view src/mc-alloc.c @ 3008:b34066456742

[xemacs-hg @ 2005-10-21 10:34:34 by stephent] Note sync to build package build-report.el v1.49.
author stephent
date Fri, 21 Oct 2005 10:34:35 +0000
parents ec5f23ea6d2e
children 141c2920ea48
line wrap: on
line source

/* New size-based allocator for XEmacs.
   Copyright (C) 2005 Marcus Crestani.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

#include <config.h>
#include "lisp.h"
#include "mc-alloc.h"


/*--- configurable values ----------------------------------------------*/

/* Valid page sizes are powers of 2. */
#undef PAGE_SIZE   /* for FreeBSD */
#define PAGE_SIZE                2048


/* Definition of size classes */

/* Heap used list constants: In the used heap, it is important to
   quickly find a free spot for a new object. Therefore the size
   classes of the used heap are defined by the size of the cells on
   the pages. The size classes should match common object sizes, to
   avoid wasting memory. */

/* Minimum object size in bytes. */
#define USED_LIST_MIN_OBJECT_SIZE    8

/* The step size by which the size classes increase (up to upper
   threshold). This many bytes are mapped to a single used list: */
#define USED_LIST_LIN_STEP           4

/* The upper threshold should always be set to PAGE_SIZE/2, because if
   a object is larger than PAGE_SIZE/2 there is no room for any other
   object on this page. Objects this big are kept in the page list of
   the multiple pages, since a quick search for free spots is not
   needed for this kind of pages (because there are no free spots).
   PAGE_SIZES_DIV_2 defines maximum size of a used space list. */
#define USED_LIST_UPPER_THRESHOLD PAGE_SIZE_DIV_2


/* Unmanaged memory used list constants: Like in the used heap, it is
   important to quickly find a free spot for a new object. Therefore
   the size classes of the unmanaged heap are defined by the size of
   the cells on the pages. The size classes should match common object
   sizes, to avoid wasting memory. */
/* Minimum object size in bytes. */
#define UNMANAGED_LIST_MIN_OBJECT_SIZE    8
/* The step size by which the size classes increase (up to upper
   threshold). This many bytes are mapped to a single unmanaged list: */
#define UNMANAGED_LIST_LIN_STEP           4
/* The upper threshold should always be set to PAGE_SIZE/2, because if
   a object is larger than PAGE_SIZE/2 there is no room for any other
   object on this page. Objects this big are kept in the page list of
   the multiple pages, since a quick search for free spots is not
   needed for this kind of pages (because there are no free spots).
   PAGE_SIZES defines maximum size of a unmanaged space list. */
#define UNMANAGED_LIST_UPPER_THRESHOLD PAGE_SIZE_DIV_2


/* Heap free list constants: In the unused heap, the size of
   consecutive memory tips the scales. A page is smallest entity which
   is asked for. Therefore, the size classes of the unused heap are
   defined by the number of consecutive pages. */
/* Sizes up to this many pages each have their own free list. */
#define FREE_LIST_LOWER_THRESHOLD   32
/* The step size by which the size classes increase (up to upper
   threshold). FREE_LIST_LIN_STEP number of sizes are mapped to a
   single free list for sizes between FREE_LIST_LOWER_THRESHOLD and
   FREE_LIST_UPPER_THRESHOLD. */
#define FREE_LIST_LIN_STEP 8
/* Sizes of at least this many pages are mapped to a single free
   list. Blocks of memory larger than this number are all kept in a
   single list, which makes searching this list slow. But objects that
   big are really seldom. */
#define FREE_LIST_UPPER_THRESHOLD  256


/* Maximum number of separately added heap sections. */
#if BITS_PER_EMACS_INT > 32
# define MAX_HEAP_SECTS          2048
#else
# define MAX_HEAP_SECTS           768
#endif


/* Heap growth constants. Heap increases by any number between the
   boundaries (unit is PAGE_SIZE). */
#define MIN_HEAP_INCREASE          32
#define MAX_HEAP_INCREASE         256 /* not used */

/* Every heap growth is calculated like this:
   needed_pages + ( HEAP_SIZE / ( PAGE_SIZE * HEAP_GROWTH_DIVISOR )).
   So the growth of the heap is influenced by the current size of the
   heap, but kept between MIN_HEAP_INCREASE and MAX_HEAP_INCREASE
   boundaries.
   This reduces the number of heap sectors, the larger the heap grows
   the larger are the newly allocated chunks. */
#define HEAP_GROWTH_DIVISOR         3


/* Zero memory before putting on free lists. */
#define ZERO_MEM                     1




/*--- calculations done by macros --------------------------------------*/

#ifndef CHAR_BIT    /* should be included by limits.h */
# define CHAR_BIT BITS_PER_CHAR
#endif

#if PAGE_SIZE == 512
# define CPP_LOG_PAGE_SIZE  9
#endif
#if PAGE_SIZE == 1024
# define CPP_LOG_PAGE_SIZE 10
#endif
#if PAGE_SIZE == 2048
# define CPP_LOG_PAGE_SIZE 11
#endif
#if PAGE_SIZE == 4096
# define CPP_LOG_PAGE_SIZE 12
#endif
#if PAGE_SIZE == 8192
# define CPP_LOG_PAGE_SIZE 13
#endif
#if PAGE_SIZE == 16384
# define CPP_LOG_PAGE_SIZE 14
#endif
#ifndef CPP_LOG_PAGE_SIZE
--> fix PAGE_SIZE
#endif
#undef PAGE_SIZE
#define CPP_PAGE_SIZE    (1 << CPP_LOG_PAGE_SIZE)
#define LOG_PAGE_SIZE    ((EMACS_INT) CPP_LOG_PAGE_SIZE)
#define PAGE_SIZE        ((EMACS_INT) CPP_PAGE_SIZE)
#define PAGE_SIZE_DIV_2  (PAGE_SIZE >> 1)


/* NOT USED ANYMORE */
#ifdef USE_EXPONENTIAL_USED_LIST_GROWTH
/* used heap list logarithms */
#if USED_LIST_LOWER_THRESHOLD == 8
# define CPP_LOG_USED_LIST_LOWER_THRESHOLD 3
#endif
#if USED_LIST_LOWER_THRESHOLD == 16
# define CPP_LOG_USED_LIST_LOWER_THRESHOLD 4
#endif
#if USED_LIST_LOWER_THRESHOLD == 32
# define CPP_LOG_USED_LIST_LOWER_THRESHOLD 5
#endif
#if USED_LIST_LOWER_THRESHOLD == 64
# define CPP_LOG_USED_LIST_LOWER_THRESHOLD 6
#endif
#if USED_LIST_LOWER_THRESHOLD == 128
# define CPP_LOG_USED_LIST_LOWER_THRESHOLD 7
#endif
#if USED_LIST_LOWER_THRESHOLD == 256
# define CPP_LOG_USED_LIST_LOWER_THRESHOLD 8
#endif
#ifndef CPP_LOG_USED_LIST_LOWER_THRESHOLD
--> fix USED_LIST_LOWER_THRESHOLD
#endif
#define LOG_USED_LIST_LOWER_THRESHOLD CPP_LOG_USED_LIST_LOWER_THRESHOLD
#endif /* USE_EXPONENTIAL_USED_LIST_GROWTH */

/* used heap list count */
#define N_USED_PAGE_LISTS (((USED_LIST_UPPER_THRESHOLD		\
                             - USED_LIST_MIN_OBJECT_SIZE)	\
                            / USED_LIST_LIN_STEP) + 1 ) + 1

/* unmanaged memory list count */
#define N_UNMANAGED_PAGE_LISTS (((UNMANAGED_LIST_UPPER_THRESHOLD	\
                             - UNMANAGED_LIST_MIN_OBJECT_SIZE)		\
                            / UNMANAGED_LIST_LIN_STEP) + 1 ) + 1

/* NOT USED ANYMORE */
#ifdef USE_EXPONENTIAL_USED_LIST_GROWTH
#define N_USED_PAGE_LISTS_LIN (((USED_LIST_LOWER_THRESHOLD	\
                                 - USED_LIST_MIN_OBJECT_SIZE)	\
                                / USED_LIST_LIN_STEP) + 1 )
#define N_USED_PAGE_LISTS_EXP \
  (LOG_PAGE_SIZE - LOG_USED_LIST_LOWER_THRESHOLD)

