.0 -8)
    :one-truncate-result '(-8 0) :two-truncate-result '(0 -8)
    :one-ftruncate-result '(-8.0 0) :two-ftruncate-result '(0.0 -8))
  (Assert-rounding 32 4
    :one-floor-result '(32 0) :two-floor-result '(8 0)
    :one-ffloor-result '(32.0 0) :two-ffloor-result '(8.0 0)
    :one-ceiling-result '(32 0) :two-ceiling-result '(8 0)
    :one-fceiling-result '(32.0 0) :two-fceiling-result '(8.0 0)
    :one-round-result '(32 0) :two-round-result '(8 0)
    :one-fround-result '(32.0 0) :two-fround-result '(8.0 0)
    :one-truncate-result '(32 0) :two-truncate-result '(8 0)
    :one-ftruncate-result '(32.0 0) :two-ftruncate-result '(8.0 0))
  (Assert-rounding 32 -4
    :one-floor-result '(32 0) :two-floor-result '(-8 0)
    :one-ffloor-result '(32.0 0) :two-ffloor-result '(-8.0 0)
    :one-ceiling-result '(32 0) :two-ceiling-result '(-8 0)
    :one-fceiling-result '(32.0 0) :two-fceiling-result '(-8.0 0)
    :one-round-result '(32 0) :two-round-result '(-8 0)
    :one-fround-result '(32.0 0) :two-fround-result '(-8.0 0)
    :one-truncate-result '(32 0) :two-truncate-result '(-8 0)
    :one-ftruncate-result '(32.0 0) :two-ftruncate-result '(-8.0 0))
  (Assert-rounding 12 9
    :one-floor-result '(12 0) :two-floor-result '(1 3)
    :one-ffloor-result '(12.0 0) :two-ffloor-result '(1.0 3)
    :one-ceiling-result '(12 0) :two-ceiling-result '(2 -6)
    :one-fceiling-result '(12.0 0) :two-fceiling-result '(2.0 -6)
    :one-round-result '(12 0) :two-round-result '(1 3)
    :one-fround-result '(12.0 0) :two-fround-result '(1.0 3)
    :one-truncate-result '(12 0) :two-truncate-result '(1 3)
    :one-ftruncate-result '(12.0 0) :two-ftruncate-result '(1.0 3))
  (Assert-rounding 10 4
    :one-floor-result '(10 0) :two-floor-result '(2 2)
    :one-ffloor-result '(10.0 0) :two-ffloor-result '(2.0 2)
    :one-ceiling-result '(10 0) :two-ceiling-result '(3 -2)
    :one-fceiling-result '(10.0 0) :two-fceiling-result '(3.0 -2)
    :one-round-result '(10 0) :two-round-result '(2 2)
    :one-fround-result '(10.0 0) :two-fround-result '(2.0 2)
    :one-truncate-result '(10 0) :two-truncate-result '(2 2)
    :one-ftruncate-result '(10.0 0) :two-ftruncate-result '(2.0 2))
  (Assert-rounding 14 4
    :one-floor-result '(14 0) :two-floor-result '(3 2)
    :one-ffloor-result '(14.0 0) :two-ffloor-result '(3.0 2)
    :one-ceiling-result '(14 0) :two-ceiling-result '(4 -2)
    :one-fceiling-result '(14.0 0) :two-fceiling-result '(4.0 -2)
    :one-round-result '(14 0) :two-round-result '(4 -2)
    :one-fround-result '(14.0 0) :two-fround-result '(4.0 -2)
    :one-truncate-result '(14 0) :two-truncate-result '(3 2)
    :one-ftruncate-result '(14.0 0) :two-ftruncate-result '(3.0 2))
  ;; Now, two floats:
  (Assert-rounding-floating pi e)
  (when (featurep 'bigfloat)
    (Assert-rounding-floating (coerce pi 'bigfloat) (coerce e 'bigfloat)))
  (when (featurep 'bignum)
    (assert (not (evenp most-positive-fixnum)) t
      "In the unlikely event that most-positive-fixnum is even, rewrite this.")
