Mercurial > hg > xemacs-beta
view lisp/undo-stack.el @ 5882:bbe4146603db
Reduce regexp usage, now CL-oriented non-regexp code available, core Lisp
lisp/ChangeLog addition:
2015-04-01 Aidan Kehoe <kehoea@parhasard.net>
When calling #'string-match with a REGEXP without regular
expression special characters, call #'search, #'mismatch, #'find,
etc. instead, making our code less likely to side-effect other
functions' match data and a little faster.
* apropos.el (apropos-command):
* apropos.el (apropos):
Call (position ?\n ...) rather than (string-match "\n" ...) here.
* buff-menu.el:
* buff-menu.el (buffers-menu-omit-invisible-buffers):
Don't fire up the regexp engine just to check if a string starts
with a space.
* buff-menu.el (select-buffers-tab-buffers-by-mode):
Don't fire up the regexp engine just to compare mode basenames.
* buff-menu.el (format-buffers-tab-line):
* buff-menu.el (build-buffers-tab-internal): Moved to being a
label within the following.
* buff-menu.el (buffers-tab-items): Use the label.
* bytecomp.el (byte-compile-log-1):
Don't fire up the regexp engine just to look for a newline.
* cus-edit.el (get):
Ditto.
* cus-edit.el (custom-variable-value-create):
Ditto, but for a colon.
* descr-text.el (describe-text-sexp):
Ditto.
* descr-text.el (describe-char-unicode-data):
Use #'split-string-by-char given that we're just looking for a
semicolon.
* descr-text.el (describe-char):
Don't fire up the regexp engine just to look for a newline.
* disass.el (disassemble-internal):
Ditto.
* files.el (file-name-sans-extension):
Implement this using #'position.
* files.el (file-name-extension):
Correct this function's docstring, implement it in terms of
#'position.
* files.el (insert-directory):
Don't fire up the regexp engine to split a string by space; don't
reverse the list of switches, this is actually a longstand bug as
far as I can see.
* gnuserv.el (gnuserv-process-filter):
Use #'position here, instead of consing inside #'split-string
needlessly.
* gtk-file-dialog.el (gtk-file-dialog-update-dropdown):
Use #'split-string-by-char here, don't fire up #'split-string for
directory-sep-char.
* gtk-font-menu.el (hack-font-truename):
Implement this more cheaply in terms of #'find,
#'split-string-by-char, #'equal, rather than #'string-match,
#'split-string, #'string-equal.
* hyper-apropos.el (hyper-apropos-grok-functions):
* hyper-apropos.el (hyper-apropos-grok-variables):
Look for a newline using #'position rather than #'string-match in
these functions.
* info.el (Info-insert-dir):
* info.el (Info-insert-file-contents):
* info.el (Info-follow-reference):
* info.el (Info-extract-menu-node-name):
* info.el (Info-menu):
Look for fixed strings using #'position or #'search as appropriate
in this file.
* ldap.el (ldap-decode-string):
* ldap.el (ldap-encode-string):
#'encode-coding-string, #'decode-coding-string are always
available, don't check if they're fboundp.
* ldap.el (ldap-decode-address):
* ldap.el (ldap-encode-address):
Use #'split-string-by-char in these functions.
* lisp-mnt.el (lm-creation-date):
* lisp-mnt.el (lm-last-modified-date):
Don't fire up the regexp engine just to look for spaces in this file.
* menubar-items.el (default-menubar):
Use (not (mismatch ...)) rather than #'string-match here, for
simple regexp.
Use (search "beta" ...) rather than (string-match "beta" ...)
* menubar-items.el (sort-buffers-menu-alphabetically):
* menubar-items.el (sort-buffers-menu-by-mode-then-alphabetically):
* menubar-items.el (group-buffers-menu-by-mode-then-alphabetically):
Don't fire up the regexp engine to check if a string starts with
a space or an asterisk.
Use the more fine-grained results of #'compare-strings; compare
case-insensitively for the buffer menu.
