Mercurial > hg > xemacs-beta
view src/floatfns.c @ 1318:b531bf8658e9
[xemacs-hg @ 2003-02-21 06:56:46 by ben]
redisplay fixes et al.
PROBLEMS: Add comment about Cygwin, unexec and sysmalloc.
Move some non-general stuff out of general.
Make a section for x86.
configure.in: Add check for broken alloca in funcalls.
mule/mule-cmds.el: Alias file-name to native not vice-versa.
Do set EOL of native but not of process output to fix various
problems and be consistent with code-init.el.
code-cmds.el: Return a name not a coding system.
code-init.el: Reindent. Remove `file-name' since it should always be the same
as native.
unicode.el: Rename to load-unicode-mapping-table as suggested by the anonymous
(but rather Turnbullian) comment in unicode.c.
xemacs.dsp: Add /k to default build.
alloc.c: Make gc_currently_forbidden static.
config.h.in, lisp.h: Move some stuff to lisp.h.
console-gtk.h, console-impl.h, console-msw.h, console-x.h, event-Xt.c, event-msw.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-x.c, gtk-xemacs.c: Remove duplicated code to redraw exposed area. Add deadbox
method needed by the generalized redraw code. Defer redrawing
if already in redisplay.
frame-msw.c, event-stream.c, frame.c: Add comments about calling Lisp.
debug.c, general-slots.h: Move generalish symbols to general-slots.h.
doprnt.c: reindent.
lisp.h, dynarr.c: Add debug code for locking a dynarr to catch invalid mods.
Use in redisplay.c.
eval.c:
file-coding.c: Define file-name as alias for native not vice-versa.
frame-gtk.c, frame-x.c: Move Qwindow_id to general-slots.
dialog-msw.c, glyphs-gtk.c, glyphs-msw.c, glyphs-widget.c, glyphs-x.c, gui.c, gui.h, menubar-msw.c, menubar.c: Ensure that various glyph functions that eval within redisplay
protect the evals. Same for calls to internal_equal().
Modify various functions, e.g. gui_item_*(), to protect evals
within redisplay, taking an in_redisplay parameter if it's
possible for them to be called both inside and outside of
redisplay.
gutter.c: Defer specifier-changed updating till after redisplay, if
necessary, since we need to enter redisplay to do it.
gutter.c: Do nothing if in redisplay.
lisp.h: Add version of alloca() for use in function calls.
lisp.h: Add XCAD[D+]R up to 6 D's, and aliases X1ST, X2ND, etc.
frame.c, frame.h, redisplay.c, redisplay.h, signal.c, toolbar.c: Redo critical-section code and move from frame.c to redisplay.c.
Require that every place inside of redisplay catch errors itself,
not at the edge of the critical section (thereby bypassing the
rest of redisplay and leaving things in an inconsistent state).
Introduce separate means of holding frame-size changes without
entering a complete critical section. Introduce "post-redisplay"
methods for deferring things till after redisplay. Abort if
we enter redisplay reentrantly. Disable all quit checking in
redisplay since it's too dangerous. Ensure that all calls to
QUIT trigger an abort if unprotected.
redisplay.c, scrollbar-gtk.c, scrollbar-x.c, scrollbar.c: Create enter/exit_redisplay_critical_section_maybe() for code
that needs to ensure it's in a critical section but doesn't
interfere with an existing critical section.
sysdep.c: Use _wexecve() when under Windows NT for Unicode correctness.
text.c, text.h: Add new_dfc() functions, which return an alloca()ed value rather
than requiring an lvalue. (Not really used yet; used in another
workspace, to come.) Add some macros for SIZED_EXTERNAL.
Update the encoding aliases after involved scrutinization of the
X manual.
unicode.c: Answer the anonymous but suspiciously Turnbullian questions.