    (Assert-rounding (1+ most-positive-fixnum) (* 2 most-positive-fixnum)
      :one-floor-result `(,(1+ most-positive-fixnum) 0)
      :two-floor-result `(0 ,(1+ most-positive-fixnum))
      :one-ffloor-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-ffloor-result `(0.0 ,(1+ most-positive-fixnum))
      :one-ceiling-result `(,(1+ most-positive-fixnum) 0)
      :two-ceiling-result `(1 ,(1+ (- most-positive-fixnum)))
      :one-fceiling-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-fceiling-result `(1.0 ,(1+ (- most-positive-fixnum)))
      :one-round-result `(,(1+ most-positive-fixnum) 0)
      :two-round-result `(1 ,(1+ (- most-positive-fixnum)))
      :one-fround-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-fround-result `(1.0 ,(1+ (- most-positive-fixnum)))
      :one-truncate-result `(,(1+ most-positive-fixnum) 0)
      :two-truncate-result `(0 ,(1+ most-positive-fixnum))
      :one-ftruncate-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-ftruncate-result `(0.0 ,(1+ most-positive-fixnum)))
    (Assert-rounding (1+ most-positive-fixnum) (- (* 2 most-positive-fixnum))
      :one-floor-result `(,(1+ most-positive-fixnum) 0)
      :two-floor-result `(-1 ,(1+ (- most-positive-fixnum)))
      :one-ffloor-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-ffloor-result `(-1.0 ,(1+ (- most-positive-fixnum)))
      :one-ceiling-result `(,(1+ most-positive-fixnum) 0)
      :two-ceiling-result `(0 ,(1+ most-positive-fixnum))
      :one-fceiling-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-fceiling-result `(0.0 ,(1+ most-positive-fixnum))
      :one-round-result `(,(1+ most-positive-fixnum) 0)
      :two-round-result `(-1 ,(1+ (- most-positive-fixnum)))
      :one-fround-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-fround-result `(-1.0 ,(1+ (- most-positive-fixnum)))
      :one-truncate-result `(,(1+ most-positive-fixnum) 0)
      :two-truncate-result `(0 ,(1+ most-positive-fixnum))
      :one-ftruncate-result `(,(float (1+ most-positive-fixnum)) 0)
      :two-ftruncate-result `(0.0 ,(1+ most-positive-fixnum)))
    (Assert-rounding (- (1+ most-positive-fixnum)) (* 2 most-positive-fixnum)
      :one-floor-result `(,(- (1+ most-positive-fixnum)) 0)
      :two-floor-result `(-1 ,(1- most-positive-fixnum))
      :one-ffloor-result `(,(float (- (1+ most-positive-fixnum))) 0)
      :two-ffloor-result `(-1.0 ,(1- most-positive-fixnum))
      :one-ceiling-result `(,(- (1+ most-positive-fixnum)) 0)
      :two-ceiling-result `(0 ,(- (1+ most-positive-fixnum)))
      :one-fceiling-result `(,(float (- (1+ most-positive-fixnum))) 0)
      :two-fceiling-result `(0.0 ,(- (1+ most-positive-fixnum)))
      :one-round-result `(,(- (1+ most-positive-fixnum)) 0)
      :two-round-result `(-1 ,(1- most-positive-fixnum))
      :one-fround-result `(,(float (- (1+ most-positive-fixnum))) 0)
      :two-fround-result `(-1.0 ,(1- most-positive-fixnum))
      :one-truncate-result `(,(- (1+ most-positive-fixnum)) 0)
      :two-truncate-result `(0 ,(- (1+ most-positive-fixnum)))
      :one-ftruncate-result `(,(float (- (1+ most-positive-fixnum))) 0)
      :two-ftruncate-result `(0.0 ,(- (1+ most-positive-fixnum))))
    ;; Test the handling of values with .5: 
    (Assert-rounding (1+ (* 2 most-positive-fixnum)) 2
      :one-floor-result `(,(1+ (* 2 most-positive-fixnum)) 0)
      :two-floor-result `(,most-positive-fixnum 1)
      :one-ffloor-result `(,(float (1+ (* 2 most-positive-fixnum))) 0)
      ;; We can't just call #'float here; we must use code that converts a
      ;; bignum with value most-positive-fixnum (the creation of which is
      ;; not directly possible in Lisp) to a float, not code that converts
      ;; the fixnum with value most-positive-fixnum to a float. The eval is
      ;; to avoid compile-time optimisation that can break this.
