Mercurial > hg > xemacs-beta
view src/lrecord.h @ 617:af57a77cbc92
[xemacs-hg @ 2001-06-18 07:09:50 by ben]
---------------------------------------------------------------
DOCUMENTATION FIXES:
---------------------------------------------------------------
eval.c: Correct documentation.
elhash.c: Doc correction.
---------------------------------------------------------------
LISP OBJECT CLEANUP:
---------------------------------------------------------------
bytecode.h, buffer.h, casetab.h, chartab.h, console-msw.h, console.h, database.c, device.h, eldap.h, elhash.h, events.h, extents.h, faces.h, file-coding.h, frame.h, glyphs.h, gui-x.h, gui.h, keymap.h, lisp-disunion.h, lisp-union.h, lisp.h, lrecord.h, lstream.h, mule-charset.h, objects.h, opaque.h, postgresql.h, process.h, rangetab.h, specifier.h, toolbar.h, tooltalk.h, ui-gtk.h: Add wrap_* to all objects (it was already there for a few of them)
-- an expression to encapsulate a pointer into a Lisp object,
rather than the inconvenient XSET*. "wrap" was chosen because
"make" as in make_int(), make_char() is not appropriate. (It
implies allocation. The issue does not exist for ints and chars
because they are not allocated.)
Full error checking has been added to these expressions. When
used without error checking, non-union build, use of these
expressions will incur no loss of efficiency. (In fact, XSET* is
now defined in terms of wrap_* in a non-union build.) In a union
build, you will also get no loss of efficiency provided that you
have a decent optimizing compiler, and a compiler that either
understands inlines or automatically inlines those particular
functions. (And since people don't normally do their production
builds on union, it doesn't matter.)
Update the sample Lisp object definition in lrecord.h accordingly.
dumper.c: Fix places in dumper that referenced wrap_object to reference
its new name, wrap_pointer_1.
buffer.c, bufslots.h, conslots.h, console.c, console.h, devslots.h, device.c, device.h, frame.c, frame.h, frameslots.h, window.c, window.h, winslots.h: -- Extract out the Lisp objects of `struct device' into devslots.h,
just like for the other structures.
-- Extract out the remaining (not copied into the window config)
Lisp objects in `struct window' into winslots.h; use different
macros (WINDOW_SLOT vs. WINDOW_SAVED_SLOT) to differentiate them.
-- Eliminate the `dead' flag of `struct frame', since it
duplicates information already available in `framemeths', and fix
FRAME_LIVE_P accordingly. (Devices and consoles already work this
way.)
-- In *slots.h, switch to system where MARKED_SLOT is automatically
undef'd at the end of the file. (Follows what winslots.h already
does.)
-- Update the comments at the beginning of *slots.h to be accurate.
-- When making any of the above objects dead, zero it out entirely
and reset all Lisp object slots to Qnil. (We were already doing
this somewhat, but not consistently.) This (1) Eliminates the
possibility of extra objects hanging around that ought to be
GC'd, (2) Causes an immediate crash if anyone tries to access a
structure in one of these objects, (3) Ensures consistent behavior
wrt dead objects.
dialog-msw.c: Use internal_object_printer, since this object should not escape.
---------------------------------------------------------------
FIXING A CRASH THAT I HIT ONCE (AND A RELATED BAD BEHAVIOR):
---------------------------------------------------------------
eval.c: Fix up some comments about the FSF implementation.
Fix two nasty bugs:
(1) condition_case_unwind frees the conses sitting in the
catch->tag slot too quickly, resulting in a crash that I hit.
(2) catches need to be unwound one at a time when calling
unwind-protect code, rather than all at once at the end; otherwise,
incorrect behavior can result. (A comment shows exactly how.)
backtrace.h: Improve comment about FSF differences in the handler stack.
---------------------------------------------------------------
FIXING A CRASH THAT I REPEATEDLY HIT WHEN USING THE MOUSE WHEEL
UNDER MSWINDOWS:
---------------------------------------------------------------
Basic idea: My crash is due either to a dead, non-marked,
GC-collected frame inside of a window mirror, or a prematurely
freed window mirror. We need to mark the Lisp objects inside of
window mirrors. Tracking the lifespan of window mirrors and
scrollbar instances is extremely hard, and there may well be
lurking bugs where such objects are freed too soon. The only safe
way to fix these problems (and it fixes both problems at once) is
to make both of these structures Lisp objects.
lrecord.h, emacs.c, inline.c, scrollbar-gtk.c, scrollbar-msw.c, scrollbar-x.c, scrollbar.c, scrollbar.h, symsinit.h: Make scrollbar instances actual Lisp objects. Mark the window
mirrors in them. inline.c needs to know about scrollbar.h now.
