view dynodump/sparc/_relocate.c @ 934:c925bacdda60

[xemacs-hg @ 2002-07-29 09:21:12 by michaels] 2002-07-17 Marcus Crestani <crestani@informatik.uni-tuebingen.de> Markus Kaltenbach <makalten@informatik.uni-tuebingen.de> Mike Sperber <mike@xemacs.org> configure flag to turn these changes on: --use-kkcc First we added a dumpable flag to lrecord_implementation. It shows, if the object is dumpable and should be processed by the dumper. * lrecord.h (struct lrecord_implementation): added dumpable flag (MAKE_LRECORD_IMPLEMENTATION): fitted the different makro definitions to the new lrecord_implementation and their calls. Then we changed mark_object, that it no longer needs a mark method for those types that have pdump descritions. * alloc.c: (mark_object): If the object has a description, the new mark algorithm is called, and the object is marked according to its description. Otherwise it uses the mark method like before. These procedures mark objects according to their descriptions. They are modeled on the corresponding pdumper procedures. (mark_with_description): (get_indirect_count): (structure_size): (mark_struct_contents): These procedures still call mark_object, this is needed while there are Lisp_Objects without descriptions left. We added pdump descriptions for many Lisp_Objects: * extents.c: extent_auxiliary_description * database.c: database_description * gui.c: gui_item_description * scrollbar.c: scrollbar_instance_description * toolbar.c: toolbar_button_description * event-stream.c: command_builder_description * mule-charset.c: charset_description * device-msw.c: devmode_description * dialog-msw.c: mswindows_dialog_id_description * eldap.c: ldap_description * postgresql.c: pgconn_description pgresult_description * tooltalk.c: tooltalk_message_description tooltalk_pattern_description * ui-gtk.c: emacs_ffi_description emacs_gtk_object_description * events.c: * events.h: * event-stream.c: * event-Xt.c: * event-gtk.c: * event-tty.c: To write a pdump description for Lisp_Event, we converted every struct in the union event to a Lisp_Object. So we created nine new Lisp_Objects: Lisp_Key_Data, Lisp_Button_Data, Lisp_Motion_Data, Lisp_Process_Data, Lisp_Timeout_Data, Lisp_Eval_Data, Lisp_Misc_User_Data, Lisp_Magic_Data, Lisp_Magic_Eval_Data. We also wrote makro selectors and mutators for the fields of the new designed Lisp_Event and added everywhere these new abstractions. We implemented XD_UNION support in (mark_with_description), so we can describe exspecially console/device specific data with XD_UNION. To describe with XD_UNION, we added a field to these objects, which holds the variant type of the object. This field is initialized in the appendant constructor. The variant is an integer, it has also to be described in an description, if XD_UNION is used. XD_UNION is used in following descriptions: * console.c: console_description (get_console_variant): returns the variant (create_console): added variant initialization * console.h (console_variant): the different console types * console-impl.h (struct console): added enum console_variant contype * device.c: device_description (Fmake_device): added variant initialization * device-impl.h (struct device): added enum console_variant devtype * objects.c: image_instance_description font_instance_description (Fmake_color_instance): added variant initialization (Fmake_font_instance): added variant initialization * objects-impl.h (struct Lisp_Color_Instance): added color_instance_type * objects-impl.h (struct Lisp_Font_Instance): added font_instance_type * process.c: process_description (make_process_internal): added variant initialization * process.h (process_variant): the different process types
author michaels
date Mon, 29 Jul 2002 09:21:25 +0000
parents 3ecd8885ac67
children
line wrap: on
line source

/*
 *	Copyright (c) 1995 by Sun Microsystems, Inc.
 *	All rights reserved.
 *
 * This source code is a product of Sun Microsystems, Inc. and is provided
 * for unrestricted use provided that this legend is included on all tape
 * media and as a part of the software program in whole or part.  Users
 * may copy or modify this source code without charge, but are not authorized
 * to license or distribute it to anyone else except as part of a product or
 * program developed by the user.
 *
 * THIS PROGRAM CONTAINS SOURCE CODE COPYRIGHTED BY SUN MICROSYSTEMS, INC.
 * SUN MICROSYSTEMS, INC., MAKES NO REPRESENTATIONS ABOUT THE SUITABLITY
 * OF SUCH SOURCE CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT
 * EXPRESS OR IMPLIED WARRANTY OF ANY KIND.  SUN MICROSYSTEMS, INC. DISCLAIMS
 * ALL WARRANTIES WITH REGARD TO SUCH SOURCE CODE, INCLUDING ALL IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  IN
 * NO EVENT SHALL SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY SPECIAL, INDIRECT,
 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
 * FROM USE OF SUCH SOURCE CODE, REGARDLESS OF THE THEORY OF LIABILITY.
 *
 * This source code is provided with no support and without any obligation on
 * the part of Sun Microsystems, Inc. to assist in its use, correction,
 * modification or enhancement.
 *
 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS
 * SOURCE CODE OR ANY PART THEREOF.
 *
 * Sun Microsystems, Inc.
 * 2550 Garcia Avenue
 * Mountain View, California 94043
 */