Rename parse-unicode-translation-table to
load-unicode-mapping-table, as suggested.
| author | ben |
|---|---|
| date | Fri, 21 Feb 2003 06:57:21 +0000 |
| parents | e22b0213b713 |
| children | 9c872f33ecbe |
line wrap: on
line source
/* Primitive operations on floating point for XEmacs Lisp interpreter. Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. */ /* ANSI C requires only these float functions: acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh. Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh. Define HAVE_CBRT if you have cbrt(). Define HAVE_RINT if you have rint(). If you don't define these, then the appropriate routines will be simulated. Define HAVE_MATHERR if on a system supporting the SysV matherr() callback. (This should happen automatically.) Define FLOAT_CHECK_ERRNO if the float library routines set errno. This has no effect if HAVE_MATHERR is defined. Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL. (What systems actually do this? Let me know. -jwz) Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and range checking will happen before calling the float routines. This has no effect if HAVE_MATHERR is defined (since matherr will be called when a domain error occurs). */ #include <config.h> #include "lisp.h" #include "syssignal.h" #include "sysfloat.h" /* The code uses emacs_rint, so that it works to undefine HAVE_RINT if `rint' exists but does not work right. */ #ifdef HAVE_RINT #define emacs_rint rint #else static double emacs_rint (double x) { double r = floor (x + 0.5); double diff = fabs (r - x); /* Round to even and correct for any roundoff errors. */ if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0))) r += r < x ? 1.0 : -1.0; return r; } #endif /* Nonzero while executing in floating point. This tells float_error what to do. */ static int in_float; /* If an argument is out of range for a mathematical function, here is the actual argument value to use in the error message. */ static Lisp_Object float_error_arg, float_error_arg2; static const char *float_error_fn_name; /* Evaluate the floating point expression D, recording NUM as the original argument for error messages. D is normally an assignment expression. Handle errors which may result in signals or may set errno. Note that float_error may be declared to return void, so you can't just cast the zero after the colon to (SIGTYPE) to make the types check properly. */ #ifdef FLOAT_CHECK_ERRNO #define IN_FLOAT(d, name, num) \ do { \ float_error_arg = num; \ float_error_fn_name = name; \ in_float = 1; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #define IN_FLOAT2(d, name, num, num2) \ do { \ float_error_arg = num; \ float_error_arg2 = num2; \ float_error_fn_name = name; \ in_float = 2; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #else #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0) #define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0) #endif #define arith_error(op,arg) \ Fsignal (Qarith_error, list2 (build_msg_string (op), arg)) #define range_error(op,arg) \ Fsignal (Qrange_error, list2 (build_msg_string (op), arg)) #define range_error2(op,a1,a2) \ Fsignal (Qrange_error, list3 (build_msg_string (op), a1, a2)) #define domain_error(op,arg) \ Fsignal (Qdomain_error, list2 (build_msg_string (op), arg)) #define domain_error2(op,a1,a2) \ Fsignal (Qdomain_error, list3 (build_msg_string (op), a1, a2)) /* Convert float to Lisp Integer if it fits, else signal a range error using the given arguments. */ static Lisp_Object float_to_int (double x, const char *name, Lisp_Object num, Lisp_Object num2) { if (x >= ((EMACS_INT) 1 << (VALBITS-1)) || x <= - ((EMACS_INT) 1 << (VALBITS-1)) - (EMACS_INT) 1) { if (!UNBOUNDP (num2)) range_error2 (name, num, num2); else range_error (name, num); } return (make_int ((EMACS_INT) x)); } static void in_float_error (void) { switch (errno) { case 0: break; case EDOM: if (in_float == 2) domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2); else domain_error (float_error_fn_name, float_error_arg); break; case ERANGE: range_error (float_error_fn_name, float_error_arg); break; default: arith_error (float_error_fn_name, float_error_arg); break; } } static Lisp_Object mark_float (Lisp_Object obj) { return Qnil; } static int float_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) { return (extract_float (obj1) == extract_float (obj2)); } static Hashcode float_hash (Lisp_Object obj, int depth) { /* mod the value down to 32-bit range */ /* #### change for 64-bit machines */ return (unsigned long) fmod (extract_float (obj), 4e9); } static const struct memory_description float_description[] = { { XD_END } }; DEFINE_BASIC_LRECORD_IMPLEMENTATION ("float", float, 1, /*dumpable-flag*/ mark_float, print_float, 0, float_equal, float_hash, float_description, Lisp_Float); /* Extract a Lisp number as a `double', or signal an error. */ double extract_float (Lisp_Object num) { if (FLOATP (num)) return XFLOAT_DATA (num); if (INTP (num)) return (double) XINT (num); return extract_float (wrong_type_argument (Qnumberp, num)); } /* Trig functions. */ DEFUN ("acos", Facos, 1, 1, 0, /* Return the inverse cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("acos", number); #endif IN_FLOAT (d = acos (d), "acos", number); return make_float (d); } DEFUN ("asin", Fasin, 1, 1, 0, /* Return the inverse sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("asin", number); #endif IN_FLOAT (d = asin (d), "asin", number); return make_float (d); } DEFUN ("atan", Fatan, 1, 2, 0, /* Return the inverse tangent of NUMBER. If optional second argument NUMBER2 is provided, return atan2 (NUMBER, NUMBER2). */ (number, number2)) { double d = extract_float (number); if (NILP (number2)) IN_FLOAT (d = atan (d), "atan", number); else { double d2 = extract_float (number2); #ifdef FLOAT_CHECK_DOMAIN if (d == 0.0 && d2 == 0.0) domain_error2 ("atan", number, number2); #endif IN_FLOAT2 (d = atan2 (d, d2), "atan", number, number2); } return make_float (d); } DEFUN ("cos", Fcos, 1, 1, 0, /* Return the cosine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = cos (d), "cos", number); return make_float (d); } DEFUN ("sin", Fsin, 1, 1, 0, /* Return the sine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = sin (d), "sin", number); return make_float (d); } DEFUN ("tan", Ftan, 1, 1, 0, /* Return the tangent of NUMBER. */ (number)) { double d = extract_float (number); double c = cos (d); #ifdef FLOAT_CHECK_DOMAIN if (c == 0.0) domain_error ("tan", number); #endif IN_FLOAT (d = (sin (d) / c), "tan", number); return make_float (d); } /* Bessel functions */ #if 0 /* Leave these out unless we find there's a reason for them. */ DEFUN ("bessel-j0", Fbessel_j0, 1, 1, 0, /* Return the bessel function j0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j0 (d), "bessel-j0", number); return make_float (d); } DEFUN ("bessel-j1", Fbessel_j1, 1, 1, 0, /* Return the bessel function j1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j1 (d), "bessel-j1", number); return make_float (d); } DEFUN ("bessel-jn", Fbessel_jn, 2, 2, 0, /* Return the order N bessel function output jn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", number1); return make_float (f2); } DEFUN ("bessel-y0", Fbessel_y0, 1, 1, 0, /* Return the bessel function y0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y0 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-y1", Fbessel_y1, 1, 1, 0, /* Return the bessel function y1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y1 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-yn", Fbessel_yn, 2, 2, 0, /* Return the order N bessel function output yn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", number1); return make_float (f2); } #endif /* 0 (bessel functions) */ /* Error functions. */ #if 0 /* Leave these out unless we see they are worth having. */ DEFUN ("erf", Ferf, 1, 1, 0, /* Return the mathematical error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erf (d), "erf", number); return make_float (d); } DEFUN ("erfc", Ferfc, 1, 1, 0, /* Return the complementary error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erfc (d), "erfc", number); return make_float (d); } DEFUN ("log-gamma", Flog_gamma, 1, 1, 0, /* Return the log gamma of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = lgamma (d), "log-gamma", number); return make_float (d); } #endif /* 0 (error functions) */ /* Root and Log functions. */ DEFUN ("exp", Fexp, 1, 1, 0, /* Return the exponential base e of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 709.7827) /* Assume IEEE doubles here */ range_error ("exp", number); else if (d < -709.0) return make_float (0.0); else #endif IN_FLOAT (d = exp (d), "exp", number); return make_float (d); } DEFUN ("expt", Fexpt, 2, 2, 0, /* Return the exponential NUMBER1 ** NUMBER2. */ (number1, number2)) { if (INTP (number1) && /* common lisp spec */ INTP (number2)) /* don't promote, if both are ints */ { EMACS_INT retval; EMACS_INT x = XINT (number1); EMACS_INT y = XINT (number2); if (y < 0) { if (x == 1) retval = 1; else if (x == -1) retval = (y & 1) ? -1 : 1; else retval = 0; } else { retval = 1; while (y > 0) { if (y & 1) retval *= x; x *= x; y = (EMACS_UINT) y >> 1; } } return make_int (retval); } { double f1 = extract_float (number1); double f2 = extract_float (number2); /* Really should check for overflow, too */ if (f1 == 0.0 && f2 == 0.0) f1 = 1.0; # ifdef FLOAT_CHECK_DOMAIN else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2))) domain_error2 ("expt", number1, number2); # endif /* FLOAT_CHECK_DOMAIN */ IN_FLOAT2 (f1 = pow (f1, f2), "expt", number1, number2); return make_float (f1); } } DEFUN ("log", Flog, 1, 2, 0, /* Return the natural logarithm of NUMBER. If second optional argument BASE is given, return the logarithm of NUMBER using that base. */ (number, base)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error2 ("log", number, base); #endif if (NILP (base)) IN_FLOAT (d = log (d), "log", number); else { double b = extract_float (base); #ifdef FLOAT_CHECK_DOMAIN if (b <= 0.0 || b == 1.0) domain_error2 ("log", number, base); #endif if (b == 10.0) IN_FLOAT2 (d = log10 (d), "log", number, base); else IN_FLOAT2 (d = (log (d) / log (b)), "log", number, base); } return make_float (d); } DEFUN ("log10", Flog10, 1, 1, 0, /* Return the logarithm base 10 of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error ("log10", number); #endif IN_FLOAT (d = log10 (d), "log10", number); return make_float (d); } DEFUN ("sqrt", Fsqrt, 1, 1, 0, /* Return the square root of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 0.0) domain_error ("sqrt", number); #endif IN_FLOAT (d = sqrt (d), "sqrt", number); return make_float (d); } DEFUN ("cube-root", Fcube_root, 1, 1, 0, /* Return the cube root of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_CBRT IN_FLOAT (d = cbrt (d), "cube-root", number); #else if (d >= 0.0) IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", number); else IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", number); #endif return make_float (d); } /* Inverse trig functions. */ DEFUN ("acosh", Facosh, 1, 1, 0, /* Return the inverse hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 1.0) domain_error ("acosh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = acosh (d), "acosh", number); #else IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", number); #endif return make_float (d); } DEFUN ("asinh", Fasinh, 1, 1, 0, /* Return the inverse hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = asinh (d), "asinh", number); #else IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", number); #endif return make_float (d); } DEFUN ("atanh", Fatanh, 1, 1, 0, /* Return the inverse hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d >= 1.0 || d <= -1.0) domain_error ("atanh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = atanh (d), "atanh", number); #else IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", number); #endif return make_float (d); } DEFUN ("cosh", Fcosh, 1, 1, 0, /* Return the hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("cosh", number); #endif IN_FLOAT (d = cosh (d), "cosh", number); return make_float (d); } DEFUN ("sinh", Fsinh, 1, 1, 0, /* Return the hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("sinh", number); #endif IN_FLOAT (d = sinh (d), "sinh", number); return make_float (d); } DEFUN ("tanh", Ftanh, 1, 1, 0, /* Return the hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = tanh (d), "tanh", number); return make_float (d); } /* Rounding functions */ DEFUN ("abs", Fabs, 1, 1, 0, /* Return the absolute value of NUMBER. */ (number)) { if (FLOATP (number)) { IN_FLOAT (number = make_float (fabs (XFLOAT_DATA (number))), "abs", number); return number; } if (INTP (number)) return (XINT (number) >= 0) ? number : make_int (- XINT (number)); return Fabs (wrong_type_argument (Qnumberp, number)); } DEFUN ("float", Ffloat, 1, 1, 0, /* Return the floating point number numerically equal to NUMBER. */ (number)) { if (INTP (number)) return make_float ((double) XINT (number)); if (FLOATP (number)) /* give 'em the same float back */ return number; return Ffloat (wrong_type_argument (Qnumberp, number)); } DEFUN ("logb", Flogb, 1, 1, 0, /* Return largest integer <= the base 2 log of the magnitude of NUMBER. This is the same as the exponent of a float. */ (number)) { double f = extract_float (number); if (f == 0.0) return make_int (- (EMACS_INT)(((EMACS_UINT) 1) << (VALBITS - 1))); /* most-negative-fixnum */ #ifdef HAVE_LOGB { Lisp_Object val; IN_FLOAT (val = make_int ((EMACS_INT) logb (f)), "logb", number); return val; } #else #ifdef HAVE_FREXP { int exqp; IN_FLOAT (frexp (f, &exqp), "logb", number); return make_int (exqp - 1); } #else { int i; double d; EMACS_INT val; if (f < 0.0) f = -f; val = -1; while (f < 0.5) { for (i = 1, d = 0.5; d * d >= f; i += i) d *= d; f /= d; val -= i; } while (f >= 1.0) { for (i = 1, d = 2.0; d * d <= f; i += i) d *= d; f /= d; val += i; } return make_int (val); } #endif /* ! HAVE_FREXP */ #endif /* ! HAVE_LOGB */ } DEFUN ("ceiling", Fceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER. (Round toward +inf.) */ (number)) { if (FLOATP (number)) { double d; IN_FLOAT ((d = ceil (XFLOAT_DATA (number))), "ceiling", number); return (float_to_int (d, "ceiling", number, Qunbound)); } if (INTP (number)) return number; return Fceiling (wrong_type_argument (Qnumberp, number)); } DEFUN ("floor", Ffloor, 1, 2, 0, /* Return the largest integer no greater than NUMBER. (Round towards -inf.) With optional second argument DIVISOR, return the largest integer no greater than NUMBER/DIVISOR. */ (number, divisor)) { CHECK_INT_OR_FLOAT (number); if (! NILP (divisor)) { EMACS_INT i1, i2; CHECK_INT_OR_FLOAT (divisor); if (FLOATP (number) || FLOATP (divisor)) { double f1 = extract_float (number); double f2 = extract_float (divisor); if (f2 == 0) Fsignal (Qarith_error, Qnil); IN_FLOAT2 (f1 = floor (f1 / f2), "floor", number, divisor); return float_to_int (f1, "floor", number, divisor); } i1 = XINT (number); i2 = XINT (divisor); if (i2 == 0) Fsignal (Qarith_error, Qnil); /* With C's /, the result is implementation-defined if either operand is negative, so use only nonnegative operands. */ i1 = (i2 < 0 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); return (make_int (i1)); } if (FLOATP (number)) { double d; IN_FLOAT ((d = floor (XFLOAT_DATA (number))), "floor", number); return (float_to_int (d, "floor", number, Qunbound)); } return number; } DEFUN ("round", Fround, 1, 1, 0, /* Return the nearest integer to NUMBER. */ (number)) { if (FLOATP (number)) { double d; /* Screw the prevailing rounding mode. */ IN_FLOAT ((d = emacs_rint (XFLOAT_DATA (number))), "round", number); return (float_to_int (d, "round", number, Qunbound)); } if (INTP (number)) return number; return Fround (wrong_type_argument (Qnumberp, number)); } DEFUN ("truncate", Ftruncate, 1, 1, 0, /* Truncate a floating point number to an integer. Rounds the value