Record the new type in lrecord.h. Fix up scrollbar-*.c
appropriately. Create a hash table in scrollbar-msw.c so that the
scrollbar instances stored in scrollbar HWND's are properly
GC-protected. Create complex_vars_of_scrollbar_mswindows() to
create the hash table at startup, and call it from emacs.c. Don't
store the scrollbar instance as a property of the GTK scrollbar,
as it's not used and if we did this, we'd have to separately
GC-protect it in a hash table, like in MS Windows.
lrecord.h, frame.h, frame.c, frameslots.h, redisplay.c, window.c, window.h: Move mark_window_mirror from redisplay.c to window.c. Make window
mirrors actual Lisp objects. Tell lrecord.h about them. Change
the window mirror member of struct frame from a pointer to a Lisp
object, and add XWINDOW_MIRROR in appropriate places. Mark the
scrollbar instances in the window mirror.
redisplay.c, redisplay.h, alloc.c: Delete mark_redisplay. Don't call mark_redisplay. We now mark
frame-specific structures in mark_frame.
NOTE: I also deleted an extremely questionable call to
update_frame_window_mirrors(). It was extremely questionable
before, and now totally impossible, since it will create
Lisp objects during redisplay.
frame.c: Mark the scrollbar instances, which are now Lisp objects.
Call mark_gutter() here, not in mark_redisplay().
gutter.c: Update comments about correct marking.
---------------------------------------------------------------
ISSUES BROUGHT UP BY MARTIN:
---------------------------------------------------------------
buffer.h: Put back these macros the way Steve T and I think they ought to be.
I already explained in a previous changelog entry why I think these
macros should be the way I'd defined them. Once again:
We fix these macros so they don't care about the type of their
lvalues. The non-C-string equivalents of these already function
in the same way, and it's correct because it should be OK to pass
in a CBufbyte *, a BufByte *, a Char_Binary *, an UChar_Binary *,
etc. The whole reason for these different types is to work around
errors caused by signed-vs-unsigned non-matching types. Any
possible error that might be caught in a DFC macro would also be
caught wherever the argument is used elsewhere. So creating
multiple macro versions would add no useful error-checking and
just further complicate an already complicated area.
As for Martin's "ANSI aliasing" bug, XEmacs is not ANSI-aliasing
clean and probably never will be. Unless the board agrees to
change XEmacs in this way (and we really don't want to go down
that road), this is not a bug.
sound.h: Undo Martin's type change.
signal.c: Fix problem identified by Martin with Linux and g++ due to
non-standard declaration of setitimer().
systime.h: Update the docs for "qxe_" to point out why making the
encapsulation explicit is always the right way to go. (setitimer()
itself serves as an example.)
For 21.4:
update-elc-2.el: Correct misplaced parentheses, making lisp/mule not get
recompiled.