#define N_USED_PAGE_LISTS \
  (N_USED_PAGE_LISTS_LIN + N_USED_PAGE_LISTS_EXP + 1)
#endif /* USE_EXPONENTIAL_USED_LIST_GROWTH */

/* free heap list count */
#define N_FREE_PAGE_LISTS (((FREE_LIST_UPPER_THRESHOLD		\
                              - FREE_LIST_LOWER_THRESHOLD)	\
                             / FREE_LIST_LIN_STEP)		\
                            + FREE_LIST_LOWER_THRESHOLD)


/* Constants for heap address to page header mapping. */
#define  LOG_LEVEL2_SIZE   10
#define LEVEL2_SIZE (1 << LOG_LEVEL2_SIZE)
#if BITS_PER_EMACS_INT > 32
# define USE_HASH_TABLE 1
# define LOG_LEVEL1_SIZE 11
#else
# define LOG_LEVEL1_SIZE \
   (BITS_PER_EMACS_INT - LOG_LEVEL2_SIZE - LOG_PAGE_SIZE)
#endif
#define LEVEL1_SIZE (1 << LOG_LEVEL1_SIZE)

#ifdef USE_HASH_TABLE
# define HASH(hi) ((hi) & (LEVEL1_SIZE - 1))
# define L1_INDEX(p) HASH ((EMACS_INT) p >> (LOG_LEVEL2_SIZE + LOG_PAGE_SIZE))
#else
# define L1_INDEX(p) ((EMACS_INT) p >> (LOG_LEVEL2_SIZE + LOG_PAGE_SIZE))
#endif
#define L2_INDEX(p) (((EMACS_INT) p >> LOG_PAGE_SIZE) & (LEVEL2_SIZE - 1))




/*--- structs and typedefs ---------------------------------------------*/

/* Links the free lists (mark_bit_free_list, page_header_free_list,
   cell free list). */
typedef struct free_link
{
  struct lrecord_header lheader;
  struct free_link *next_free;
} free_link;


/* Header for pages. They are hold in a doubly linked list. */
typedef struct page_header
{
  struct page_header      *next;         /* next page_header */
  struct page_header      *prev;         /* previous page_header */
  /* Field plh holds pointer to the according header of the page list.*/
  struct page_list_header *plh;          /* page list header */
  free_link               *free_list;    /* links free cells on page */
  EMACS_INT               n_pages;       /* number of pages */
  EMACS_INT               cell_size;     /* size of cells on page */
  EMACS_INT               cells_on_page; /* total number of cells on page */
  EMACS_INT               cells_used;    /* number of used cells on page */
  /* If the number of objects on page is bigger than BITS_PER_EMACS_INT,
     the mark bits are put in an extra memory area. Then the field
     mark_bits holds the pointer to this area. Is the number of
     objects smaller than BITS_PER_EMACS_INT, the mark bits are held in the
     mark_bit EMACS_INT directly, without an additional indirection. */
  char                    *mark_bits;    /* pointer to mark bits */
  void                    *heap_space;   /* pointer to heap, where objects
                                            are stored */
} page_header;


/* Different list types. */
enum list_type_enum {
  USED_LIST,
  UNMANAGED_LIST,
  FREE_LIST
};


/* Header for page lists. Field list_type holds the type of the list. */
typedef struct page_list_header
{
  enum list_type_enum     list_type;     /* the type of the list */
  /* Size holds the size of one cell (in bytes) in a used heap list, or the
     size of the heap sector (in number of pages). */
  size_t                  size;          /* size of one cell / heap sector */
  page_header             *first;        /* first of page_header list */
  page_header             *last;         /* last of page_header list */
  /* If the number of objects on page is bigger than
     BITS_PER_EMACS_INT, the mark bits are put in an extra memory
     area, which is linked in this free list, if not used.  Is the
     number of objects smaller than BITS_PER_EMACS_INT, the mark bits
     are hold in the mark bit EMACS_INT directly, without an
     additional indirection. */
  free_link               *mark_bit_free_list;

#ifdef MEMORY_USAGE_STATS
  EMACS_INT               page_count;    /* number if pages in list */
  EMACS_INT               used_cells;    /* number of objects in list */
  EMACS_INT               used_space;    /* used space */
  EMACS_INT               total_cells;   /* number of available cells */
  EMACS_INT               total_space;   /* available space */
#endif
} page_list_header;


/* The heap sectors are stored with their real start pointer and their
   real size. Not aligned to PAGE_SIZE. Needed for freeing heap sectors. */
typedef struct heap_sect {
  void                    *real_start;   /* real start pointer (NOT aligned) */
  size_t                  real_size;     /* NOT multiple of PAGE_SIZE */
  void                    *start;        /* aligned start pointer */
  EMACS_INT               n_pages;       /* multiple of PAGE_SIZE */
} heap_sect;


/* 2nd tree level for mapping of heap addresses to page headers. */
typedef struct level_2_lookup_tree {
  page_header             *index[LEVEL2_SIZE]; /* link to page header */
  EMACS_INT               key;                 /* high order address bits */
#ifdef USE_HASH_TABLE
  struct level_2_lookup_tree *hash_link; /* hash chain link */
#endif
} level_2_lookup_tree;



/*--- global variable definitions --------------------------------------*/

/* All global allocator variables are kept in this struct. */
typedef struct mc_allocator_globals_type {

  /* heap size */
  EMACS_INT            heap_size;

  /* list of all separatly allocated chunks of heap */
  heap_sect            heap_sections[MAX_HEAP_SECTS];
  EMACS_INT            n_heap_sections;

  /* Holds all allocated pages, each object size class in its separate list,
     to guarantee fast allocation on partially filled pages. */
  page_list_header     used_heap_pages[N_USED_PAGE_LISTS];

  /* Holds all unmanaged pages. */
  page_list_header     unmanaged_heap_pages[N_UNMANAGED_PAGE_LISTS];

  /* Holds all free pages in the heap. N multiples of PAGE_SIZE are
     kept on the Nth free list. Contiguos pages are coalesced. */
  page_list_header     free_heap_pages[N_FREE_PAGE_LISTS];

  /* ptr lookup table */
  level_2_lookup_tree  *ptr_lookup_table[LEVEL1_SIZE];

  /* page header free list */
  free_link            *page_header_free_list;

#ifdef MEMORY_USAGE_STATS
  EMACS_INT            malloced_bytes;
#endif
} mc_allocator_globals_type;

mc_allocator_globals_type mc_allocator_globals;




/*--- macro accessors --------------------------------------------------*/

#define USED_HEAP_PAGES(i) \
  ((page_list_header*) &mc_allocator_globals.used_heap_pages[i])

#define UNMANAGED_HEAP_PAGES(i) \
  ((page_list_header*) &mc_allocator_globals.unmanaged_heap_pages[i])

#define FREE_HEAP_PAGES(i) \
  ((page_list_header*) &mc_allocator_globals.free_heap_pages[i])

#define PLH(plh) plh
# define PLH_LIST_TYPE(plh) PLH (plh)->list_type
# define PLH_SIZE(plh) PLH (plh)->size
# define PLH_FIRST(plh) PLH (plh)->first
# define PLH_LAST(plh)  PLH (plh)->last
# define PLH_MARK_BIT_FREE_LIST(plh) PLH (plh)->mark_bit_free_list
#ifdef MEMORY_USAGE_STATS
# define PLH_PAGE_COUNT(plh) PLH (plh)->page_count
# define PLH_USED_CELLS(plh) PLH (plh)->used_cells
# define PLH_USED_SPACE(plh) PLH (plh)->used_space
# define PLH_TOTAL_CELLS(plh) PLH (plh)->total_cells
# define PLH_TOTAL_SPACE(plh) PLH (plh)->total_space
#endif

