Mercurial > hg > xemacs-beta
view src/hash.c @ 2420:ad56e5a6d09f
[xemacs-hg @ 2004-12-06 03:46:06 by ben]
(none)
README.packages: Document use of --package-prefix.
Fix error in specifying standard package location.
make-docfile.c: Use QXE_PATH_MAX.
info.el: Correct doc string giving example package path.
menubar-items.el: Move Prefix Rectangle command up one level.
xemacs/packages.texi: Add long form of Lisp Reference Manual to links.
Add links pointing to Lisp Reference Manual for more detailed
package discussion.
lispref/range-tables.texi: Document range-table changes.
internals/internals.texi: Update history section.
elhash.c, elhash.h, profile.c: Create inchash_eq() to allow direct incrementing of hash-table
entry. Use in profile.c to try to reduce profiling overhead.
Increase initial size of profile hash tables to reduce profiling
overhead.
buffer.c, device-msw.c, dialog-msw.c, dired-msw.c, editfns.c, event-msw.c, events.c, glyphs-msw.c, keymap.c, objects-msw.c, process-nt.c, syswindows.h, text.c, text.h, unexnt.c: Rename xetcs* -> qxetcs* for consistency with qxestr*.
Rename ei*_c(_*) -> ei*_ascii(_*) since they work with ASCII-only
strings not "C strings", whatever those are. This is the last
place where "c" was incorrectly being used for "ascii".
dialog-msw.c, dumper.c, event-msw.c, fileio.c, glyphs-gtk.c, glyphs-x.c, nt.c, process-nt.c, realpath.c, sysdep.c, sysfile.h, unexcw.c, unexnext.c, unexnt.c: Try to avoid differences in systems that do or do not include
final null byte in PATH_MAX. Create PATH_MAX_INTERNAL and
PATH_MAX_EXTERNAL and use them everywhere. Rewrite code in
dumper.c to avoid use of PATH_MAX. When necessary in nt.c,
use _MAX_PATH instead of MAX_PATH to be consistent with
other places.
text.c: Code to short-circuit when binary or Unicode was not working
due to EOL wrapping. Fix this code to work when either no
EOL autodetection or no CR's or LF's in the text.
lisp.h, rangetab.c, rangetab.h, regex.c, search.c: Implement different types of ranges (open/closed start and end).
Change default to be start-closed, end-open.
author | ben |
---|---|
date | Mon, 06 Dec 2004 03:46:07 +0000 |
parents | a8d8f419b459 |
children | de9952d2ed18 |
line wrap: on
line source
/* Hash tables. Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. Copyright (C) 2003 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ /* Author: Lost in the mists of history. At least back to Lucid 19.3, circa Sep 1992. */ #include <config.h> #include "lisp.h" #include "hash.h" #define NULL_ENTRY ((void *) 0xdeadbeef) /* -559038737 base 10 */ #define COMFORTABLE_SIZE(size) (21 * (size) / 16) #define KEYS_DIFFER_P(old, new, testfun) \ (((old) != (new)) && (!(testfun) || !(testfun) ((old),(new)))) static void rehash (hentry *harray, struct hash_table *ht, Elemcount size); Hashcode memory_hash (const void *xv, Bytecount size) { Hashcode h = 0; unsigned const char *x = (unsigned const char *) xv; if (!x) return 0; while (size--) { Hashcode g; h = (h << 4) + *x++; if ((g = h & 0xf0000000) != 0) h = (h ^ (g >> 24)) ^ g; } return h; } Hashcode string_hash (const char *xv) { Hashcode h = 0; unsigned const char *x = (unsigned const char *) xv; if (!x) return 0; while (*x) { Hashcode g; h = (h << 4) + *x++; if ((g = h & 0xf0000000) != 0) h = (h ^ (g >> 24)) ^ g; } return h; } /* Return a suitable size for a hash table, with at least SIZE slots. */ static Elemcount hash_table_size (Elemcount requested_size) { /* Return some prime near, but greater than or equal to, SIZE. Decades from the time of writing, someone will have a system large enough that the list below will be too short... */ static const Elemcount primes [] = { 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031, 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783, 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941, 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519, 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301, 10445899, 13579681, 17653589, 22949669, 29834603, 38784989, 50420551, 65546729, 85210757, 110774011, 144006217, 187208107, 243370577, 316381771, 411296309, 534685237, 695090819, 903618083, 1174703521, 1527114613, 1985248999 /* , 2580823717UL, 3355070839UL */ }; /* We've heard of binary search. */ int low, high; for (low = 0, high = countof (primes) - 1; high - low > 1;) { /* Loop Invariant: size < primes [high] */ int mid = (low + high) / 2; if (primes [mid] < requested_size) low = mid; else high = mid; } return primes [high]; } const void * gethash (const void *key, struct hash_table *hash_table, const void **ret_value) { if (!key) { *ret_value = hash_table->zero_entry; return (void *) hash_table->zero_set; } else { hentry *harray = hash_table->harray; hash_table_test_function test_function = hash_table->test_function; Elemcount size = hash_table->size; Hashcode hcode_initial = hash_table->hash_function ? hash_table->hash_function (key) : (Hashcode) key; Elemcount hcode = (Elemcount) (hcode_initial % size); hentry *e = &harray [hcode]; const void *e_key = e->key; if (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY) { Elemcount h2 = size - 2; Elemcount