* menubar-items.el (list-all-buffers):
* menubar-items.el (tutorials-menu-filter):
Use #'equal rather than #'string-equal, which, in this context,
has the drawback of not having a bytecode, and no redeeming
features.
* minibuf.el:
* minibuf.el (un-substitute-in-file-name):
Use #'count, rather than counting the occurences of $ using the
regexp engine.
* minibuf.el (read-file-name-internal-1):
Don't fire up the regexp engine to search for ?=.
* mouse.el (mouse-eval-sexp):
Check for newline with #'find.
* msw-font-menu.el (mswindows-reset-device-font-menus):
Split a string by newline with #'split-string-by-char.
* mule/japanese.el:
* mule/japanese.el ("Japanese"):
Use #'search rather than #'string-match; canoncase before
comparing; fix a bug I had introduced where I had been making case
insensitive comparisons where the case mattered.
* mule/korea-util.el (default-korean-keyboard):
Look for ?3 using #'find, not #'string-march.
* mule/korea-util.el (quail-hangul-switch-hanja):
Search for a fixed string using #'search.
* mule/mule-cmds.el (set-locale-for-language-environment):
#'position, #'substitute rather than #'string-match,
#'replace-in-string.
* newcomment.el (comment-make-extra-lines):
Use #'search rather than #'string-match for a simple string.
* package-get.el (package-get-remote-filename):
Use #'position when looking for ?@
* process.el (setenv):
* process.el (read-envvar-name):
Use #'position when looking for ?=.
* replace.el (map-query-replace-regexp):
Use #'split-string-by-char instead of using an inline
implementation of it.
* select.el (select-convert-from-cf-text):
* select.el (select-convert-from-cf-unicodetext):
Use #'position rather than #'string-match in these functions.
* setup-paths.el (paths-emacs-data-root-p):
Use #'search when looking for simple string.
* sound.el (load-sound-file):
Use #'split-string-by-char rather than an inline reimplementation
of same.
* startup.el (splash-screen-window-body):
* startup.el (splash-screen-tty-body):
Search for simple strings using #'search.
* version.el (emacs-version):
Ditto.
* x-font-menu.el (hack-font-truename):
Implement this more cheaply in terms of #'find,
#'split-string-by-char, #'equal, rather than #'string-match,
#'split-string, #'string-equal.
* x-font-menu.el (x-reset-device-font-menus-core):
Use #'split-string-by-char here.
* x-init.el (x-initialize-keyboard):
Search for a simple string using #'search.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Wed, 01 Apr 2015 14:28:20 +0100 |
parents | 308d34e9f07d |
children |
line wrap: on
line source
;;; undo-stack.el --- An "undoable stack" object. ;; Copyright (C) 1997 Free Software Foundation, Inc. ;; Copyright (C) 1996 Ben Wing. ;; Maintainer: XEmacs Development Team ;; Keywords: extensions, dumped ;; This file is part of XEmacs. ;; XEmacs is free software: you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by the ;; Free Software Foundation, either version 3 of the License, or (at your ;; option) any later version. ;; XEmacs is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ;; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ;; for more details. ;; You should have received a copy of the GNU General Public License ;; along with XEmacs. If not, see <http://www.gnu.org/licenses/>. ;;; Synched up with: Not in FSF. ;;; Commentary: ;; This file is dumped with XEmacs. ;; An "undoable stack" is an object that can be used to implement ;; a history of positions, with undo and redo. Conceptually, it ;; is the kind of data structure used to keep track of (e.g.) ;; visited Web pages, so that the "Back" and "Forward" operations ;; in the browser work. Basically, I can successively visit a ;; number of Web pages through links, and then hit "Back" a ;; few times to go to previous positions, and then "Forward" a ;; few times to reverse this process. This is similar to an ;; "undo" and "redo" mechanism. ;; Note that Emacs does not standardly contain structures like ;; this. Instead, it implements history using either a ring ;; (the kill ring, the mark ring), or something like the undo ;; stack, where successive "undo" operations get recorded as ;; normal modifications, so that if you do a bunch of successive ;; undo's, then something else, then start undoing, you will ;; be redoing all your undo's back to the point before you did ;; the undo's, and then further undo's will act like the previous ;; round of undo's. I think that both of these paradigms are ;; inferior to the "undoable-stack" paradigm because they're ;; confusing and difficult to keep track of. ;; Conceptually, imagine a position history like this: ;; 1 -> 2 -> 3 -> 4 -> 5 -> 6 ;; ^^ ;; where the arrow indicates where you currently are. "Going back" ;; and "going forward" just amount to moving the arrow. However, ;; what happens if the history state is this: ;; 1 -> 2 -> 3 -> 4 -> 5 -> 6 ;; ^^ ;; and then I visit new positions (7) and (8)? In the most general ;; implementation, you've just caused a new branch like this: ;; 1 -> 2 -> 3 -> 4 -> 5 -> 6 ;; | ;; | ;; 7 -> 8 ;; ^^ ;; But then you can end up with a whole big tree, and you need ;; more sophisticated ways of navigating ("Forward" might involve ;; a choice of paths to follow) and managing its size (if you don't ;; want to keep unlimited history, you have to truncate at some point, ;; and how do you truncate a tree?) ;; My solution to this is just to insert the new positions like ;; this: ;; 1 -> 2 -> 3 -> 4 -> 7 -> 8 -> 5 -> 6 ;; ^^ ;; (Netscape, I think, would just truncate 5 and 6 completely, ;; but that seems a bit drastic. In the Emacs-standard "ring" ;; structure, this problem is avoided by simply moving 5 and 6 ;; to the beginning of the ring. However, it doesn't seem ;; logical to me to have "going back past 1" get you to 6.) ;; Now what if we have a "maximum" size of (say) 7 elements? ;; When we add 8, we could truncate either 1 or 6. Since 5 and ;; 6 are "undone" positions, we should presumably truncate ;; them before 1. So, adding 8 truncates 6, adding 9 truncates ;; 5, and adding 10 truncates 1 because there is nothing more ;; that is forward of the insertion point. ;; Interestingly, this method of truncation is almost like ;; how a ring would truncate. A ring would move 5 and 6 ;; around to the back, like this: ;; 5 -> 6 -> 1 -> 2 -> 3 -> 4 -> 7 -> 8 ;; ^^ ;; However, when 8 is added, the ring truncates 5 instead of ;; 6, which is less than optimal. ;; Conceptually, we can implement the "undoable stack" using ;; two stacks of a sort called "truncatable stack", which are ;; just simple stacks, but where you can truncate elements ;; off of the bottom of the stack. Then, the undoable stack ;; 1 -> 2 -> 3 -> 4 -> 5 -> 6 ;; ^^ ;; is equivalent to two truncatable stacks: ;; 4 <- 3 <- 2 <- 1 ;; 5 <- 6 ;; where I reversed the direction to accord with the probable ;; implementation of a standard list. To do another undo, ;; I pop 4 off of the first stack and move it to the top of ;; the second stack. A redo operation does the opposite. ;; To truncate to the proper size, first chop off 6, then 5, ;; then 1 -- in all cases, truncating off the bottom. ;;; Code: (define-error 'trunc-stack-bottom "Bottom of stack reached") (defsubst trunc-stack-stack (stack) ;; return the list representing the trunc-stack's elements. ;; the head of the list is the most recent element. (aref stack 1)) (defsubst trunc-stack-length (stack) ;; return the number of elements in the trunc-stack. (aref stack 2)) (defsubst set-trunc-stack-stack (stack new) ;; set the list representing the trunc-stack's elements. (aset stack 1 new)) (defsubst set-trunc-stack-length (stack new) ;; set the length of the trunc-stack. (aset stack 2 new)) ;; public functions: (defun make-trunc-stack () ;; make an