#define PH(ph) ph
# define PH_NEXT(ph) PH (ph)->next
# define PH_PREV(ph) PH (ph)->prev
# define PH_PLH(ph) PH (ph)->plh
# define PH_FREE_LIST(ph) PH (ph)->free_list
# define PH_N_PAGES(ph) PH (ph)->n_pages
# define PH_CELL_SIZE(ph) PH (ph)->cell_size
# define PH_CELLS_ON_PAGE(ph) PH (ph)->cells_on_page
# define PH_CELLS_USED(ph) PH (ph)->cells_used
# define PH_MARK_BITS(ph) PH (ph)->mark_bits
# define PH_HEAP_SPACE(ph) PH (ph)->heap_space
#define PH_LIST_TYPE(ph) PLH_LIST_TYPE (PH_PLH (ph))
#define PH_MARK_BIT_FREE_LIST(ph) PLH_MARK_BIT_FREE_LIST (PH_PLH (ph))

#define HEAP_SIZE mc_allocator_globals.heap_size

#ifdef MEMORY_USAGE_STATS
# define MC_MALLOCED_BYTES mc_allocator_globals.malloced_bytes
#endif

#define HEAP_SECTION(index) mc_allocator_globals.heap_sections[index]
#define N_HEAP_SECTIONS mc_allocator_globals.n_heap_sections

#define PAGE_HEADER_FREE_LIST mc_allocator_globals.page_header_free_list

#define NEXT_FREE(free_list) ((free_link*) free_list)->next_free
#define FREE_LIST(free_list) (free_link*) (free_list)

#define PTR_LOOKUP_TABLE(i) mc_allocator_globals.ptr_lookup_table[i]
#define LEVEL2(l2, i) l2->index[i]
# define LEVEL2_KEY(l2) l2->key
#ifdef USE_HASH_TABLE
# define LEVEL2_HASH_LINK(l2) l2->hash_link
#endif

#if ZERO_MEM
# define ZERO_HEAP_SPACE(ph) \
   memset (PH_HEAP_SPACE (ph), '\0', PH_N_PAGES (ph) * PAGE_SIZE)
# define ZERO_PAGE_HEADER(ph) memset (ph, '\0', sizeof (page_header))
#endif

#define div_PAGE_SIZE(x) (x >> LOG_PAGE_SIZE)
#define mult_PAGE_SIZE(x) (x << LOG_PAGE_SIZE)

#define BYTES_TO_PAGES(bytes) (div_PAGE_SIZE ((bytes + (PAGE_SIZE - 1))))

#define PAGE_SIZE_ALIGNMENT(address) \
  (void *) ((((EMACS_INT) (address)) + PAGE_SIZE) & ~(PAGE_SIZE - 1))

#define PH_ON_FREE_LIST_P(ph) \
  (ph && PH_PLH (ph) && (PLH_LIST_TYPE (PH_PLH (ph)) == FREE_LIST))

#define PH_ON_USED_LIST_P(ph) \
  (ph && PH_PLH (ph) && (PLH_LIST_TYPE (PH_PLH (ph)) == USED_LIST))

#define PH_ON_UNMANAGED_LIST_P(ph) \
  (ph && PH_PLH (ph) && (PLH_LIST_TYPE (PH_PLH (ph)) == UNMANAGED_LIST))




/************************************************************************/
/*                           MC Allocator                               */
/************************************************************************/


/* ###TODO### */
#if 1
# define ALLOC_MB_UNMANAGED 1
#endif


/*--- misc functions ---------------------------------------------------*/

/* moved here from alloc.c */
#ifdef ERROR_CHECK_GC
static void
deadbeef_memory (void *ptr, Bytecount size)
{
  UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr;
  Bytecount beefs = size >> 2;

  /* In practice, size will always be a multiple of four.  */
  while (beefs--)
    (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */
}
#endif /* ERROR_CHECK_GC */

/* Visits all pages (page_headers) hooked into the used heap pages
   list and executes f with the current page header as
   argument. Needed for sweep. */
static void
visit_all_used_page_headers (void (*f) (page_header *ph))
{
  int i;
  for (i = 0; i < N_USED_PAGE_LISTS; i++)
    if (PLH_FIRST (USED_HEAP_PAGES (i)))
      {
        page_header *ph = PLH_FIRST (USED_HEAP_PAGES (i));
        while (PH_NEXT (ph))
          {
            page_header *next = PH_NEXT (ph); /* in case f removes the page */
            f (ph);
            ph = next;
          }
        f (ph);
      }
}




/*--- mapping of heap addresses to page headers and mark bits ----------*/

/* Sets a heap pointer and page header pair into the lookup table. */
static void
set_lookup_table (void *ptr, page_header *ph)
{
  int l1_index = L1_INDEX (ptr);
  level_2_lookup_tree *l2 = PTR_LOOKUP_TABLE (l1_index);
#ifdef USE_HASH_TABLE
  while ((l2) && (LEVEL2_KEY (l2) != l1_index))
    l2 = LEVEL2_HASH_LINK (l2);
#endif
  if (!l2)
    {
      l2 = (level_2_lookup_tree*) 
	xmalloc_and_zero (sizeof (level_2_lookup_tree));
#ifdef MEMORY_USAGE_STATS
      MC_MALLOCED_BYTES += 
	malloced_storage_size (0, sizeof (level_2_lookup_tree), 0);
#endif
      memset (l2, '\0', sizeof (level_2_lookup_tree));
#ifdef USE_HASH_TABLE
      LEVEL2_HASH_LINK (l2) = PTR_LOOKUP_TABLE (l1_index);
#endif
      PTR_LOOKUP_TABLE (l1_index) = l2;
      LEVEL2_KEY (l2) = l1_index;
    }
  LEVEL2 (l2, L2_INDEX (ptr)) = ph;
}


#ifdef UNSET_LOOKUP_TABLE
/* Set the lookup table to 0 for given heap address. */
static void
unset_lookup_table (void *ptr)
{
  int l1_index = L1_INDEX (ptr);
  level_2_lookup_tree *l2 = PTR_LOOKUP_TABLE (l1_index);
#ifdef USE_HASH_TABLE
  while ((l2) && (LEVEL2_KEY (l2) != l1_index))
    l2 = LEVEL2_HASH_LINK (l2);
#endif
  if (l2) { 
    LEVEL2 (l2, L2_INDEX (ptr)) = 0;
  }
}
#endif

/* Returns the page header of a given heap address, or 0 if not in table. 
   For internal use, no error checking. */
static page_header *
get_page_header_internal (void *ptr)
{
  int l1_index = L1_INDEX (ptr);
  level_2_lookup_tree *l2 = PTR_LOOKUP_TABLE (l1_index);
#ifdef USE_HASH_TABLE
  while ((l2) && (LEVEL2_KEY (l2) != l1_index))
    l2 = LEVEL2_HASH_LINK (l2);
#endif
  if (!l2) 
      return 0;
  return LEVEL2 (l2, L2_INDEX (ptr));
}

/* Returns the page header of a given heap address, or 0 if not in table. */
static page_header *
get_page_header (void *ptr)
{
  int l1_index = L1_INDEX (ptr);
  level_2_lookup_tree *l2 = PTR_LOOKUP_TABLE (l1_index);
  assert (l2);
#ifdef USE_HASH_TABLE
  while ((l2) && (LEVEL2_KEY (l2) != l1_index))
    l2 = LEVEL2_HASH_LINK (l2);
#endif
  assert (LEVEL2 (l2, L2_INDEX (ptr)));
  return LEVEL2 (l2, L2_INDEX (ptr));
}


/* Returns the mark bit index of a given heap address. */
static EMACS_INT
get_mark_bit_index (void *ptr, page_header *ph)
{
  EMACS_INT cell_size = PH_CELL_SIZE (ph);
  if (cell_size)
    return (((EMACS_INT) ptr - (EMACS_INT)(PH_HEAP_SPACE (ph))) / cell_size);
  else /* only one object on page */
    return 0;
}


/* Adds addresses of pages to lookup table. */
static void
add_pages_to_lookup_table (page_header *ph, EMACS_INT n_pages)
{
  char *p = (char*) PH_HEAP_SPACE (ph);
  EMACS_INT end_of_section = (EMACS_INT) p + (PAGE_SIZE * n_pages);
  for (p = (char*) PH_HEAP_SPACE (ph);
       (EMACS_INT) p < end_of_section; p += PAGE_SIZE)
    set_lookup_table (p, ph);
}


/* Initializes lookup table. */
static void
init_lookup_table (void)
{
  int i;
  for (i = 0; i < LEVEL1_SIZE; i++)
    PTR_LOOKUP_TABLE (i) = 0;
}