/*
 * Update the value of the `_edata' and `_end' symbols.
 */
#pragma ident	"@(#) $Id: _relocate.c,v 1.4 1998/03/31 20:10:55 steve Exp $ - SMI"

#include	<libelf.h>
#include	<string.h>
#include	"machdep.h"
#include	"_dynodump.h"


#define	GETbyte(P)	((long)((unsigned long)(P)[0]))
#define	GEThalf(P)	((long)(((unsigned long)(P)[0] << 8) | \
			    ((unsigned long)(P)[1])))
#define	GETword(P)	((long)(((unsigned long)(P)[0] << 24) | \
			    ((unsigned long)(P)[1] << 16) | \
			    ((unsigned long)(P)[2] << 8) | \
			    (unsigned long)(P)[3]))
#define	GETdisp30(P)	(GETword(P) & 0x3fffffff)
#define	GETdisp22(P)	(GETword(P) & 0x3fffff)
#define	GETdisp16(P)	(((GETword(P) & 0x300000) >> 6) | \
			    (GETword(P) & 0x3fff))
#define	GETdisp19(P)	(GETword(P) & 0x7ffff)
#define	GETimm22(P)	(GETword(P) & 0x3fffff)
#define	GETimm5(P)	(GEThalf((P)+2) & 0x1f)
#define	GETimm6(P)	(GEThalf((P)+2) & 0x2f)
#define	GETimm7(P)	(GEThalf((P)+2) & 0x3f)
#define	GETsimm13(P)	(GEThalf((P)+2) & 0x1fff)
#define	GETsimm10(P)	(GEThalf((P)+2) & 0x3ff)
#define	GETsimm11(P)	(GEThalf((P)+2) & 0x7ff)
#define	GETplt22(P)	(GETword((P)+8) & 0x3fffff)

#define	PUTbyte(V, P)	(P)[0] = (V)
#define	PUThalf(V, P)	(P)[0] = ((V) >> 8); \
			(P)[1] = ((V))
#define	PUTword(V, P)	(P)[0] = (unsigned char)((V) >> 24); \
			(P)[1] = (unsigned char)((V) >> 16); \
			(P)[2] = (unsigned char)((V) >> 8); \
			(P)[3] = (unsigned char)(V)
#define	PUTdisp30(V, P)	{ \
			unsigned long int temp; \
			temp = GETword(P) & ~0x3fffffff; \
			temp |= ((V) & 0x3fffffff); \
			PUTword(temp, P); \
			}
#define	PUTdisp22(V, P)	{ \
			unsigned long int temp; \
			temp = GETword(P) & ~0x3fffff; \
			temp |= ((V) & 0x3fffff); \
			PUTword(temp, P); \
			}
#define	PUTimm22(V, P)	{ \
			unsigned long int temp; \
			temp = GETword(P) & ~0x3fffff; \
			temp |= ((V) & 0x3fffff); \
			PUTword(temp, P); \
			}
#define	PUTimm5(V, P)	{ \
			unsigned long int temp; \
			temp = GEThalf(P+2) & ~0x1f; \
			temp |= ((V) & 0x1f); \
			PUThalf(temp, (P+2)); \
			}
#define	PUTimm6(V, P)	{ \
			unsigned long int temp; \
			temp = GEThalf(P+2) & ~0x2f; \
			temp |= ((V) & 0x2f); \
			PUThalf(temp, (P+2)); \
			}
#define	PUTimm7(V, P)	{ \
			unsigned long int temp; \
			temp = GEThalf(P+2) & ~0x3f; \
			temp |= ((V) & 0x3f); \
			PUThalf(temp, (P+2)); \
			}
#define	PUTsimm13(V, P)	{ \
			unsigned long int temp; \
			temp = GEThalf(P+2) & ~0x1fff; \
			temp |= ((V) & 0x1fff); \
			PUThalf(temp, (P+2)); \
			}
#define	PUTplt22(V, P)	{ \
			unsigned long int temp; \
			temp = GETword((P)+8) & ~0x3fffff; \
			temp |= ((V) & 0x3fffff); \
			PUTword(temp, ((P)+8)); \
			}
#define	PUTsimm10(V, P)	{ \
			unsigned long int temp; \
			temp = GEThalf(P+2) & ~0x3ff; \
			temp |= ((V) & 0x3ff); \
			PUThalf(temp, (P+2)); \
			}
#define	PUTsimm11(V, P)	{ \
			unsigned long int temp; \
			temp = GEThalf(P+2) & ~0x7ff; \
			temp |= ((V) & 0x7ff); \
			PUThalf(temp, (P+2)); \
			}
#define	PUTdisp16(V, P) { \
			unsigned long int temp; \
			temp = GETword(P) & ~0x303fff; \
			temp |= ((V) & 0xc000) << 6; \
			temp |= ((V) & 0x3fff); \
			PUTword(temp, P); \
			}
#define	PUTdisp19(V, P)	{ \
			unsigned long int temp; \
			temp = GETword(P) & ~0x7ffff; \
			temp |= ((V) & 0x7ffff); \
			PUTword(temp, P); \
			}