      :two-ffloor-result `(,(eval '(- (1+ most-positive-fixnum) 1 0.0)) 1)
      :one-ceiling-result `(,(1+ (* 2 most-positive-fixnum)) 0)
      :two-ceiling-result `(,(1+ most-positive-fixnum) -1)
      :one-fceiling-result `(,(float (1+ (* 2 most-positive-fixnum))) 0)
      :two-fceiling-result `(,(float (1+ most-positive-fixnum)) -1)
      :one-round-result `(,(1+ (* 2 most-positive-fixnum)) 0)
      :two-round-result `(,(1+ most-positive-fixnum) -1)
      :one-fround-result `(,(float (1+ (* 2 most-positive-fixnum))) 0)
      :two-fround-result `(,(float (1+ most-positive-fixnum)) -1)
      :one-truncate-result `(,(1+ (* 2 most-positive-fixnum)) 0)
      :two-truncate-result `(,most-positive-fixnum 1)
      :one-ftruncate-result `(,(float (1+ (* 2 most-positive-fixnum))) 0)
      ;; See the comment above on :two-ffloor-result:
      :two-ftruncate-result `(,(eval '(- (1+ most-positive-fixnum) 1 0.0)) 1))
    (Assert-rounding (1+ (* 2 (1- most-positive-fixnum))) 2
      :one-floor-result `(,(1+ (* 2 (1- most-positive-fixnum))) 0)
      :two-floor-result `(,(1- most-positive-fixnum) 1)
      :one-ffloor-result `(,(float (1+ (* 2 (1- most-positive-fixnum)))) 0)
      ;; See commentary above on float conversions.
      :two-ffloor-result `(,(eval '(- (1+ most-positive-fixnum) 2 0.0)) 1)
      :one-ceiling-result `(,(1+ (* 2 (1- most-positive-fixnum))) 0)
      :two-ceiling-result `(,most-positive-fixnum -1)
      :one-fceiling-result `(,(float (1+ (* 2 (1- most-positive-fixnum)))) 0)
      :two-fceiling-result `(,(eval '(- (1+ most-positive-fixnum) 1 0.0)) -1)
      :one-round-result `(,(1+ (* 2 (1- most-positive-fixnum))) 0)
      :two-round-result `(,(1- most-positive-fixnum) 1)
      :one-fround-result `(,(float (1+ (* 2 (1- most-positive-fixnum)))) 0)
      :two-fround-result `(,(eval '(- (1+ most-positive-fixnum) 2 0.0)) 1)
      :one-truncate-result `(,(1+ (* 2 (1- most-positive-fixnum))) 0)
      :two-truncate-result `(,(1- most-positive-fixnum) 1)
      :one-ftruncate-result `(,(float (1+ (* 2 (1- most-positive-fixnum)))) 0)
      ;; See commentary above
      :two-ftruncate-result `(,(eval '(- (1+ most-positive-fixnum) 2 0.0))
			      1)))
  (when (featurep 'ratio)
    (Assert-rounding (read "4/3") (read "8/7")
     :one-floor-result '(1 1/3) :two-floor-result '(1 4/21)
     :one-ffloor-result '(1.0 1/3) :two-ffloor-result '(1.0 4/21)
     :one-ceiling-result '(2 -2/3) :two-ceiling-result '(2 -20/21)
     :one-fceiling-result '(2.0 -2/3) :two-fceiling-result '(2.0 -20/21)
     :one-round-result '(1 1/3) :two-round-result '(1 4/21)
     :one-fround-result '(1.0 1/3) :two-fround-result '(1.0 4/21)
     :one-truncate-result '(1 1/3) :two-truncate-result '(1 4/21)
     :one-ftruncate-result '(1.0 1/3) :two-ftruncate-result '(1.0 4/21))
    (Assert-rounding (read "-4/3") (read "8/7")
     :one-floor-result '(-2 2/3) :two-floor-result '(-2 20/21)
     :one-ffloor-result '(-2.0 2/3) :two-ffloor-result '(-2.0 20/21)
     :one-ceiling-result '(-1 -1/3) :two-ceiling-result '(-1 -4/21)
     :one-fceiling-result '(-1.0 -1/3) :two-fceiling-result '(-1.0 -4/21)
     :one-round-result '(-1 -1/3) :two-round-result '(-1 -4/21)
     :one-fround-result '(-1.0 -1/3) :two-fround-result '(-1.0 -4/21)
     :one-truncate-result '(-1 -1/3) :two-truncate-result '(-1 -4/21)
     :one-ftruncate-result '(-1.0 -1/3) :two-ftruncate-result '(-1.0 -4/21))))

;; Run this function in a Common Lisp with two arguments to get results that
;; we should compare against, above. Though note the dancing-around with the
;; bigfloats and bignums above, too; you can't necessarily just use the
;; output here.