/*--- mark bits --------------------------------------------------------*/

/* Number of mark bits: minimum 1, maximum 8. */
#define N_MARK_BITS                  1

/*--- bit operations --- */

/* Allocates a bit array of length bits. */
static char *
alloc_bit_array(size_t bits)
{
#ifdef ALLOC_MB_UNMANAGED
  size_t size = ((bits + CHAR_BIT - 1) / CHAR_BIT) * sizeof(char);
  if (size < sizeof (free_link)) size = sizeof (free_link);
  return (char *) mc_alloc_unmanaged (size);
#else /* not ALLOC_MB_UNMANAGED */
  size_t size = ((bits + CHAR_BIT - 1) / CHAR_BIT) * sizeof(char);
  char *bit_array;
  if (size < sizeof (free_link)) size = sizeof (free_link);
  bit_array = (char*) xmalloc_and_zero (size);
#ifdef MEMORY_USAGE_STATS
  MC_MALLOCED_BYTES += malloced_storage_size (0, size, 0);
#endif
  return bit_array;
#endif /* not ALLOC_MB_UNMANAGED */
}


/* Returns the bit value at pos. */
static EMACS_INT
get_bit (char *bit_array, EMACS_INT pos)
{
#if N_MARK_BITS > 1
  EMACS_INT result = 0;
  EMACS_INT i;
#endif
  bit_array += pos / CHAR_BIT;
#if N_MARK_BITS > 1
  for (i = 0; i < N_MARK_BITS; i++)
    result |= (*bit_array & (1 << ((pos + i) % CHAR_BIT)));
  return result >> pos;
#else
  return (*bit_array & (1 << (pos % CHAR_BIT))) != 0;
#endif
}


/* Bit_Arrays bit at pos to val. */
static void
set_bit(char *bit_array, EMACS_INT pos, EMACS_INT val)
{
#if N_MARK_BITS > 1
  EMACS_INT result = 0;
  EMACS_INT i;
#endif
  bit_array += pos / CHAR_BIT;
#if N_MARK_BITS > 1
  for (i = 0; i < N_MARK_BITS; i++)
    if ((val >> i) & 1)
      *bit_array |= 1 << ((pos + i) % CHAR_BIT);
    else
      *bit_array &= ~(1 << ((pos + i) % CHAR_BIT));
#else
  if (val)
    *bit_array |= 1 << (pos % CHAR_BIT);
  else
    *bit_array &= ~(1 << (pos % CHAR_BIT));
#endif
}


/*--- mark bit functions ---*/
#define USE_PNTR_MARK_BITS(ph) (PH_CELLS_ON_PAGE (ph) > BITS_PER_EMACS_INT)
#define USE_WORD_MARK_BITS(ph) (PH_CELLS_ON_PAGE (ph) <= BITS_PER_EMACS_INT)

#define GET_BIT_WORD(b, p) get_bit ((char*) &b, p)
#define GET_BIT_PNTR(b, p) get_bit (b, p)

#define SET_BIT_WORD(b, p, v) set_bit ((char*) &b, p, v)
#define SET_BIT_PNTR(b, p, v) set_bit (b, p, v)

#define ZERO_MARK_BITS_WORD(ph) PH_MARK_BITS (ph) = 0
#define ZERO_MARK_BITS_PNTR(ph)				\
do {							\
  memset (PH_MARK_BITS (ph), '\0',			\
          (PH_CELLS_ON_PAGE (ph) + CHAR_BIT - 1) 	\
	  / CHAR_BIT * sizeof(char));			\
} while (0)

#define GET_BIT(bit, ph, p)			\
do {						\
  if (USE_PNTR_MARK_BITS (ph))			\
    bit = GET_BIT_PNTR (PH_MARK_BITS (ph), p);	\
  else						\
    bit = GET_BIT_WORD (PH_MARK_BITS (ph), p);	\
} while (0)

#define SET_BIT(ph, p, v)			\
do {						\
  if (USE_PNTR_MARK_BITS (ph))			\
    SET_BIT_PNTR (PH_MARK_BITS (ph), p, v);	\
  else						\
    SET_BIT_WORD (PH_MARK_BITS (ph), p, v);	\
} while (0)

#define ZERO_MARK_BITS(ph)			\
do {						\
  if (USE_PNTR_MARK_BITS (ph))			\
   ZERO_MARK_BITS_PNTR (ph);			\
  else						\
    ZERO_MARK_BITS_WORD (ph);			\
} while (0)


/* Allocates mark-bit space either from a free list or from the OS
   for the given page header. */
static char *
alloc_mark_bits (page_header *ph)
{
  char *result;
  if (PH_MARK_BIT_FREE_LIST (ph) == 0)
    result = (char*) alloc_bit_array (PH_CELLS_ON_PAGE (ph) * N_MARK_BITS);
  else
    {
      result = (char*) PH_MARK_BIT_FREE_LIST (ph);
      PH_MARK_BIT_FREE_LIST (ph) = NEXT_FREE (result);
    }
  return result;
}


/* Frees by maintaining a free list. */
static void
free_mark_bits (page_header *ph)
{
#ifdef ALLOC_MB_UNMANAGED
  if (PH_MARK_BITS (ph))
    mc_free (PH_MARK_BITS (ph));
#else /* not ALLOC_MB_UNMANAGED */
  if (PH_MARK_BITS (ph)) {
    NEXT_FREE (PH_MARK_BITS (ph)) = PH_MARK_BIT_FREE_LIST (ph);
    PH_MARK_BIT_FREE_LIST (ph) = FREE_LIST (PH_MARK_BITS (ph));
  }
#endif /* not ALLOC_MB_UNMANAGED */
}


/* Installs mark bits and zeros bits. */
static void
install_mark_bits (page_header *ph)
{
  if (USE_PNTR_MARK_BITS (ph))
    {
      PH_MARK_BITS (ph) = alloc_mark_bits (ph);
      ZERO_MARK_BITS_PNTR (ph);
    }
  else
    ZERO_MARK_BITS_WORD (ph);
}


/* Cleans and frees the mark bits of the given page_header. */
static void
remove_mark_bits (page_header *ph)
{
  if (USE_PNTR_MARK_BITS (ph))
    free_mark_bits (ph);
}


/* Zeros all mark bits in given header. */
static void
zero_mark_bits (page_header *ph)
{
  ZERO_MARK_BITS (ph);
}


/* Returns mark bit for given heap pointer. */
EMACS_INT
get_mark_bit (void *ptr)
{
  EMACS_INT bit = 0;
  page_header *ph = get_page_header (ptr);
  gc_checking_assert (ph && PH_ON_USED_LIST_P (ph));
  if (ph)
    {
      GET_BIT (bit, ph, get_mark_bit_index (ptr, ph));
    }
  return bit;
}


/* Sets mark bit for given heap pointer. */
void
set_mark_bit (void *ptr, EMACS_INT value)
{
  page_header *ph = get_page_header (ptr);
  assert (ph && PH_ON_USED_LIST_P (ph));
  if (ph)
    {
      SET_BIT (ph, get_mark_bit_index (ptr, ph), value);
    }
}




/*--- page header functions --------------------------------------------*/

/* Allocates a page header either from a free list or from the OS. */
static page_header *
alloc_page_header (void)
{
  page_header *result;
  if (PAGE_HEADER_FREE_LIST == 0)
    {
      result = 
	(page_header *) xmalloc_and_zero ((EMACS_INT) (sizeof (page_header)));
#ifdef MEMORY_USAGE_STATS
      MC_MALLOCED_BYTES += malloced_storage_size (0, sizeof (page_header), 0);
#endif

    }
  else
    {
      result = (page_header*) PAGE_HEADER_FREE_LIST;
      PAGE_HEADER_FREE_LIST = NEXT_FREE (result);
    }
  return result;
}


/* Frees given page header by maintaining a free list. */
static void
free_page_header (page_header *ph)
{
#if ZERO_MEM
  ZERO_PAGE_HEADER (ph);
#endif
  NEXT_FREE (ph) = PAGE_HEADER_FREE_LIST;
  PAGE_HEADER_FREE_LIST = FREE_LIST (ph);
}