static void
move_reloc(unsigned char * iaddr, unsigned char * oaddr, unsigned char type)
{
    switch (type) {
    case R_SPARC_8:
    case R_SPARC_DISP8:
	PUTbyte(GETbyte(iaddr), oaddr);
	break;

    case R_SPARC_16:
    case R_SPARC_DISP16:
	PUThalf(GEThalf(iaddr), oaddr);
	break;

    case R_SPARC_32:
    case R_SPARC_DISP32:
    case R_SPARC_GLOB_DAT:
    case R_SPARC_RELATIVE:
    case R_SPARC_UA32:
	PUTword(GETword(iaddr), oaddr);
	break;

    case R_SPARC_WDISP30:
    case R_SPARC_WPLT30:
	PUTdisp30(GETdisp30(iaddr), oaddr);
	break;

    case R_SPARC_WDISP22:
    case R_SPARC_PC22:
	PUTdisp22(GETdisp22(iaddr), oaddr);
	break;

    case R_SPARC_HI22:
    case R_SPARC_GOT22:
    case R_SPARC_22:
	PUTimm22(GETimm22(iaddr), oaddr);
	break;

    case R_SPARC_13:
    case R_SPARC_GOT13:
	PUTsimm13(GETsimm13(iaddr), oaddr);
	break;

    case R_SPARC_LO10:
    case R_SPARC_GOT10:
    case R_SPARC_PC10:
#ifdef R_SPARC_10
    case R_SPARC_10:
#endif
	PUTsimm10(GETsimm10(iaddr), oaddr);
	break;

#ifdef R_SPARC_11
    case R_SPARC_11:
	PUTsimm11(GETsimm11(iaddr), oaddr);
	break;
#endif

#ifdef R_SPARC_WDISP16
    case R_SPARC_WDISP16:
	PUTdisp16(GETdisp16(iaddr), oaddr);
	break;
#endif

#ifdef R_SPARC_WDISP19
    case R_SPARC_WDISP19:
	PUTdisp19(GETdisp19(iaddr), oaddr);
	break;
#endif

#ifdef R_SPARC_5
    case R_SPARC_5:
	PUTimm5(GETimm5(iaddr), oaddr);
	break;
#endif

#ifdef R_SPARC_6
    case R_SPARC_6:
	PUTimm6(GETimm6(iaddr), oaddr);
	break;
#endif

#ifdef R_SPARC_7
    case R_SPARC_7:
	PUTimm7(GETimm7(iaddr), oaddr);
	break;
#endif

    default:
	break;
    }
}

void
update_reloc(Cache *ocache, Cache *_ocache,
	     Cache *icache, Cache *_icache,
	     Half shnum)
{
    Shdr *shdr;
    Rel *rels;
    int	reln, cnt;
    Cache *orcache, *ircache;

    /*
     * Set up to read the output relocation table.
     */
    shdr = _ocache->c_shdr;
    rels = (Rel *)_ocache->c_data->d_buf;
    reln = shdr->sh_size / shdr->sh_entsize;

    /*
     * Determine the section that is being relocated.
     */
    orcache = &ocache[shdr->sh_info];
    shdr = _icache->c_shdr;
    ircache = &icache[shdr->sh_info];

    /*
     * Loop through the relocation table.
     */
    for (cnt = 0; cnt < reln; cnt++, rels++) {
	unsigned char *iaddr, *oaddr;
	Addr off;
	unsigned char type = ELF_R_TYPE(rels->r_info);

	/*
	 * Ignore some relocations as these can safely be carried out
	 * twice (they simply override any existing data).  In fact,
	 * some relocations like __iob's copy relocation must be carried
	 * out each time the process restarts otherwise stdio blows up.
	 */
	if ((type == R_SPARC_COPY) || (type == R_SPARC_JMP_SLOT) ||
	    (type == R_SPARC_NONE))
	    continue;

	/*
	 * If we are required to restore the relocation location
	 * to its value prior to relocation, then read the
	 * locations original contents from the input image and
	 * copy it to the output image.
	 */
	off = rels->r_offset - ircache->c_shdr->sh_addr;
	iaddr = (unsigned char *)ircache->c_data->d_buf + off;
	oaddr = (unsigned char *)orcache->c_data->d_buf + off;
	move_reloc(iaddr, oaddr, type);
    }
}