(defun generate-rounding-output (first second)
  (let ((print-readably t))
    (princ first)
    (princ " ")
    (princ second)
    (princ " :one-floor-result ")
    (princ (list 'quote (multiple-value-list (floor first))))
    (princ " :two-floor-result ")
    (princ (list 'quote (multiple-value-list (floor first second))))
    (princ " :one-ffloor-result ")
    (princ (list 'quote (multiple-value-list (ffloor first))))
    (princ " :two-ffloor-result ")
    (princ (list 'quote (multiple-value-list (ffloor first second))))
    (princ " :one-ceiling-result ")
    (princ (list 'quote (multiple-value-list (ceiling first))))
    (princ " :two-ceiling-result ")
    (princ (list 'quote (multiple-value-list (ceiling first second))))
    (princ " :one-fceiling-result ")
    (princ (list 'quote (multiple-value-list (fceiling first))))
    (princ " :two-fceiling-result ")
    (princ (list 'quote (multiple-value-list (fceiling first second))))
    (princ " :one-round-result ")
    (princ (list 'quote (multiple-value-list (round first))))
    (princ " :two-round-result ")
    (princ (list 'quote (multiple-value-list (round first second))))
    (princ " :one-fround-result ")
    (princ (list 'quote (multiple-value-list (fround first))))
    (princ " :two-fround-result ")
    (princ (list 'quote (multiple-value-list (fround first second))))
    (princ " :one-truncate-result ")
    (princ (list 'quote (multiple-value-list (truncate first))))
    (princ " :two-truncate-result ")
    (princ (list 'quote (multiple-value-list (truncate first second))))
    (princ " :one-ftruncate-result ")
    (princ (list 'quote (multiple-value-list (ftruncate first))))
    (princ " :two-ftruncate-result ")
    (princ (list 'quote (multiple-value-list (ftruncate first second))))))

;; Multiple value tests. 

(flet ((foo (x y) 
	 (floor (+ x y) y))
       (foo-zero (x y)
	 (values (floor (+ x y) y)))
       (multiple-value-function-returning-t ()
	 (values t pi e degrees-to-radians radians-to-degrees))
       (multiple-value-function-returning-nil ()
	 (values nil pi e radians-to-degrees degrees-to-radians))
       (function-throwing-multiple-values ()
	 (let* ((listing '(0 3 4 nil "string" symbol))
		(tail listing)
		elt)
	   (while t
	     (setq tail (cdr listing)
		   elt (car listing)
		   listing tail)
	     (when (null elt)
	       (throw 'VoN61Lo4Y (multiple-value-function-returning-t)))))))
  (Assert
   (= (+ (floor 5 3) (floor 19 4)) (+ 1 4) 5)
   "Checking that multiple values are discarded correctly as func args")
  (Assert
   (= 2 (length (multiple-value-list (foo 400 (1+ most-positive-fixnum)))))
   "Checking multiple values are passed through correctly as return values")
  (Assert
   (= 1 (length (multiple-value-list
		 (foo-zero 400 (1+ most-positive-fixnum)))))
   "Checking multiple values are discarded correctly when forced")
  (Check-Error setting-constant (setq multiple-values-limit 20))
  (Assert
   (equal '(-1 1)
	  (multiple-value-list (floor -3 4)))
   "Checking #'multiple-value-list gives a sane result")
  (let ((ey 40000)
	(bee "this is a string")
	(cee #s(hash-table size 256 data (969 ?\xF9))))
    (Assert
     (equal
      (multiple-value-list (values ey bee cee))
      (multiple-value-list (values-list (list ey bee cee))))
     "Checking that #'values and #'values-list are correctly related")
    (Assert
     (equal
      (multiple-value-list (values-list (list ey bee cee)))
      (multiple-value-list (apply #'values (list ey bee cee))))
     "Checking #'values-list and #'apply with #values are correctly related"))
  (Assert
   (= (multiple-value-call #'+ (floor 5 3) (floor 19 4)) 10)
   "Checking #'multiple-value-call gives reasonable results.")
  (Assert
   (= (multiple-value-call (values '+ '*) (floor 5 3) (floor 19 4)) 10)
   "Checking #'multiple-value-call correct when first arg multiple.")