/* Adds given page header to given page list header's list. */
static void
add_page_header_to_plh (page_header *ph, page_list_header *plh)
{
  /* insert at the front of the list */
  PH_PREV (ph) = 0;
  PH_NEXT (ph) = PLH_FIRST (plh);
  PH_PLH (ph) = plh;
  /* if list is not empty, set prev in the first element */
  if (PLH_FIRST (plh))
    PH_PREV (PLH_FIRST (plh)) = ph;
  /* one element in list is first and last at the same time */
  PLH_FIRST (plh) = ph;
  if (!PLH_LAST (plh))
    PLH_LAST (plh) = ph;

#ifdef MEMORY_USAGE_STATS
  /* bump page count */
  PLH_PAGE_COUNT (plh)++;
#endif

}


/* Removes given page header from given page list header's list. */
static void
remove_page_header_from_plh (page_header *ph, page_list_header *plh)
{
  if (PLH_FIRST (plh) == ph)
    PLH_FIRST (plh) = PH_NEXT (ph);
  if (PLH_LAST (plh) == ph)
    PLH_LAST (plh) = PH_PREV (ph);
  if (PH_NEXT (ph))
    PH_PREV (PH_NEXT (ph)) = PH_PREV (ph);
  if (PH_PREV (ph))
    PH_NEXT (PH_PREV (ph)) = PH_NEXT (ph);

#ifdef MEMORY_USAGE_STATS
  /* decrease page count */
  PLH_PAGE_COUNT (plh)--;
#endif
}


/* Moves a page header to the front of its the page header list.
   This is used during sweep: Pages with some alive objects are moved to
   the front. This makes allocation faster, all pages with free slots
   can be found at the front of the list. */
static void
move_page_header_to_front (page_header *ph)
{
  page_list_header *plh = PH_PLH (ph);
  /* is page already first? */
  if (ph == PLH_FIRST (plh)) return;
  /* remove from list */
  if (PLH_LAST (plh) == ph)
    PLH_LAST (plh) = PH_PREV (ph);
  if (PH_NEXT (ph))
    PH_PREV (PH_NEXT (ph)) = PH_PREV (ph);
  if (PH_PREV (ph))
    PH_NEXT (PH_PREV (ph)) = PH_NEXT (ph);
  /* insert at the front */
  PH_NEXT (ph) = PLH_FIRST (plh);
  PH_PREV (ph) = 0;
  PH_PREV (PH_NEXT (ph)) = ph;
  PLH_FIRST (plh) = ph;
}




/*--- page list functions ----------------------------------------------*/

/* Returns the index of the used heap list according to given size. */
static int
get_used_list_index (size_t size)
{
  if (size <= USED_LIST_MIN_OBJECT_SIZE)
    return 0;
  if (size <= USED_LIST_UPPER_THRESHOLD)
    return ((size - USED_LIST_MIN_OBJECT_SIZE - 1)
            / USED_LIST_LIN_STEP) + 1;
  return N_USED_PAGE_LISTS - 1;
}


/* Returns the size of the used heap list according to given index. */
static size_t
get_used_list_size_value (int used_index)
{
  if (used_index < N_USED_PAGE_LISTS - 1)
    return (used_index * USED_LIST_LIN_STEP) + USED_LIST_MIN_OBJECT_SIZE;
  return 0;
}


/* Returns the index of the used heap list according to given size. */
static int
get_unmanaged_list_index (size_t size)
{
  if (size <= UNMANAGED_LIST_MIN_OBJECT_SIZE)
    return 0;
  if (size <= UNMANAGED_LIST_UPPER_THRESHOLD)
    return ((size - UNMANAGED_LIST_MIN_OBJECT_SIZE - 1)
            / UNMANAGED_LIST_LIN_STEP) + 1;
  return N_UNMANAGED_PAGE_LISTS - 1;
}


/* Returns the size of the unmanaged heap list according to given index. */
static size_t
get_unmanaged_list_size_value (int unmanaged_index)
{
  if (unmanaged_index < N_UNMANAGED_PAGE_LISTS - 1)
    return (unmanaged_index * UNMANAGED_LIST_LIN_STEP) 
      + UNMANAGED_LIST_MIN_OBJECT_SIZE;
  return 0;
}


/* Returns the index of the free heap list according to given size. */
static int
get_free_list_index (EMACS_INT n_pages)
{
  if (n_pages == 0)
    return 0;
  if (n_pages <= FREE_LIST_LOWER_THRESHOLD)
    return n_pages - 1;
  if (n_pages >= FREE_LIST_UPPER_THRESHOLD - 1)
    return N_FREE_PAGE_LISTS - 1;
  return ((n_pages - FREE_LIST_LOWER_THRESHOLD - 1)
          / FREE_LIST_LIN_STEP) + FREE_LIST_LOWER_THRESHOLD;

}


/* Returns the size in number of pages of the given free list at index. */
static size_t
get_free_list_size_value (int free_index)
{
  if (free_index < FREE_LIST_LOWER_THRESHOLD)
    return free_index + 1;
  if (free_index >= N_FREE_PAGE_LISTS)
    return FREE_LIST_UPPER_THRESHOLD;
  return ((free_index + 1 - FREE_LIST_LOWER_THRESHOLD)
          * FREE_LIST_LIN_STEP) + FREE_LIST_LOWER_THRESHOLD;
}


#ifdef MEMORY_USAGE_STATS
Bytecount
mc_alloced_storage_size (Bytecount claimed_size, struct overhead_stats *stats)
{
  size_t used_size = 
    get_used_list_size_value (get_used_list_index (claimed_size));
  if (used_size == 0)
    used_size = mult_PAGE_SIZE (BYTES_TO_PAGES (claimed_size));

  if (stats)
    {
      stats->was_requested += claimed_size;
      stats->malloc_overhead += used_size - claimed_size;
    }

  return used_size;
}
#endif /* not MEMORY_USAGE_STATS */



/*--- free heap functions ----------------------------------------------*/

/* Frees a heap section, if the heap_section is completly free */
static EMACS_INT
free_heap_section (page_header *ph)
{
  int i;
  int removed = 0;
  for (i = 0; i < N_HEAP_SECTIONS; i++)
    if (!removed)
      {
	if ((PH_HEAP_SPACE (ph) == HEAP_SECTION(i).start)
	    && (PH_N_PAGES (ph) == HEAP_SECTION(i).n_pages))
	  {
	    xfree_1 (HEAP_SECTION(i).real_start);
#ifdef MEMORY_USAGE_STATS
	    MC_MALLOCED_BYTES
	      -= malloced_storage_size (0, HEAP_SECTION(i).real_size, 0);
#endif

	    HEAP_SIZE -= PH_N_PAGES (ph) * PAGE_SIZE;

	    removed = 1;
	  }
      }
    else
      {
	HEAP_SECTION(i-1).real_start = HEAP_SECTION(i).real_start;
	HEAP_SECTION(i-1).real_size = HEAP_SECTION(i).real_size;
	HEAP_SECTION(i-1).start = HEAP_SECTION(i).start;
	HEAP_SECTION(i-1).n_pages = HEAP_SECTION(i).n_pages;
      }

  N_HEAP_SECTIONS = N_HEAP_SECTIONS - removed;
  
  return removed;
}

/* Removes page from free list. */
static void
remove_page_from_free_list (page_header *ph)
{
  remove_page_header_from_plh (ph, PH_PLH (ph));
  PH_PLH (ph) = 0;
}


/* Adds page to according free list. */
static void
add_page_to_free_list (page_header *ph)
{
  PH_PLH (ph) = FREE_HEAP_PAGES (get_free_list_index (PH_N_PAGES (ph)));
  add_page_header_to_plh (ph, PH_PLH (ph));
}