author | ben |
---|---|
date | Mon, 18 Jun 2001 07:10:32 +0000 |
parents | 0784d089fdc9 |
children | b39c14581166 |
line wrap: on
line source
/* The "lrecord" structure (header of a compound lisp object). Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc. Copyright (C) 1996 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ #ifndef INCLUDED_lrecord_h_ #define INCLUDED_lrecord_h_ /* The "lrecord" type of Lisp object is used for all object types other than a few simple ones. This allows many types to be implemented but only a few bits required in a Lisp object for type information. (The tradeoff is that each object has its type marked in it, thereby increasing its size.) All lrecords begin with a `struct lrecord_header', which identifies the lisp object type, by providing an index into a table of `struct lrecord_implementation', which describes the behavior of the lisp object. It also contains some other data bits. Lrecords are of two types: straight lrecords, and lcrecords. Straight lrecords are used for those types of objects that have their own allocation routines (typically allocated out of 2K chunks of memory called `frob blocks'). These objects have a `struct lrecord_header' at the top, containing only the bits needed to find the lrecord_implementation for the object. There are special routines in alloc.c to deal with each such object type. Lcrecords are used for less common sorts of objects that don't do their own allocation. Each such object is malloc()ed individually, and the objects are chained together through a `next' pointer. Lcrecords have a `struct lcrecord_header' at the top, which contains a `struct lrecord_header' and a `next' pointer, and are allocated using alloc_lcrecord(). Creating a new lcrecord type is fairly easy; just follow the lead of some existing type (e.g. hash tables). Note that you do not need to supply all the methods (see below); reasonable defaults are provided for many of them. Alternatively, if you're just looking for a way of encapsulating data (which possibly could contain Lisp_Objects in it), you may well be able to use the opaque type. */ struct lrecord_header { /* index into lrecord_implementations_table[] */ unsigned int type :8; /* If `mark' is 0 after the GC mark phase, the object will be freed during the GC sweep phase. There are 2 ways that `mark' can be 1: - by being referenced from other objects during the GC mark phase - because it is permanently on, for c_readonly objects */ unsigned int mark :1; /* 1 if the object resides in logically read-only space, and does not reference other non-c_readonly objects. Invariant: if (c_readonly == 1), then (mark == 1 && lisp_readonly == 1) */ unsigned int c_readonly :1; /* 1 if the object is readonly from lisp */ unsigned int lisp_readonly :1; }; struct lrecord_implementation; int lrecord_type_index (const struct lrecord_implementation *implementation); #define set_lheader_implementation(header,imp) do { \ struct lrecord_header* SLI_header = (header); \ SLI_header->type = (imp)->lrecord_type_index; \ SLI_header->mark = 0; \ SLI_header->c_readonly = 0; \ SLI_header->lisp_readonly = 0; \ } while (0) struct lcrecord_header { struct lrecord_header lheader; /* The `next' field is normally used to chain all lcrecords together so that the GC can find (and free) all of them. `alloc_lcrecord' threads lcrecords together. The `next' field may be used for other purposes as long as some other mechanism is provided for letting the GC do its work. For example, the event and marker object types allocate members out of memory chunks, and are able to find all unmarked members by sweeping through the elements of the list of chunks. */ struct lcrecord_header *next; /* The `uid' field is just for debugging/printing convenience. Having this slot doesn't hurt us much spacewise, since an lcrecord already has the above slots plus malloc overhead. */ unsigned int uid :31; /* The `free' field is a flag that indicates whether this lcrecord is on a "free list". Free lists are used to minimize the number of calls to malloc() when we're repeatedly allocating and freeing a number of the same sort of lcrecord. Lcrecords on a free list always get marked in a different fashion, so we can use this flag as a sanity check to make sure that free lists only have freed lcrecords