Mercurial > hg > xemacs-beta
view src/strftime.c @ 617:af57a77cbc92
[xemacs-hg @ 2001-06-18 07:09:50 by ben]
---------------------------------------------------------------
DOCUMENTATION FIXES:
---------------------------------------------------------------
eval.c: Correct documentation.
elhash.c: Doc correction.
---------------------------------------------------------------
LISP OBJECT CLEANUP:
---------------------------------------------------------------
bytecode.h, buffer.h, casetab.h, chartab.h, console-msw.h, console.h, database.c, device.h, eldap.h, elhash.h, events.h, extents.h, faces.h, file-coding.h, frame.h, glyphs.h, gui-x.h, gui.h, keymap.h, lisp-disunion.h, lisp-union.h, lisp.h, lrecord.h, lstream.h, mule-charset.h, objects.h, opaque.h, postgresql.h, process.h, rangetab.h, specifier.h, toolbar.h, tooltalk.h, ui-gtk.h: Add wrap_* to all objects (it was already there for a few of them)
-- an expression to encapsulate a pointer into a Lisp object,
rather than the inconvenient XSET*. "wrap" was chosen because
"make" as in make_int(), make_char() is not appropriate. (It
implies allocation. The issue does not exist for ints and chars
because they are not allocated.)
Full error checking has been added to these expressions. When
used without error checking, non-union build, use of these
expressions will incur no loss of efficiency. (In fact, XSET* is
now defined in terms of wrap_* in a non-union build.) In a union
build, you will also get no loss of efficiency provided that you
have a decent optimizing compiler, and a compiler that either
understands inlines or automatically inlines those particular
functions. (And since people don't normally do their production
builds on union, it doesn't matter.)
Update the sample Lisp object definition in lrecord.h accordingly.
dumper.c: Fix places in dumper that referenced wrap_object to reference
its new name, wrap_pointer_1.
buffer.c, bufslots.h, conslots.h, console.c, console.h, devslots.h, device.c, device.h, frame.c, frame.h, frameslots.h, window.c, window.h, winslots.h: -- Extract out the Lisp objects of `struct device' into devslots.h,
just like for the other structures.
-- Extract out the remaining (not copied into the window config)
Lisp objects in `struct window' into winslots.h; use different
macros (WINDOW_SLOT vs. WINDOW_SAVED_SLOT) to differentiate them.
-- Eliminate the `dead' flag of `struct frame', since it
duplicates information already available in `framemeths', and fix
FRAME_LIVE_P accordingly. (Devices and consoles already work this
way.)
-- In *slots.h, switch to system where MARKED_SLOT is automatically
undef'd at the end of the file. (Follows what winslots.h already
does.)
-- Update the comments at the beginning of *slots.h to be accurate.
-- When making any of the above objects dead, zero it out entirely
and reset all Lisp object slots to Qnil. (We were already doing
this somewhat, but not consistently.) This (1) Eliminates the
possibility of extra objects hanging around that ought to be
GC'd, (2) Causes an immediate crash if anyone tries to access a
structure in one of these objects, (3) Ensures consistent behavior
wrt dead objects.
dialog-msw.c: Use internal_object_printer, since this object should not escape.
---------------------------------------------------------------
FIXING A CRASH THAT I HIT ONCE (AND A RELATED BAD BEHAVIOR):
---------------------------------------------------------------
eval.c: Fix up some comments about the FSF implementation.
Fix two nasty bugs:
(1) condition_case_unwind frees the conses sitting in the
catch->tag slot too quickly, resulting in a crash that I hit.
(2) catches need to be unwound one at a time when calling
unwind-protect code, rather than all at once at the end; otherwise,
incorrect behavior can result. (A comment shows exactly how.)
backtrace.h: Improve comment about FSF differences in the handler stack.
---------------------------------------------------------------
FIXING A CRASH THAT I REPEATEDLY HIT WHEN USING THE MOUSE WHEEL
UNDER MSWINDOWS:
---------------------------------------------------------------
Basic idea: My crash is due either to a dead, non-marked,
GC-collected frame inside of a window mirror, or a prematurely
freed window mirror. We need to mark the Lisp objects inside of
window mirrors. Tracking the lifespan of window mirrors and
scrollbar instances is extremely hard, and there may well be
lurking bugs where such objects are freed too soon. The only safe
way to fix these problems (and it fixes both problems at once) is
to make both of these structures Lisp objects.
lrecord.h, emacs.c, inline.c, scrollbar-gtk.c, scrollbar-msw.c, scrollbar-x.c, scrollbar.c, scrollbar.h, symsinit.h: Make scrollbar instances actual Lisp objects. Mark the window
mirrors in them. inline.c needs to know about scrollbar.h now.