/* Merges two adjacent pages. */
static page_header *
merge_pages (page_header *first_ph, page_header *second_ph)
{
  /* merge */
  PH_N_PAGES (first_ph) += PH_N_PAGES (second_ph);
  /* clean up left over page header */
  free_page_header (second_ph);
  /* update lookup table */
  add_pages_to_lookup_table (first_ph, PH_N_PAGES (first_ph));

  return first_ph;
}


/* Checks if pages are adjacent, merges them, and adds merged page to
   free list */
static void
merge_into_free_list (page_header *ph)
{
  /* check if you can coalesce adjacent pages */
  page_header *prev_ph =
    get_page_header_internal ((void*) (((EMACS_INT) PH_HEAP_SPACE (ph)) 
				       - PAGE_SIZE));
  page_header *succ_ph =
    get_page_header_internal ((void*) (((EMACS_INT) PH_HEAP_SPACE (ph))
			      + (PH_N_PAGES (ph) * PAGE_SIZE)));
  if (PH_ON_FREE_LIST_P (prev_ph))
    {
      remove_page_from_free_list (prev_ph);
      ph = merge_pages (prev_ph, ph);
    }
  if (PH_ON_FREE_LIST_P (succ_ph))
    {
      remove_page_from_free_list (succ_ph);
      ph = merge_pages (ph, succ_ph);
    }
  /* try to free heap_section, if the section is complete */
  if (!free_heap_section (ph))
    /* else add merged page to free list */
    add_page_to_free_list (ph);
}


/* Cuts given page header after n_pages, returns the first (cut) part, and
   puts the rest on the free list. */
static page_header *
split_page (page_header *ph, EMACS_INT n_pages)
{
  page_header *new_ph;
  EMACS_INT rem_pages = PH_N_PAGES (ph) - n_pages;

  /* remove the page from the free list if already hooked in */
  if (PH_PLH (ph))
    remove_page_from_free_list (ph);
  /* set new number of pages */
  PH_N_PAGES (ph) = n_pages;
  /* add new page to lookup table */
  add_pages_to_lookup_table (ph, n_pages);

  if (rem_pages)
    {
      /* build new page with reminder */
      new_ph = alloc_page_header ();
      PH_N_PAGES (new_ph) = rem_pages;
      PH_HEAP_SPACE (new_ph) =
        (void*) ((EMACS_INT) (PH_HEAP_SPACE (ph)) + (n_pages * PAGE_SIZE));
      /* add new page to lookup table */
      add_pages_to_lookup_table (new_ph, rem_pages);
      /* hook the rest into free list */
      add_page_to_free_list (new_ph);
    }
  return ph;
}


/* Expands the heap by given number of pages. */
static page_header *
expand_heap (EMACS_INT needed_pages)
{
  page_header *ph;
  EMACS_INT n_pages;
  size_t real_size;
  void *real_start;

  /* determine number of pages the heap should grow */
  n_pages = needed_pages + (HEAP_SIZE / (PAGE_SIZE * HEAP_GROWTH_DIVISOR));
  if (n_pages < MIN_HEAP_INCREASE)
    n_pages = MIN_HEAP_INCREASE;

  /* get the real values */
  real_size = (n_pages * PAGE_SIZE) + PAGE_SIZE;
  real_start = xmalloc_and_zero (real_size);
#ifdef MEMORY_USAGE_STATS
  MC_MALLOCED_BYTES += malloced_storage_size (0, real_size, 0);
#endif

  /* maintain heap section count */
  if (N_HEAP_SECTIONS >= MAX_HEAP_SECTS)
    {
      stderr_out ("Increase number of MAX_HEAP_SECTS");
      ABORT ();
    }
  HEAP_SECTION(N_HEAP_SECTIONS).real_start = real_start;
  HEAP_SECTION(N_HEAP_SECTIONS).real_size = real_size;
  HEAP_SECTION(N_HEAP_SECTIONS).start = PAGE_SIZE_ALIGNMENT (real_start);
  HEAP_SECTION(N_HEAP_SECTIONS).n_pages = n_pages;
  N_HEAP_SECTIONS ++;

  /* get page header */
  ph = alloc_page_header ();

  /* setup page header */
  PH_N_PAGES (ph) = n_pages;
  PH_HEAP_SPACE (ph) = PAGE_SIZE_ALIGNMENT (real_start);
  assert (((EMACS_INT) (PH_HEAP_SPACE (ph)) % PAGE_SIZE) == 0);
  HEAP_SIZE += n_pages * PAGE_SIZE;

  /* this was also done by allocate_lisp_storage */
  if (need_to_check_c_alloca)
    xemacs_c_alloca (0);

  /* return needed size, put rest on free list */
  return split_page (ph, needed_pages);
}




/*--- used heap functions ----------------------------------------------*/
/* Installs initial free list. */
static void
install_cell_free_list (page_header *ph)
{
  char *p;
  int i;
  EMACS_INT cell_size = PH_CELL_SIZE (ph);
  /* write initial free list if cell_size is < PAGE_SIZE */
  p = (char *) PH_HEAP_SPACE (ph);
  for (i = 0; i < PH_CELLS_ON_PAGE (ph) - 1; i++)
    {
#ifdef ERROR_CHECK_GC
      assert (!LRECORD_FREE_P (p));
      MARK_LRECORD_AS_FREE (p);
#endif
      NEXT_FREE (p) = FREE_LIST (p + cell_size);
      set_lookup_table (p, ph);
        p += cell_size;
    }
#ifdef ERROR_CHECK_GC
  assert (!LRECORD_FREE_P (p));
  MARK_LRECORD_AS_FREE (p);
#endif
  NEXT_FREE (p) = 0;
  set_lookup_table (p, ph);

  /* hook free list into header */
  PH_FREE_LIST (ph) = FREE_LIST (PH_HEAP_SPACE (ph));
}


/* Cleans the object space of the given page_header. */
static void
remove_cell_free_list (page_header *ph)
{
#if ZERO_MEM
  ZERO_HEAP_SPACE (ph);
#endif
  PH_FREE_LIST (ph) = 0;
}


/* Installs a new page and hooks it into given page_list_header. */
static page_header *
install_page_in_used_list (page_header *ph, page_list_header *plh, 
			   size_t size, int managed)
{
  /* add to list */
  add_page_header_to_plh (ph, plh);

  /* determine cell size */
  if (PLH_SIZE (plh))
    PH_CELL_SIZE (ph) = PLH_SIZE (plh);
  else
    PH_CELL_SIZE (ph) = size;
  PH_CELLS_ON_PAGE (ph) = (PAGE_SIZE * PH_N_PAGES (ph)) / PH_CELL_SIZE (ph);

  /* init cell count */
  PH_CELLS_USED (ph) = 0;

  /* install mark bits and initialize cell free list */
  if (managed)
    install_mark_bits (ph);

  install_cell_free_list (ph);

#ifdef MEMORY_USAGE_STATS
  PLH_TOTAL_CELLS (plh) += PH_CELLS_ON_PAGE (ph);
  PLH_TOTAL_SPACE (plh) += PAGE_SIZE * PH_N_PAGES (ph);
#endif

  return ph;
}


/* Cleans and frees a page, identified by the given page_header. */
static void
remove_page_from_used_list (page_header *ph)
{
  page_list_header *plh = PH_PLH (ph);

#ifdef MEMORY_USAGE_STATS
  PLH_TOTAL_CELLS (plh) -= PH_CELLS_ON_PAGE (ph);
  PLH_TOTAL_SPACE (plh) -= PAGE_SIZE * PH_N_PAGES (ph);
#endif

  /* clean up mark bits and cell free list */
  remove_cell_free_list (ph);
  if (PH_ON_USED_LIST_P (ph))
    remove_mark_bits (ph);

  /* clean up page header */
  PH_CELL_SIZE (ph) = 0;
  PH_CELLS_ON_PAGE (ph) = 0;
  PH_CELLS_USED (ph) = 0;

  /* remove from used list */
  remove_page_header_from_plh (ph, plh);

  /* move to free list */
  merge_into_free_list (ph);
}




/*--- allocation -------------------------------------------------------*/

/* Allocates from cell free list on already allocated pages. */
static page_header *
allocate_cell (page_list_header *plh)
{
  page_header *ph = PLH_FIRST (plh);
  if (ph)
    {
      if (PH_FREE_LIST (ph))
        /* elements free on first page */
        return ph;
      else if ((PH_NEXT (ph))
               && (PH_FREE_LIST (PH_NEXT (ph))))
        /* elements free on second page */
        {
          page_header *temp = PH_NEXT (ph);
          /* move full page (first page) to end of list */
          PH_NEXT (PLH_LAST (plh)) = ph;
          PH_PREV (ph) = PLH_LAST (plh);
          PLH_LAST (plh) = ph;
          PH_NEXT (ph) = 0;
          /* install second page as first page */
          ph = temp;
          PH_PREV (ph) = 0;
          PLH_FIRST (plh) = ph;
          return ph;
        }
    }
  return 0;
}