and there are no freed lcrecords elsewhere. */ unsigned int free :1; }; /* Used for lcrecords in an lcrecord-list. */ struct free_lcrecord_header { struct lcrecord_header lcheader; Lisp_Object chain; }; enum lrecord_type { /* Symbol value magic types come first to make SYMBOL_VALUE_MAGIC_P fast. #### This should be replaced by a symbol_value_magic_p flag in the Lisp_Symbol lrecord_header. */ lrecord_type_symbol_value_forward, lrecord_type_symbol_value_varalias, lrecord_type_symbol_value_lisp_magic, lrecord_type_symbol_value_buffer_local, lrecord_type_max_symbol_value_magic = lrecord_type_symbol_value_buffer_local, lrecord_type_symbol, lrecord_type_subr, lrecord_type_cons, lrecord_type_vector, lrecord_type_string, lrecord_type_lcrecord_list, lrecord_type_compiled_function, lrecord_type_weak_list, lrecord_type_bit_vector, lrecord_type_float, lrecord_type_hash_table, lrecord_type_lstream, lrecord_type_process, lrecord_type_charset, lrecord_type_coding_system, lrecord_type_char_table, lrecord_type_char_table_entry, lrecord_type_range_table, lrecord_type_opaque, lrecord_type_opaque_ptr, lrecord_type_buffer, lrecord_type_extent, lrecord_type_extent_info, lrecord_type_extent_auxiliary, lrecord_type_marker, lrecord_type_event, lrecord_type_keymap, lrecord_type_command_builder, lrecord_type_timeout, lrecord_type_specifier, lrecord_type_console, lrecord_type_device, lrecord_type_frame, lrecord_type_window, lrecord_type_window_mirror, lrecord_type_window_configuration, lrecord_type_gui_item, lrecord_type_popup_data, lrecord_type_toolbar_button, lrecord_type_scrollbar_instance, lrecord_type_color_instance, lrecord_type_font_instance, lrecord_type_image_instance, lrecord_type_glyph, lrecord_type_face, lrecord_type_database, lrecord_type_tooltalk_message, lrecord_type_tooltalk_pattern, lrecord_type_ldap, lrecord_type_pgconn, lrecord_type_pgresult, lrecord_type_devmode, lrecord_type_mswindows_dialog_id, lrecord_type_case_table, lrecord_type_emacs_ffi, lrecord_type_emacs_gtk_object, lrecord_type_emacs_gtk_boxed, lrecord_type_free, /* only used for "free" lrecords */ lrecord_type_undefined, /* only used for debugging */ lrecord_type_last_built_in_type /* must be last */ }; extern unsigned int lrecord_type_count; struct lrecord_implementation { const char *name; /* `marker' is called at GC time, to make sure that all Lisp_Objects pointed to by this object get properly marked. It should call the mark_object function on all Lisp_Objects in the object. If the return value is non-nil, it should be a Lisp_Object to be marked (don't call the mark_object function explicitly on it, because the GC routines will do this). Doing it this way reduces recursion, so the object returned should preferably be the one with the deepest level of Lisp_Object pointers. This function can be NULL, meaning no GC marking is necessary. */ Lisp_Object (*marker) (Lisp_Object); /* `printer' converts the object to a printed representation. This can be NULL; in this case default_object_printer() will be used instead. */ void (*printer) (Lisp_Object, Lisp_Object printcharfun, int escapeflag); /* `finalizer' is called at GC time when the object is about to be freed, and at dump time (FOR_DISKSAVE will be non-zero in this case). It should perform any necessary cleanup (e.g. freeing malloc()ed memory). This can be NULL, meaning no special finalization is necessary. WARNING: remember that `finalizer' is called at dump time even though the object is not being freed. */ void (*finalizer) (void *header, int for_disksave); /* This can be NULL, meaning compare objects with EQ(). */ int (*equal) (Lisp_Object obj1, Lisp_Object obj2, int depth); /* `hash' generates hash values for use with hash tables that have `equal' as their test function. This can be NULL, meaning use the Lisp_Object itself as the hash. But, you must still satisfy the constraint that if two objects are `equal', then they *must* hash to the same value in order for hash tables to work properly. This means that `hash' can be NULL only if the `equal' method is also NULL. */ unsigned long (*hash) (Lisp_Object, int); /* External data layout description */ const struct lrecord_description *description; /* These functions allow any object type to have builtin property lists that can be manipulated from the lisp level with `get', `put', `remprop', and `object-plist'. */ Lisp_Object (*getprop) (Lisp_Object obj, Lisp_Object prop); int (*putprop) (Lisp_Object obj, Lisp_Object prop, Lisp_Object val); int (*remprop) (Lisp_Object obj, Lisp_Object prop); Lisp_Object (*plist) (Lisp_Object obj); /* Only one of `static_size' and `size_in_bytes_method' is non-0. If both are 0, this type is not instantiable by alloc_lcrecord(). */ size_t static_size; size_t (*size_in_bytes_method) (const void *header); /* The (constant) index into lrecord_implementations_table */ enum lrecord_type lrecord_type_index; /* A "basic" lrecord is any lrecord that's not an lcrecord, i.e. one that does not have an lcrecord_header at the front and which is (usually) allocated in frob blocks. We only use this flag for some consistency checking, and that only when error-checking is enabled. */ unsigned int basic_p :1; }; /* All the built-in lisp object types are enumerated in `enum lrecord_type'. Additional ones may be defined by a module (none yet). We leave some room in `lrecord_implementations_table' for such new lisp object types. */ #define MODULE_DEFINABLE_TYPE_COUNT 32 extern const struct lrecord_implementation *lrecord_implementations_table[(unsigned int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT]; #define XRECORD_LHEADER_IMPLEMENTATION(obj) \ LHEADER_IMPLEMENTATION (XRECORD_LHEADER (obj)) #define LHEADER_IMPLEMENTATION(lh) lrecord_implementations_table[(lh)->type] extern int gc_in_progress; #define MARKED_RECORD_P(obj) (XRECORD_LHEADER (obj)->mark) #define MARKED_RECORD_HEADER_P(lheader) ((lheader)->mark) #define MARK_RECORD_HEADER(lheader) ((void) ((lheader)->mark = 1)) #define UNMARK_RECORD_HEADER(lheader) ((void) ((lheader)->mark = 0)) #define C_READONLY_RECORD_HEADER_P(lheader) ((lheader)->c_readonly) #define LISP_READONLY_RECORD_HEADER_P(lheader) ((lheader)->lisp_readonly) #define SET_C_READONLY_RECORD_HEADER(lheader) do { \ struct lrecord_header *SCRRH_lheader = (lheader); \ SCRRH_lheader->c_readonly = 1; \ SCRRH_lheader->lisp_readonly = 1; \ SCRRH_lheader->mark = 1; \ } while (0) #define SET_LISP_READONLY_RECORD_HEADER(lheader) \ ((void) ((lheader)->lisp_readonly = 1)) #define RECORD_MARKER(lheader) lrecord_markers[(lheader)->type] /* External description stuff A lrecord external description is an array of values. The first value of each line is a type, the second the offset in the lrecord structure. Following values are parameters, their presence, type and number is type-dependent. The description ends with a "XD_END" or "XD_SPECIFIER_END" record. Some example descriptions : static const struct lrecord_description cons_description[] = { { XD_LISP_OBJECT, offsetof (Lisp_Cons, car) }, { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr) }, { XD_END } }; Which means "two lisp objects starting at the 'car' and 'cdr' elements" static const struct lrecord_description string_description[] = { { XD_BYTECOUNT, offsetof (Lisp_String, size) }, { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data), XD_INDIRECT(0, 1) }, { XD_LISP_OBJECT, offsetof (Lisp_String, plist) }, { XD_END } }; "A pointer to string data at 'data', the size of the pointed array being the value of the size variable plus 1, and one lisp object at 'plist'" The existing types : XD_LISP_OBJECT A Lisp object. This is also the type to use for pointers to other lrecords. XD_LISP_OBJECT_ARRAY An array of Lisp objects or pointers to lrecords. The third element is the count. XD_LO_LINK Link in a linked list of objects of the same type. XD_OPAQUE_PTR Pointer to undumpable data. Must be NULL when dumping. XD_STRUCT_PTR Pointer to described struct. Parameters are number of structures and struct_description. XD_OPAQUE_DATA_PTR Pointer to dumpable opaque data. Parameter is the size of the data. Pointed data must be relocatable without changes. XD_C_STRING Pointer to a C string. XD_DOC_STRING Pointer to a doc string (C string if positive, opaque value if negative) XD_INT_RESET An integer which will be reset to a given value in the dump file. XD_SIZE_T size_t value. Used for counts. XD_INT int value. Used for counts. XD_LONG long value. Used for counts. XD_BYTECOUNT bytecount value. Used for counts. XD_END Special type indicating the end of the array. XD_SPECIFIER_END Special type indicating the end of the