toward zero. */ (number)) { if (FLOATP (number)) return float_to_int (XFLOAT_DATA (number), "truncate", number, Qunbound); if (INTP (number)) return number; return Ftruncate (wrong_type_argument (Qnumberp, number)); } /* Float-rounding functions. */ DEFUN ("fceiling", Ffceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER, as a float. \(Round toward +inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = ceil (d), "fceiling", number); return make_float (d); } DEFUN ("ffloor", Fffloor, 1, 1, 0, /* Return the largest integer no greater than NUMBER, as a float. \(Round towards -inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = floor (d), "ffloor", number); return make_float (d); } DEFUN ("fround", Ffround, 1, 1, 0, /* Return the nearest integer to NUMBER, as a float. */ (number)) { double d = extract_float (number); IN_FLOAT (d = emacs_rint (d), "fround", number); return make_float (d); } DEFUN ("ftruncate", Fftruncate, 1, 1, 0, /* Truncate a floating point number to an integral float value. Rounds the value toward zero. */ (number)) { double d = extract_float (number); if (d >= 0.0) IN_FLOAT (d = floor (d), "ftruncate", number); else IN_FLOAT (d = ceil (d), "ftruncate", number); return make_float (d); } #ifdef FLOAT_CATCH_SIGILL static SIGTYPE float_error (int signo) { if (! in_float) fatal_error_signal (signo); EMACS_REESTABLISH_SIGNAL (signo, arith_error); EMACS_UNBLOCK_SIGNAL (signo); in_float = 0; /* Was Fsignal(), but it just doesn't make sense for an error occurring inside a signal handler to be restartable, considering that anything could happen when the error is signaled and trapped and considering the asynchronous nature of signal handlers. */ signal_error (Qarith_error, 0, float_error_arg); } /* Another idea was to replace the library function `infnan' where SIGILL is signaled. */ #endif /* FLOAT_CATCH_SIGILL */ /* In C++, it is impossible to determine what type matherr expects without some more configure magic. We shouldn't be using matherr anyways - it's a non-standard SYSVism. */ #if defined (HAVE_MATHERR) && !defined(__cplusplus) int matherr (struct exception *x) { Lisp_Object args; if (! in_float) /* Not called from emacs-lisp float routines; do the default thing. */ return 0; /* if (!strcmp (x->name, "pow")) x->name = "expt"; */ args = Fcons (build_string (x->name), Fcons (make_float (x->arg1), ((in_float == 2) ? Fcons (make_float (x->arg2), Qnil) : Qnil))); switch (x->type) { case DOMAIN: Fsignal (Qdomain_error, args); break; case SING: Fsignal (Qsingularity_error, args); break; case OVERFLOW: Fsignal (Qoverflow_error, args); break; case UNDERFLOW: Fsignal (Qunderflow_error, args); break; default: Fsignal (Qarith_error, args); break; } return 1; /* don't set errno or print a message */ } #endif /* HAVE_MATHERR */ void init_floatfns_very_early (void) { # ifdef FLOAT_CATCH_SIGILL EMACS_SIGNAL (SIGILL, float_error); # endif in_float = 0; } void syms_of_floatfns (void) { INIT_LRECORD_IMPLEMENTATION (float); /* Trig functions. */ DEFSUBR (Facos); DEFSUBR (Fasin); DEFSUBR (Fatan); DEFSUBR (Fcos); DEFSUBR (Fsin); DEFSUBR (Ftan); /* Bessel functions */ #if 0 DEFSUBR (Fbessel_y0); DEFSUBR (Fbessel_y1); DEFSUBR (Fbessel_yn); DEFSUBR (Fbessel_j0); DEFSUBR (Fbessel_j1); DEFSUBR (Fbessel_jn); #endif /* 0 */ /* Error functions. */ #if 0 DEFSUBR (Ferf); DEFSUBR (Ferfc); DEFSUBR (Flog_gamma); #endif /* 0 */ /* Root and Log functions. */ DEFSUBR (Fexp); DEFSUBR (Fexpt); DEFSUBR (Flog); DEFSUBR (Flog10); DEFSUBR (Fsqrt); DEFSUBR (Fcube_root); /* Inverse trig functions. */ DEFSUBR (Facosh); DEFSUBR (Fasinh); DEFSUBR (Fatanh); DEFSUBR (Fcosh); DEFSUBR (Fsinh); DEFSUBR (Ftanh); /* Rounding functions */ DEFSUBR (Fabs); DEFSUBR (Ffloat); DEFSUBR (Flogb); DEFSUBR (Fceiling); DEFSUBR (Ffloor); DEFSUBR (Fround); DEFSUBR (Ftruncate); /* Float-rounding functions. */ DEFSUBR (Ffceiling); DEFSUBR (Fffloor); DEFSUBR (Ffround); DEFSUBR (Fftruncate); } void vars_of_floatfns (void) { Fprovide (intern ("lisp-float-type")); }