/* Finds a page which has at least the needed number of pages.
   Algorithm: FIRST FIT. */
static page_header *
find_free_page_first_fit (EMACS_INT needed_pages, page_header *ph)
{
  while (ph)
    {
      if (PH_N_PAGES (ph) >= needed_pages)
        return ph;
      ph = PH_NEXT (ph);
    }
  return 0;
}


/* Allocates a page from the free list. */
static page_header *
allocate_page_from_free_list (EMACS_INT needed_pages)
{
  page_header *ph = 0;
  int i;
  for (i = get_free_list_index (needed_pages); i < N_FREE_PAGE_LISTS; i++)
    if ((ph = find_free_page_first_fit (needed_pages,
                                        PLH_FIRST (FREE_HEAP_PAGES (i)))) != 0)
      {
        if (PH_N_PAGES (ph) > needed_pages)
          return split_page (ph, needed_pages);
        else
          {
            remove_page_from_free_list (ph);
            return ph;
          }
      }
  return 0;
}


/* Allocates a new page, either from free list or by expanding the heap. */
static page_header *
allocate_new_page (page_list_header *plh, size_t size, int managed)
{
  EMACS_INT needed_pages = BYTES_TO_PAGES (size);
  /* first check free list */
  page_header *result = allocate_page_from_free_list (needed_pages);
  if (!result)
    /* expand heap */
    result = expand_heap (needed_pages);
  install_page_in_used_list (result, plh, size, managed);
  return result;
}


/* Selects the correct size class, tries to allocate a cell of this size
   from the free list, if this fails, a new page is allocated. */
static void *
mc_alloc_1 (size_t size, int managed)
{
  page_list_header *plh = 0;
  page_header *ph = 0;
  void *result = 0;

  if (managed)
    plh = USED_HEAP_PAGES (get_used_list_index (size));
  else
    plh = UNMANAGED_HEAP_PAGES (get_unmanaged_list_index (size));

  if (size == 0)
    return 0;
  if (size < PAGE_SIZE_DIV_2)
    /* first check any free cells */
    ph = allocate_cell (plh);
  if (!ph)
    /* allocate a new page */
    ph = allocate_new_page (plh, size, managed);

  /* return first element of free list and remove it from the list */
  result = (void*) PH_FREE_LIST (ph);
  PH_FREE_LIST (ph) =
    NEXT_FREE (PH_FREE_LIST (ph));

  memset (result, '\0', size);
  if (managed)
    MARK_LRECORD_AS_FREE (result);

  /* bump used cells counter */
  PH_CELLS_USED (ph)++;

#ifdef MEMORY_USAGE_STATS
  PLH_USED_CELLS (plh)++;
  if (managed)
    PLH_USED_SPACE (plh) += size;
  else
    PLH_USED_SPACE (plh) += PLH_SIZE (plh);
#endif

  return result;
}

void *
mc_alloc (size_t size)
{
  return mc_alloc_1 (size, 1);
}

void *
mc_alloc_unmanaged (size_t size)
{
  return mc_alloc_1 (size, 0);
}




/*--- sweep & free & finalize-------------------------------------------*/

/* Frees a heap pointer. */
static void
remove_cell (void *ptr, page_header *ph)
{
#ifdef MEMORY_USAGE_STATS
  PLH_USED_CELLS (PH_PLH (ph))--;
  if (PH_ON_USED_LIST_P (ph))
    PLH_USED_SPACE (PH_PLH (ph)) -= 
      detagged_lisp_object_size ((const struct lrecord_header *) ptr);
  else
    PLH_USED_SPACE (PH_PLH (ph)) -= PH_CELL_SIZE (ph);
#endif
  if (PH_ON_USED_LIST_P (ph)) 
    {
#ifdef ALLOC_TYPE_STATS
      dec_lrecord_stats (PH_CELL_SIZE (ph), 
			 (const struct lrecord_header *) ptr);
#endif /* ALLOC_TYPE_STATS */
#ifdef ERROR_CHECK_GC
      assert (!LRECORD_FREE_P (ptr));
      deadbeef_memory (ptr, PH_CELL_SIZE (ph));
      MARK_LRECORD_AS_FREE (ptr);
#endif
    }

  /* hooks cell into free list */
  NEXT_FREE (ptr) = PH_FREE_LIST (ph);
  PH_FREE_LIST (ph) = FREE_LIST (ptr);
  /* decrease cells used */
  PH_CELLS_USED (ph)--;
}


/* Mark free list marks all free list entries. */
static void
mark_free_list (page_header *ph)
{
  free_link *fl = PH_FREE_LIST (ph);
  while (fl)
    {
      SET_BIT (ph, get_mark_bit_index (fl, ph), 1);
      fl = NEXT_FREE (fl);
    }
}

/* Finalize a page. You have to tell mc-alloc how to call your
   object's finalizer. Therefore, you have to define the macro
   MC_ALLOC_CALL_FINALIZER(ptr). This macro should do nothing else
   then test if there is a finalizer and call it on the given
   argument, which is the heap address of the object. */
static void
finalize_page (page_header *ph)
{
  EMACS_INT heap_space = (EMACS_INT) PH_HEAP_SPACE (ph);
  EMACS_INT heap_space_step = PH_CELL_SIZE (ph);
  EMACS_INT mark_bit = 0;
  EMACS_INT mark_bit_max_index = PH_CELLS_ON_PAGE (ph);
  int bit = 0;

  mark_free_list (ph);

  for (mark_bit = 0; mark_bit < mark_bit_max_index; mark_bit++)
    {
      GET_BIT (bit, ph, mark_bit);
      if (!bit) 
        {
	  EMACS_INT ptr = (heap_space + (heap_space_step * mark_bit));
	  MC_ALLOC_CALL_FINALIZER ((void *) ptr);
        }
    }
}


/* Finalize a page for disksave. XEmacs calls this routine before it
   dumps the heap image. You have to tell mc-alloc how to call your
   object's finalizer for disksave. Therefore, you have to define the
   macro MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE(ptr). This macro should
   do nothing else then test if there is a finalizer and call it on
   the given argument, which is the heap address of the object. */
static void
finalize_page_for_disksave (page_header *ph)
{
  EMACS_INT heap_space = (EMACS_INT) PH_HEAP_SPACE (ph);
  EMACS_INT heap_space_step = PH_CELL_SIZE (ph);
  EMACS_INT mark_bit = 0;
  EMACS_INT mark_bit_max_index = PH_CELLS_ON_PAGE (ph);

  mark_free_list (ph);

  for (mark_bit = 0; mark_bit < mark_bit_max_index; mark_bit++)
    {
      EMACS_INT ptr = (heap_space + (heap_space_step * mark_bit));
      MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE ((void *) ptr);
    }
}


/* Finalizes the heap. */
void
mc_finalize (void)
{
  visit_all_used_page_headers (finalize_page);
}


/* Finalizes the heap for disksave. */
void
mc_finalize_for_disksave (void)
{
  visit_all_used_page_headers (finalize_page_for_disksave);
}


/* Sweeps a page: all the non-marked cells are freed. If the page is empty
   in the end, it is removed. If some cells are free, it is moved to the
   front of its page header list. Full pages stay where they are. */
static void
sweep_page (page_header *ph)
{
  char *heap_space = (char *) PH_HEAP_SPACE (ph);
  EMACS_INT heap_space_step = PH_CELL_SIZE (ph);
  EMACS_INT mark_bit = 0;
  EMACS_INT mark_bit_max_index = PH_CELLS_ON_PAGE (ph);
  int bit = 0;

  mark_free_list (ph);

  for (mark_bit = 0; mark_bit < mark_bit_max_index; mark_bit++)
    {
      GET_BIT (bit, ph, mark_bit);
      if (!bit) 
	{
	  remove_cell (heap_space + (heap_space_step * mark_bit), ph);
	}
    }
  zero_mark_bits (ph);
  if (PH_CELLS_USED (ph) == 0)
    remove_page_from_used_list (ph);
  else if (PH_CELLS_USED (ph) < PH_CELLS_ON_PAGE (ph))
    move_page_header_to_front (ph);
}