Record the new type in lrecord.h. Fix up scrollbar-*.c
appropriately. Create a hash table in scrollbar-msw.c so that the
scrollbar instances stored in scrollbar HWND's are properly
GC-protected. Create complex_vars_of_scrollbar_mswindows() to
create the hash table at startup, and call it from emacs.c. Don't
store the scrollbar instance as a property of the GTK scrollbar,
as it's not used and if we did this, we'd have to separately
GC-protect it in a hash table, like in MS Windows.
lrecord.h, frame.h, frame.c, frameslots.h, redisplay.c, window.c, window.h: Move mark_window_mirror from redisplay.c to window.c. Make window
mirrors actual Lisp objects. Tell lrecord.h about them. Change
the window mirror member of struct frame from a pointer to a Lisp
object, and add XWINDOW_MIRROR in appropriate places. Mark the
scrollbar instances in the window mirror.
redisplay.c, redisplay.h, alloc.c: Delete mark_redisplay. Don't call mark_redisplay. We now mark
frame-specific structures in mark_frame.
NOTE: I also deleted an extremely questionable call to
update_frame_window_mirrors(). It was extremely questionable
before, and now totally impossible, since it will create
Lisp objects during redisplay.
frame.c: Mark the scrollbar instances, which are now Lisp objects.
Call mark_gutter() here, not in mark_redisplay().
gutter.c: Update comments about correct marking.
---------------------------------------------------------------
ISSUES BROUGHT UP BY MARTIN:
---------------------------------------------------------------
buffer.h: Put back these macros the way Steve T and I think they ought to be.
I already explained in a previous changelog entry why I think these
macros should be the way I'd defined them. Once again:
We fix these macros so they don't care about the type of their
lvalues. The non-C-string equivalents of these already function
in the same way, and it's correct because it should be OK to pass
in a CBufbyte *, a BufByte *, a Char_Binary *, an UChar_Binary *,
etc. The whole reason for these different types is to work around
errors caused by signed-vs-unsigned non-matching types. Any
possible error that might be caught in a DFC macro would also be
caught wherever the argument is used elsewhere. So creating
multiple macro versions would add no useful error-checking and
just further complicate an already complicated area.
As for Martin's "ANSI aliasing" bug, XEmacs is not ANSI-aliasing
clean and probably never will be. Unless the board agrees to
change XEmacs in this way (and we really don't want to go down
that road), this is not a bug.
sound.h: Undo Martin's type change.
signal.c: Fix problem identified by Martin with Linux and g++ due to
non-standard declaration of setitimer().
systime.h: Update the docs for "qxe_" to point out why making the
encapsulation explicit is always the right way to go. (setitimer()
itself serves as an example.)
For 21.4:
update-elc-2.el: Correct misplaced parentheses, making lisp/mule not get
recompiled.
author | ben |
---|---|
date | Mon, 18 Jun 2001 07:10:32 +0000 |
parents | abe6d1db359e |
children | 943eaba38521 |
line wrap: on
line source
/* strftime - custom formatting of date and/or time Copyright (C) 1989, 1991, 1992 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. */ /* Note: this version of strftime lacks locale support, but it is standalone. Performs `%' substitutions similar to those in printf. Except where noted, substituted fields have a fixed size; numeric fields are padded if necessary. Padding is with zeros by default; for fields that display a single number, padding can be changed or inhibited by following the `%' with one of the modifiers described below. Unknown field specifiers are copied as normal characters. All other characters are copied to the output without change. Supports a superset of the ANSI C field specifiers. Literal character fields: % % n newline t tab Numeric modifiers (a nonstandard extension): - do not pad the field _ pad the field with spaces Time fields: %H hour (00..23) %I hour (01..12) %k hour ( 0..23) %l hour ( 1..12) %M minute (00..59) %p locale's AM or PM %r time, 12-hour (hh:mm:ss [AP]M) %R time, 24-hour (hh:mm) %s time in seconds since 00:00:00, Jan 1, 1970 (a nonstandard extension) %S second (00..61) %T time, 24-hour (hh:mm:ss) %X locale's time representation (%H:%M:%S) %Z time zone (EDT), or nothing if no time zone is determinable Date fields: %a locale's abbreviated weekday name (Sun..Sat) %A locale's full weekday name, variable length (Sunday..Saturday) %b locale's abbreviated month name (Jan..Dec) %B locale's full month name, variable length (January..December) %c locale's date and time (Sat Nov 04 12:02:33 EST 1989) %C century (00..99) %d day of month (01..31) %e day of month ( 1..31) %D date (mm/dd/yy) %h same as %b %j day of year (001..366) %m month (01..12) %U week number of year with Sunday as first day of week (00..53) %w day of week (0..6) %W week number of year with Monday as first day of week (00..53) %x locale's date representation (mm/dd/yy) %y last two digits of year (00..99) %Y year (1970...) David MacKenzie <djm@gnu.ai.mit.edu> */ #ifdef HAVE_CONFIG_H #include <config.h> #include "lisp.h" #endif #include <stdio.h> #include <sys/types.h> #if defined(TM_IN_SYS_TIME) || (!defined(HAVE_TM_ZONE) && !defined(HAVE_TZNAME)) #include <sys/time.h> #else #include <time.h> #endif #ifndef STDC_HEADERS time_t mktime (); #endif #if defined(WIN32_NATIVE) || defined(CYGWIN) #include <time.h> #else #if defined(HAVE_TZNAME) extern char *tzname[2]; #endif #endif /* WIN32_NATIVE */ #ifdef emacs #define strftime emacs_strftime #endif /* Types of padding for numbers in date and time. */ enum padding { none, blank, zero }; static char const* const days[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" }; static char const * const months[] = { "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December" }; /* Add character C to STRING and increment LENGTH, unless LENGTH would exceed MAX. */ #define add_char(c) do \ { \ if (length + 1 <= max) \ string[length++] = (c); \ } while (0) /* Add a 2 digit number to STRING, padding if specified. Return the number of characters added, up to MAX. */ static int add_num2 (char *string, int num, int max, enum padding pad) { int top = num / 10; int length = 0; if (top == 0 && pad == blank) add_char (' '); else if (top != 0 || pad == zero) add_char (top + '0'); add_char (num % 10 + '0'); return length; } /* Add a 3 digit number to STRING, padding if specified. Return the number of characters added, up to MAX. */ static int add_num3 (char *string, int num, int max, enum padding pad) { int top = num / 100; int mid = (num - top * 100) / 10; int length = 0; if (top == 0 && pad == blank) add_char (' '); else if (top != 0 || pad == zero) add_char (top + '0'); if (mid == 0 && top == 0 && pad == blank) add_char (' '); else if (mid != 0 || top != 0 || pad == zero) add_char (mid + '0'); add_char (num % 10 + '0'); return length; } /* Like strncpy except return the number of characters copied. */ static int add_str (char *to, const char *from, int max) { int i; for (i = 0; from[i] && i <= max; ++i) to[i] = from[i]; return i; } static int add_num_time_t (char *string, int max, time_t num) { /* This buffer is large enough to hold the character representation (including the trailing NUL) of any unsigned decimal quantity whose binary representation fits in 128 bits. */ char buf[40]; int length; if (sizeof (num) > 16) abort (); sprintf (buf, "%lu", (unsigned long) num); length = add_str (string, buf, max); return length; } /* Return the week in the year of the time in TM, with the weeks starting on Sundays. */ static int sun_week (const struct tm *tm) { int dl; /* Set `dl' to the day in the year of the last day of the week previous to the one containing the day specified in TM. If the day specified in TM is in the first week of the year, `dl' will be negative or 0. Otherwise, calculate the number of complete weeks before our week (dl / 7) and add any partial week at the start of the year (dl % 7). */ dl = tm->tm_yday - tm->tm_wday; return dl <= 0 ? 0 : dl / 7 + (dl % 7 != 0); } /* Return the week in the year of the time in TM, with the weeks starting on Mondays. */ static int mon_week (const struct tm *tm) { int dl, wday; if (tm->tm_wday == 0) wday = 6; else wday = tm->tm_wday - 1; dl = tm->tm_yday - wday; return dl <= 0 ? 