empty trunc-stack. (vector 'trunc-stack nil 0)) (defun trunc-stack-push (stack el) ;; push a new element onto the head of the trunc-stack. (set-trunc-stack-stack stack (cons el (trunc-stack-stack stack))) (set-trunc-stack-length stack (1+ (trunc-stack-length stack)))) (defun trunc-stack-top (stack &optional n) ;; return the nth topmost element from the trunc-stack. ;; signal an error if the stack doesn't have that many elements. (or n (setq n 0)) (if (>= n (trunc-stack-length stack)) (signal-error 'trunc-stack-bottom (list stack)) (nth n (trunc-stack-stack stack)))) (defun trunc-stack-pop (stack) ;; pop and return the topmost element from the stack. (prog1 (trunc-stack-top stack) (set-trunc-stack-stack stack (cdr (trunc-stack-stack stack))) (set-trunc-stack-length stack (1- (trunc-stack-length stack))))) (defun trunc-stack-truncate (stack &optional n) ;; truncate N items off the bottom of the stack. If the stack is ;; not that big, it just becomes empty. (or n (setq n 1)) (if (> n 0) (let ((len (trunc-stack-length stack))) (if (>= n len) (progn (set-trunc-stack-length stack 0) (set-trunc-stack-stack stack nil)) (setcdr (nthcdr (1- (- len n)) (trunc-stack-stack stack)) nil) (set-trunc-stack-length stack (- len n)))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; FMH! FMH! FMH! This object-oriented stuff doesn't really work ;;; properly without built-in structures (vectors suck) and without ;;; public and private functions and fields. (defsubst undoable-stack-max (stack) (aref stack 1)) (defsubst undoable-stack-a (stack) (aref stack 2)) (defsubst undoable-stack-b (stack) (aref stack 3)) ;; public functions: (defun make-undoable-stack (max) ;; make an empty undoable stack of max size MAX. (vector 'undoable-stack max (make-trunc-stack) (make-trunc-stack))) (defsubst set-undoable-stack-max (stack new) ;; change the max size of an undoable stack. (aset stack 1 new)) (defun undoable-stack-a-top (stack) ;; return the topmost element off the "A" stack of an undoable stack. ;; this is the most recent position pushed on the undoable stack. (trunc-stack-top (undoable-stack-a stack))) (defun undoable-stack-a-length (stack) (trunc-stack-length (undoable-stack-a stack))) (defun undoable-stack-b-top (stack) ;; return the topmost element off the "B" stack of an undoable stack. ;; this is the position that will become the most recent position, ;; after a redo operation. (trunc-stack-top (undoable-stack-b stack))) (defun undoable-stack-b-length (stack) (trunc-stack-length (undoable-stack-b stack))) (defun undoable-stack-push (stack el) ;; push an element onto the stack. (let* ((lena (trunc-stack-length (undoable-stack-a stack))) (lenb (trunc-stack-length (undoable-stack-b stack))) (max (undoable-stack-max stack)) (len (+ lena lenb))) ;; maybe truncate some elements. We have to deal with the ;; possibility that we have more elements than our max ;; (someone might have reduced the max). (if (>= len max) (let ((must-nuke (1+ (- len max)))) ;; chop off must-nuke elements from the B stack. (trunc-stack-truncate (undoable-stack-b stack) must-nuke) ;; but if there weren't that many elements to chop, ;; take the rest off the A stack. (if (< lenb must-nuke) (trunc-stack-truncate (undoable-stack-a stack) (- must-nuke lenb))))) (trunc-stack-push (undoable-stack-a stack) el))) (defun undoable-stack-pop (stack) ;; pop an element off the stack. (trunc-stack-pop (undoable-stack-a stack))) (defun undoable-stack-undo (stack) ;; transfer an element from the top of A to the top of B. ;; return value is undefined. (trunc-stack-push (undoable-stack-b stack) (trunc-stack-pop (undoable-stack-a stack)))) (defun undoable-stack-redo (stack) ;; transfer an element from the top of B to the top of A. ;; return value is undefined. (trunc-stack-push (undoable-stack-a stack) (trunc-stack-pop (undoable-stack-b stack)))) ;;; undo-stack.el ends here