/* Sweeps the heap. */
void
mc_sweep (void)
{
  visit_all_used_page_headers (sweep_page);
}


/* Frees the cell pointed to by ptr. */
void
mc_free (void *ptr)
{
  page_header *ph = get_page_header (ptr);
  assert (!PH_ON_FREE_LIST_P (ph));

  remove_cell (ptr, ph);

  if (PH_CELLS_USED (ph) == 0)
    remove_page_from_used_list (ph);
  else if (PH_CELLS_USED (ph) < PH_CELLS_ON_PAGE (ph))
    move_page_header_to_front (ph);
}


/* Changes the size of the cell pointed to by ptr.
   Returns the new address of the new cell with new size. */
void *
mc_realloc_1 (void *ptr, size_t size, int managed)
{
  if (ptr)
    {
      if (size)
	{
	  void *result = mc_alloc_1 (size, managed);
	  size_t from_size = PH_CELL_SIZE (get_page_header (ptr));
	  size_t cpy_size = size;
	  if (size > from_size) 
	    cpy_size = from_size;
	  memcpy (result, ptr, cpy_size);
	  mc_free (ptr);
	  return result;
	}
      else
	{
	  mc_free (ptr);
	  return 0;
	}
    }
  else
    return mc_alloc_1 (size, managed);
}

void *
mc_realloc (void *ptr, size_t size)
{
  return mc_realloc_1 (ptr, size, 1);
}

void *
mc_realloc_unmanaged (void *ptr, size_t size)
{
  return mc_realloc_1 (ptr, size, 0);
}




/*--- initialization ---------------------------------------------------*/

/* Call once at the very beginning. */
void
init_mc_allocator (void)
{
  int i;

  memset (&mc_allocator_globals, '\0', sizeof (mc_allocator_globals_type));

  for (i = 0; i < N_USED_PAGE_LISTS; i++)
    {
      page_list_header *plh = USED_HEAP_PAGES (i);
      PLH_LIST_TYPE (plh) = USED_LIST;
      PLH_SIZE (plh) = get_used_list_size_value (i);
      PLH_FIRST (plh) = 0;
      PLH_LAST (plh) = 0;
      PLH_MARK_BIT_FREE_LIST (plh) = 0;
#ifdef MEMORY_USAGE_STATS
      PLH_PAGE_COUNT (plh) = 0;
      PLH_USED_CELLS (plh) = 0;
      PLH_USED_SPACE (plh) = 0;
      PLH_TOTAL_CELLS (plh) = 0;
      PLH_TOTAL_SPACE (plh) = 0;
#endif
    }

  for (i = 0; i < N_UNMANAGED_PAGE_LISTS; i++)
    {
      page_list_header *plh = UNMANAGED_HEAP_PAGES (i);
      PLH_LIST_TYPE (plh) = UNMANAGED_LIST;
      PLH_SIZE (plh) = get_unmanaged_list_size_value (i);
      PLH_FIRST (plh) = 0;
      PLH_LAST (plh) = 0;
      PLH_MARK_BIT_FREE_LIST (plh) = 0;
#ifdef MEMORY_USAGE_STATS
      PLH_PAGE_COUNT (plh) = 0;
      PLH_USED_CELLS (plh) = 0;
      PLH_USED_SPACE (plh) = 0;
      PLH_TOTAL_CELLS (plh) = 0;
      PLH_TOTAL_SPACE (plh) = 0;
#endif
    }

  for (i = 0; i < N_FREE_PAGE_LISTS; i++)
    {
      page_list_header *plh = FREE_HEAP_PAGES (i);
      PLH_LIST_TYPE (plh) = FREE_LIST;
      PLH_SIZE (plh) = get_free_list_size_value (i);
      PLH_FIRST (plh) = 0;
      PLH_LAST (plh) = 0;
      PLH_MARK_BIT_FREE_LIST (plh) = 0;
#ifdef MEMORY_USAGE_STATS
      PLH_PAGE_COUNT (plh) = 0;
      PLH_USED_CELLS (plh) = 0;
      PLH_USED_SPACE (plh) = 0;
      PLH_TOTAL_CELLS (plh) = 0;
      PLH_TOTAL_SPACE (plh) = 0;
#endif
    }

  PAGE_HEADER_FREE_LIST = 0;

#ifdef MEMORY_USAGE_STATS
  MC_MALLOCED_BYTES = sizeof (mc_allocator_globals);
#endif

  init_lookup_table ();
}




/*--- lisp function for statistics -------------------------------------*/

#ifdef MEMORY_USAGE_STATS
DEFUN ("mc-alloc-memory-usage", Fmc_alloc_memory_usage, 0, 0, 0, /*
Returns stats about the mc-alloc memory usage. See diagnose.el.
*/
       ())
{
  Lisp_Object free_plhs = Qnil;
  Lisp_Object used_plhs = Qnil;
  Lisp_Object unmanaged_plhs = Qnil;
  Lisp_Object heap_sects = Qnil;
  int used_size = 0;
  int real_size = 0;

  int i;

  for (i = 0; i < N_FREE_PAGE_LISTS; i++) 
    if (PLH_PAGE_COUNT (FREE_HEAP_PAGES(i)) > 0)
      free_plhs = 
	acons (make_int (PLH_SIZE (FREE_HEAP_PAGES(i))),
	       list1 (make_int (PLH_PAGE_COUNT (FREE_HEAP_PAGES(i)))),
	       free_plhs);

  for (i = 0; i < N_UNMANAGED_PAGE_LISTS; i++) 
    if (PLH_PAGE_COUNT (UNMANAGED_HEAP_PAGES(i)) > 0)
      unmanaged_plhs = 
	acons (make_int (PLH_SIZE (UNMANAGED_HEAP_PAGES(i))),
	       list5 (make_int (PLH_PAGE_COUNT (UNMANAGED_HEAP_PAGES(i))),
		      make_int (PLH_USED_CELLS (UNMANAGED_HEAP_PAGES(i))),
		      make_int (PLH_USED_SPACE (UNMANAGED_HEAP_PAGES(i))),
		      make_int (PLH_TOTAL_CELLS (UNMANAGED_HEAP_PAGES(i))),
		      make_int (PLH_TOTAL_SPACE (UNMANAGED_HEAP_PAGES(i)))),
	       unmanaged_plhs);

  for (i = 0; i < N_USED_PAGE_LISTS; i++) 
    if (PLH_PAGE_COUNT (USED_HEAP_PAGES(i)) > 0)
      used_plhs = 
	acons (make_int (PLH_SIZE (USED_HEAP_PAGES(i))),
	       list5 (make_int (PLH_PAGE_COUNT (USED_HEAP_PAGES(i))),
		      make_int (PLH_USED_CELLS (USED_HEAP_PAGES(i))),
		      make_int (PLH_USED_SPACE (USED_HEAP_PAGES(i))),
		      make_int (PLH_TOTAL_CELLS (USED_HEAP_PAGES(i))),
		      make_int (PLH_TOTAL_SPACE (USED_HEAP_PAGES(i)))),
	       used_plhs);

  for (i = 0; i < N_HEAP_SECTIONS; i++) {
    used_size += HEAP_SECTION(i).n_pages * PAGE_SIZE;
    real_size += 
      malloced_storage_size (0, HEAP_SECTION(i).real_size, 0);
  }

  heap_sects =
    list3 (make_int (N_HEAP_SECTIONS),
	   make_int (used_size),
	   make_int (real_size));

  return Fcons (make_int (PAGE_SIZE), 
		list6 (heap_sects, 
		       Fnreverse (used_plhs), 
		       Fnreverse (unmanaged_plhs), 
		       Fnreverse (free_plhs), 
		       make_int (sizeof (mc_allocator_globals)), 
		       make_int (MC_MALLOCED_BYTES)));
}
#endif /* MEMORY_USAGE_STATS */

void
syms_of_mc_alloc (void)
{
#ifdef MEMORY_USAGE_STATS
  DEFSUBR (Fmc_alloc_memory_usage);
#endif /* MEMORY_USAGE_STATS */
}