array for a specifier. Extra description is going to be fetched from the specifier methods. Special macros: XD_INDIRECT(line, delta) Usable where a "count" or "size" is requested. Gives the value of the element which is at line number 'line' in the description (count starts at zero) and adds delta to it. */ enum lrecord_description_type { XD_LISP_OBJECT_ARRAY, XD_LISP_OBJECT, XD_LO_LINK, XD_OPAQUE_PTR, XD_STRUCT_PTR, XD_OPAQUE_DATA_PTR, XD_C_STRING, XD_DOC_STRING, XD_INT_RESET, XD_SIZE_T, XD_INT, XD_LONG, XD_BYTECOUNT, XD_END, XD_SPECIFIER_END }; struct lrecord_description { enum lrecord_description_type type; int offset; EMACS_INT data1; const struct struct_description *data2; }; struct struct_description { size_t size; const struct lrecord_description *description; }; #define XD_INDIRECT(val, delta) (-1-((val)|(delta<<8))) #define XD_IS_INDIRECT(code) (code<0) #define XD_INDIRECT_VAL(code) ((-1-code) & 255) #define XD_INDIRECT_DELTA(code) (((-1-code)>>8) & 255) #define XD_DYNARR_DESC(base_type, sub_desc) \ { XD_STRUCT_PTR, offsetof (base_type, base), XD_INDIRECT(1, 0), sub_desc }, \ { XD_INT, offsetof (base_type, cur) }, \ { XD_INT_RESET, offsetof (base_type, max), XD_INDIRECT(1, 0) } /* DEFINE_LRECORD_IMPLEMENTATION is for objects with constant size. DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION is for objects whose size varies. */ #if defined (ERROR_CHECK_TYPECHECK) # define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype) #else # define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype) #endif #define DEFINE_BASIC_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \ DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype) #define DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,structtype) \ MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizeof(structtype),0,1,structtype) #define DEFINE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \ DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype) #define DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,structtype) \ MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizeof (structtype),0,0,structtype) #define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,sizer,structtype) \ DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,sizer,structtype) #define DEFINE_BASIC_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,sizer,structtype) \ MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,0,sizer,1,structtype) #define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizer,structtype) \ MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,0,sizer,0,structtype) \ #define MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,size,sizer,basic_p,structtype) \ DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype) \ const struct lrecord_implementation lrecord_##c_name = \ { name, marker, printer, nuker, equal, hash, desc, \ getprop, putprop, remprop, plist, size, sizer, \ lrecord_type_##c_name, basic_p } #define DEFINE_EXTERNAL_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \ DEFINE_EXTERNAL_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype) #define DEFINE_EXTERNAL_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,structtype) \ MAKE_EXTERNAL_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizeof (structtype),0,0,structtype) #define DEFINE_EXTERNAL_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,sizer,structtype) \ DEFINE_EXTERNAL_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,sizer,structtype) #define DEFINE_EXTERNAL_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizer,structtype) \ MAKE_EXTERNAL_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,0,sizer,0,structtype) #define MAKE_EXTERNAL_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,size,sizer,basic_p,structtype) \ DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype) \ unsigned int lrecord_type_##c_name; \ struct lrecord_implementation lrecord_##c_name = \ { name, marker, printer, nuker, equal, hash, desc, \ getprop, putprop, remprop, plist, size, sizer, \ lrecord_type_last_built_in_type, basic_p } extern Lisp_Object (*lrecord_markers[]) (Lisp_Object); #define INIT_LRECORD_IMPLEMENTATION(type) do { \ lrecord_implementations_table[lrecord_type_##type] = &lrecord_##type; \ lrecord_markers[lrecord_type_##type] = \ lrecord_implementations_table[lrecord_type_##type]->marker; \ } while (0) #define INIT_EXTERNAL_LRECORD_IMPLEMENTATION(type) do { \ lrecord_type_##type = lrecord_type_count++; \ lrecord_##type.lrecord_type_index = lrecord_type_##type; \ INIT_LRECORD_IMPLEMENTATION(type); \ } while (0) #define LRECORDP(a) (XTYPE (a) == Lisp_Type_Record) #define XRECORD_LHEADER(a) ((struct lrecord_header *) XPNTR (a)) #define RECORD_TYPEP(x, ty) \ (LRECORDP (x) && (((unsigned int)(XRECORD_LHEADER (x)->type)) == ((unsigned int)(ty)))) /* Steps to create a new object: 1. Declare the struct for your object in a header file somewhere. Remember that it must begin with struct lcrecord_header header; 2. Put the "standard junk" (DECLARE_RECORD()/XFOO/XSETFOO/etc.) below the struct definition -- see below. 3. Add this header file to inline.c. 4. Create the methods for your object. Note that technically you don't need any, but you will almost always want at least a mark method. 5. Define your object with DEFINE_LRECORD_IMPLEMENTATION() or some variant. 6. Include the header file in the .c file where you defined the object. 7. Put a call to INIT_LRECORD_IMPLEMENTATION() for the object in the .c file's syms_of_foo() function. 8. Add a type enum for the object to enum lrecord_type, earlier in this file. An example: ------------------------------ in toolbar.h ----------------------------- struct toolbar_button { struct lcrecord_header header; Lisp_Object next; Lisp_Object frame; Lisp_Object up_glyph; Lisp_Object down_glyph; Lisp_Object disabled_glyph; Lisp_Object cap_up_glyph; Lisp_Object cap_down_glyph; Lisp_Object cap_disabled_glyph; Lisp_Object callback; Lisp_Object enabled_p; Lisp_Object help_string; char enabled; char down; char pushright; char blank; int x, y; int width, height; int dirty; int vertical; int border_width; }; [[ the standard junk: ]] DECLARE_LRECORD (toolbar_button, struct toolbar_button); #define XTOOLBAR_BUTTON(x) XRECORD (x, toolbar_button, struct toolbar_button) #define XSETTOOLBAR_BUTTON(x, p) XSETRECORD (x, p, toolbar_button) #define wrap_toolbar_button(p) wrap_record (p, toolbar_button) #define TOOLBAR_BUTTONP(x) RECORDP (x, toolbar_button) #define CHECK_TOOLBAR_BUTTON(x) CHECK_RECORD (x, toolbar_button) #define CONCHECK_TOOLBAR_BUTTON(x) CONCHECK_RECORD (x, toolbar_button) ------------------------------ in toolbar.c ----------------------------- #include "toolbar.h" ... static Lisp_Object mark_toolbar_button (Lisp_Object obj) { struct toolbar_button *data = XTOOLBAR_BUTTON (obj); mark_object (data->next); mark_object (data->frame); mark_object (data->up_glyph); mark_object (data->down_glyph); mark_object (data->disabled_glyph); mark_object (data->cap_up_glyph); mark_object (data->cap_down_glyph); mark_object (data->cap_disabled_glyph); mark_object (data->callback); mark_object (data->enabled_p); return data->help_string; } [[ If your object should never escape to Lisp, declare its print method as internal_object_printer instead of 0. ]] DEFINE_LRECORD_IMPLEMENTATION ("toolbar-button", toolbar_button, mark_toolbar_button, 0, 0, 0, 0, 0, struct toolbar_button); ... void syms_of_toolbar (void) { INIT_LRECORD_IMPLEMENTATION (toolbar_button); ...; } ------------------------------ in inline.c ----------------------------- #ifdef HAVE_TOOLBARS #include "toolbar.h" #endif ------------------------------ in lrecord.h ----------------------------- enum lrecord_type { ... lrecord_type_toolbar_button, ... }; */ /* Note: Object types defined in external dynamically-loaded modules (not part of the XEmacs main source code) should use DECLARE_EXTERNAL_LRECORD and DEFINE_EXTERNAL_LRECORD_IMPLEMENTATION rather than DECLARE_LRECORD and DEFINE_LRECORD_IMPLEMENTATION. */ #ifdef ERROR_CHECK_TYPECHECK # define DECLARE_LRECORD(c_name, structtype) \ extern const struct lrecord_implementation lrecord_##c_name; \ INLINE_HEADER structtype * \ error_check_##c_name (Lisp_Object obj); \ INLINE_HEADER structtype * \ error_check_##c_name (Lisp_Object obj) \ { \ assert (RECORD_TYPEP (obj, lrecord_type_##c_name)); \ return (structtype *) XPNTR (obj); \ } \ extern Lisp_Object Q##c_name##p # define DECLARE_EXTERNAL_LRECORD(c_name, structtype) \ extern unsigned int lrecord_type_##c_name; \ extern struct lrecord_implementation lrecord_##c_name; \ INLINE_HEADER