  (Assert
   (= 1 (length (multiple-value-list (prog1 (floor pi) "hi there"))))
   "Checking #'prog1 does not pass back multiple values")
  (Assert
   (= 2 (length (multiple-value-list
		 (multiple-value-prog1 (floor pi) "hi there"))))
   "Checking #'multiple-value-prog1 passes back multiple values")
  (multiple-value-bind (floored remainder this-is-nil)
      (floor pi 1.0)
    (Assert (= floored 3)
	    "Checking floored bound correctly")
    (Assert (eql remainder (- pi 3.0))
	    "Checking remainder bound correctly") 
    (Assert (null this-is-nil)
	    "Checking trailing arg bound but nil"))
  (let ((ey 40000)
	(bee "this is a string")
	(cee #s(hash-table size 256 data (969 ?\xF9))))
    (multiple-value-setq (ey bee cee)
      (ffloor e 1.0))
    (Assert (eql 2.0 ey) "Checking ey set correctly")
    (Assert (eql bee (- e 2.0)) "Checking bee set correctly")
    (Assert (null cee) "Checking cee set to nil correctly"))
  (Assert
   (= 3 (length (multiple-value-list (eval '(values nil t pi)))))
   "Checking #'eval passes back multiple values")
  (Assert
   (= 2 (length (multiple-value-list (apply #'floor '(5 3)))))
   "Checking #'apply passes back multiple values")
  (Assert 
   (= 2 (length (multiple-value-list (funcall #'floor 5 3))))
   "Checking #'funcall passes back multiple values")
  (Assert 
   (equal '(1 2) (multiple-value-list 
		  (multiple-value-call #'floor (values 5 3))))
   "Checking #'multiple-value-call passes back multiple values correctly")
  (Assert
   (= 1 (length (multiple-value-list
		 (and (multiple-value-function-returning-nil) t))))
   "Checking multiple values from non-trailing forms discarded by #'and")
  (Assert
   (= 5 (length (multiple-value-list 
		 (and t (multiple-value-function-returning-nil)))))
   "Checking multiple values from final forms not discarded by #'and")
  (Assert
   (= 1 (length (multiple-value-list
		 (or (multiple-value-function-returning-t) t))))
   "Checking multiple values from non-trailing forms discarded by #'and")
  (Assert
   (= 5 (length (multiple-value-list 
		 (or nil (multiple-value-function-returning-t)))))
   "Checking multiple values from final forms not discarded by #'and")
  (Assert
   (= 1 (length (multiple-value-list
		 (cond ((multiple-value-function-returning-t))))))
   "Checking cond doesn't pass back multiple values in tests.")
  (Assert
   (equal (list nil pi e radians-to-degrees degrees-to-radians)
	  (multiple-value-list
	   (cond (t (multiple-value-function-returning-nil)))))
   "Checking cond passes back multiple values in clauses.")
  (Assert
   (= 1 (length (multiple-value-list
		 (prog1 (multiple-value-function-returning-nil)))))
   "Checking prog1 discards multiple values correctly.")
  (Assert
   (= 5 (length (multiple-value-list
		 (multiple-value-prog1
		  (multiple-value-function-returning-nil)))))
   "Checking multiple-value-prog1 passes back multiple values correctly.")
  (Assert
   (equal (list t pi e degrees-to-radians radians-to-degrees)
	  (multiple-value-list
	   (catch 'VoN61Lo4Y (function-throwing-multiple-values)))))
  (Assert
   (equal (list t pi e degrees-to-radians radians-to-degrees)
	  (multiple-value-list
	   (loop
	     for eye in `(a b c d ,e f g ,nil ,pi)
	     do (when (null eye)
		  (return (multiple-value-function-returning-t))))))
   "Checking #'loop passes back multiple values correctly.")
  (Assert
   (null (or))
   "Checking #'or behaves correctly with zero arguments.")
  (Assert
   (eq t (and))
   "Checking #'and behaves correctly with zero arguments.")
  ;; This bug was here before the full multiple-value functionality
  ;; was introduced (check it with (floor* pi) if you're
  ;; curious). #'setf works, though, which is what most people are
  ;; interested in. If you know the setf-method code better than I do,
  ;; please post a patch; otherwise this is going to the back of the
  ;; queue of things to do. I didn't break it :-) Aidan Kehoe, Mon Aug
  ;; 31 10:45:50 GMTDT 2009. 
  (Known-Bug-Expect-Error
   void-variable
   (letf (((values three one-four-one-five-nine) (floor pi)))
     (* three one-four-one-five-nine))))