0 : dl / 7 + (dl % 7 != 0); } #if !defined(HAVE_TM_ZONE) && !defined(HAVE_TZNAME) char *zone_name (const struct tm *tp); char * zone_name (const struct tm *tp) { char *timezone (); struct timeval tv; struct timezone tz; gettimeofday (&tv, &tz); return timezone (tz.tz_minuteswest, tp->tm_isdst); } #endif /* Format the time given in TM according to FORMAT, and put the results in STRING. Return the number of characters (not including terminating null) that were put into STRING, or 0 if the length would have exceeded MAX. */ size_t strftime (char *string, size_t max, const char *format, const struct tm *tm); size_t strftime (char *string, size_t max, const char *format, const struct tm *tm) { enum padding pad; /* Type of padding to apply. */ size_t length = 0; /* Characters put in STRING so far. */ for (; *format && length < max; ++format) { if (*format != '%') add_char (*format); else { ++format; /* Modifiers: */ if (*format == '-') { pad = none; ++format; } else if (*format == '_') { pad = blank; ++format; } else pad = zero; switch (*format) { /* Literal character fields: */ case 0: case '%': add_char ('%'); break; case 'n': add_char ('\n'); break; case 't': add_char ('\t'); break; default: add_char (*format); break; /* Time fields: */ case 'H': case 'k': length += add_num2 (&string[length], tm->tm_hour, max - length, *format == 'H' ? pad : blank); break; case 'I': case 'l': { int hour12; if (tm->tm_hour == 0) hour12 = 12; else if (tm->tm_hour > 12) hour12 = tm->tm_hour - 12; else hour12 = tm->tm_hour; length += add_num2 (&string[length], hour12, max - length, *format == 'I' ? pad : blank); } break; case 'M': length += add_num2 (&string[length], tm->tm_min, max - length, pad); break; case 'p': if (tm->tm_hour < 12) add_char ('A'); else add_char ('P'); add_char ('M'); break; case 'r': length += strftime (&string[length], max - length, "%I:%M:%S %p", tm); break; case 'R': length += strftime (&string[length], max - length, "%H:%M", tm); break; case 's': { struct tm writable_tm; writable_tm = *tm; length += add_num_time_t (&string[length], max - length, mktime (&writable_tm)); } break; case 'S': length += add_num2 (&string[length], tm->tm_sec, max - length, pad); break; case 'T': length += strftime (&string[length], max - length, "%H:%M:%S", tm); break; case 'X': length += strftime (&string[length], max - length, "%H:%M:%S", tm); break; case 'Z': #ifdef HAVE_TM_ZONE length += add_str (&string[length], tm->tm_zone, max - length); #else #ifdef HAVE_TZNAME if (tm->tm_isdst && tzname[1] && *tzname[1]) length += add_str (&string[length], tzname[1], max - length); else length += add_str (&string[length], tzname[0], max - length); #else length += add_str (&string[length], zone_name (tm), max - length); #endif #endif break; /* Date fields: */ case 'a': add_char (days[tm->tm_wday][0]); add_char (days[tm->tm_wday][1]); add_char (days[tm->tm_wday][2]); break; case 'A': length += add_str (&string[length], days[tm->tm_wday], max - length); break; case 'b': case 'h': add_char (months[tm->tm_mon][0]); add_char (months[tm->tm_mon][1]); add_char (months[tm->tm_mon][2]); break; case 'B': length += add_str (&string[length], months[tm->tm_mon], max - length); break; case 'c': length += strftime (&string[length], max - length, "%a %b %d %H:%M:%S %Z %Y", tm); break; case 'C': length += add_num2 (&string[length], (tm->tm_year + 1900) / 100, max - length, pad); break; case 'd': length += add_num2 (&string[length], tm->tm_mday, max - length, pad); break; case 'e': length += add_num2 (&string[length], tm->tm_mday, max - length, blank); break; case 'D': length += strftime (&string[length], max - length, "%m/%d/%y", tm); break; case 'j': length += add_num3 (&string[length], tm->tm_yday + 1, max - length, pad); break; case 'm': length += add_num2 (&string[length], tm->tm_mon + 1, max - length, pad); break; case 'U': length += add_num2 (&string[length], sun_week (tm), max - length, pad); break; case 'w': add_char (tm->tm_wday + '0'); break; case 'W': length += add_num2 (&string[length], mon_week (tm), max - length, pad); break; case 'x': length += strftime (&string[length], max - length, "%m/%d/%y", tm); break; case 'y': length += add_num2 (&string[length], tm->tm_year % 100, max - length, pad); break; case 'Y': add_char ((tm->tm_year + 1900) / 1000 + '0'); length += add_num3 (&string[length], (1900 + tm->tm_year) % 1000, max - length, zero); break; } } } add_char (0); return length - 1; }