structtype * \ error_check_##c_name (Lisp_Object obj); \ INLINE_HEADER structtype * \ error_check_##c_name (Lisp_Object obj) \ { \ assert (RECORD_TYPEP (obj, lrecord_type_##c_name)); \ return (structtype *) XPNTR (obj); \ } \ extern Lisp_Object Q##c_name##p # define DECLARE_NONRECORD(c_name, type_enum, structtype) \ INLINE_HEADER structtype * \ error_check_##c_name (Lisp_Object obj); \ INLINE_HEADER structtype * \ error_check_##c_name (Lisp_Object obj) \ { \ assert (XTYPE (obj) == type_enum); \ return (structtype *) XPNTR (obj); \ } \ extern Lisp_Object Q##c_name##p # define XRECORD(x, c_name, structtype) error_check_##c_name (x) # define XNONRECORD(x, c_name, type_enum, structtype) error_check_##c_name (x) # define XSETRECORD(var, p, c_name) do \ { \ XSETOBJ (var, p); \ assert (RECORD_TYPEP (var, lrecord_type_##c_name)); \ } while (0) INLINE_HEADER Lisp_Object wrap_record_1 (void *ptr, enum lrecord_type ty); INLINE_HEADER Lisp_Object wrap_record_1 (void *ptr, enum lrecord_type ty) { Lisp_Object obj; XSETOBJ (obj, ptr); assert (RECORD_TYPEP (obj, ty)); return obj; } #define wrap_record(ptr, ty) wrap_record_1 (ptr, lrecord_type_##ty) #else /* not ERROR_CHECK_TYPECHECK */ # define DECLARE_LRECORD(c_name, structtype) \ extern Lisp_Object Q##c_name##p; \ extern const struct lrecord_implementation lrecord_##c_name # define DECLARE_EXTERNAL_LRECORD(c_name, structtype) \ extern Lisp_Object Q##c_name##p; \ extern unsigned int lrecord_type_##c_name; \ extern struct lrecord_implementation lrecord_##c_name # define DECLARE_NONRECORD(c_name, type_enum, structtype) \ extern Lisp_Object Q##c_name##p # define XRECORD(x, c_name, structtype) ((structtype *) XPNTR (x)) # define XNONRECORD(x, c_name, type_enum, structtype) \ ((structtype *) XPNTR (x)) # define XSETRECORD(var, p, c_name) XSETOBJ (var, p) /* wrap_pointer_1 is so named as a suggestion not to use it unless you know what you're doing. */ #define wrap_record(ptr, ty) wrap_pointer_1 (ptr) #endif /* not ERROR_CHECK_TYPECHECK */ #define RECORDP(x, c_name) RECORD_TYPEP (x, lrecord_type_##c_name) /* Note: we now have two different kinds of type-checking macros. The "old" kind has now been renamed CONCHECK_foo. The reason for this is that the CONCHECK_foo macros signal a continuable error, allowing the user (through debug-on-error) to substitute a different value and return from the signal, which causes the lvalue argument to get changed. Quite a lot of code would crash if that happened, because it did things like foo = XCAR (list); CHECK_STRING (foo); and later on did XSTRING (XCAR (list)), assuming that the type is correct (when it might be wrong, if the user substituted a correct value in the debugger). To get around this, I made all the CHECK_foo macros signal a non-continuable error. Places where a continuable error is OK (generally only when called directly on the argument of a Lisp primitive) should be changed to use CONCHECK(). FSF Emacs does not have this problem because RMS took the cheesy way out and disabled returning from a signal entirely. */ #define CONCHECK_RECORD(x, c_name) do { \ if (!RECORD_TYPEP (x, lrecord_type_##c_name)) \ x = wrong_type_argument (Q##c_name##p, x); \ } while (0) #define CONCHECK_NONRECORD(x, lisp_enum, predicate) do {\ if (XTYPE (x) != lisp_enum) \ x = wrong_type_argument (predicate, x); \ } while (0) #define CHECK_RECORD(x, c_name) do { \ if (!RECORD_TYPEP (x, lrecord_type_##c_name)) \ dead_wrong_type_argument (Q##c_name##p, x); \ } while (0) #define CHECK_NONRECORD(x, lisp_enum, predicate) do { \ if (XTYPE (x) != lisp_enum) \ dead_wrong_type_argument (predicate, x); \ } while (0) void *alloc_lcrecord (size_t size, const struct lrecord_implementation *); #define alloc_lcrecord_type(type, lrecord_implementation) \ ((type *) alloc_lcrecord (sizeof (type), lrecord_implementation)) /* Copy the data from one lcrecord structure into another, but don't overwrite the header information. */ #define copy_lcrecord(dst, src) \ memcpy ((char *) (dst) + sizeof (struct lcrecord_header), \ (char *) (src) + sizeof (struct lcrecord_header), \ sizeof (*(dst)) - sizeof (struct lcrecord_header)) #define zero_lcrecord(lcr) \ memset ((char *) (lcr) + sizeof (struct lcrecord_header), 0, \ sizeof (*(lcr)) - sizeof (struct lcrecord_header)) #endif /* INCLUDED_lrecord_h_ */