incr = (Elemcount) (1 + (hcode_initial % h2)); do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY); } *ret_value = e->contents; return e->key; } } void clrhash (struct hash_table *hash_table) { memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size); hash_table->zero_entry = 0; hash_table->zero_set = 0; hash_table->fullness = 0; } void free_hash_table (struct hash_table *hash_table) { xfree (hash_table->harray, hentry *); xfree (hash_table, struct hash_table *); } struct hash_table* make_hash_table (Elemcount size) { struct hash_table *hash_table = xnew_and_zero (struct hash_table); hash_table->size = hash_table_size (COMFORTABLE_SIZE (size)); hash_table->harray = xnew_array (hentry, hash_table->size); clrhash (hash_table); return hash_table; } struct hash_table * make_general_hash_table (Elemcount size, hash_table_hash_function hash_function, hash_table_test_function test_function) { struct hash_table* hash_table = make_hash_table (size); hash_table->hash_function = hash_function; hash_table->test_function = test_function; return hash_table; } static void grow_hash_table (struct hash_table *hash_table, Elemcount new_size) { Elemcount old_size = hash_table->size; hentry *old_harray = hash_table->harray; hash_table->size = hash_table_size (new_size); hash_table->harray = xnew_array (hentry, hash_table->size); /* do the rehash on the "grown" table */ { long old_zero_set = hash_table->zero_set; void *old_zero_entry = hash_table->zero_entry; clrhash (hash_table); hash_table->zero_set = old_zero_set; hash_table->zero_entry = old_zero_entry; rehash (old_harray, hash_table, old_size); } xfree (old_harray, hentry *); } void pregrow_hash_table_if_necessary (struct hash_table *hash_table, Elemcount breathing_room) { Elemcount comfortable_size = COMFORTABLE_SIZE (hash_table->fullness); if (hash_table->size < comfortable_size - breathing_room) grow_hash_table (hash_table, comfortable_size + 1); } void puthash (const void *key, void *contents, struct hash_table *hash_table) { if (!key) { hash_table->zero_entry = contents; hash_table->zero_set = 1; } else { hash_table_test_function test_function = hash_table->test_function; Elemcount size = hash_table->size; hentry *harray = hash_table->harray; Hashcode hcode_initial = hash_table->hash_function ? hash_table->hash_function (key) : (Hashcode) key; Elemcount hcode = (Elemcount) (hcode_initial % size); Elemcount h2 = size - 2; Elemcount incr = (Elemcount) (1 + (hcode_initial % h2)); const void *e_key = harray [hcode].key; const void *oldcontents; if (e_key && KEYS_DIFFER_P (e_key, key, test_function)) { do { hcode += incr; if (hcode >= size) hcode -= size; e_key = harray [hcode].key; } while (e_key && KEYS_DIFFER_P (e_key, key, test_function)); } oldcontents = harray [hcode].contents; harray [hcode].key = key; harray [hcode].contents = contents; /* If the entry that we used was a deleted entry, check for a non deleted entry of the same key, then delete it. */ if (!e_key && oldcontents == NULL_ENTRY) { hentry *e; do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key ? KEYS_DIFFER_P (e_key, key, test_function): e->contents == NULL_ENTRY); if (e_key) { e->key = 0; e->contents = NULL_ENTRY; } } /* only increment the fullness when we used up a new hentry */ if (!e_key || KEYS_DIFFER_P (e_key, key, test_function)) { Elemcount comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness)); if (hash_table->size < comfortable_size) grow_hash_table (hash_table, comfortable_size + 1); } } } static void rehash (hentry *harray, struct hash_table *hash_table, Elemcount size) { hentry *limit = harray + size; hentry *e; for (e = harray; e < limit; e++) { if (e->key) puthash (e->key, e->contents, hash_table); } } void remhash (const void *key, struct hash_table *hash_table) { if (!key) { hash_table->zero_entry = 0; hash_table->zero_set = 0; } else { hentry *harray = hash_table->harray; hash_table_test_function test_function = hash_table->test_function; Elemcount size = hash_table->size; Hashcode hcode_initial = (hash_table->hash_function) ? (hash_table->hash_function (key)) : ((Hashcode) key); Elemcount hcode = (Elemcount) (hcode_initial % size); hentry *e = &harray [hcode]; const void *e_key = e->key; if (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY) { Elemcount h2 = size - 2; Elemcount incr = (Elemcount) (1 + (hcode_initial % h2)); do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key? KEYS_DIFFER_P (e_key, key, test_function): e->contents == NULL_ENTRY); } if (e_key) { e->key = 0; e->contents = NULL_ENTRY; /* Note: you can't do fullness-- here, it breaks the world. */ } } } void maphash (maphash_function mf, struct hash_table *hash_table, void *arg) { hentry *e; hentry *limit; if (hash_table->zero_set) { if (mf (0, hash_table->zero_entry, arg)) return; } for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) { if (e->key && mf (e->key, e->contents, arg)) return; } } void map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg) { hentry *e; hentry *limit; if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg)) { hash_table->zero_set = 0; hash_table->zero_entry = 0; } for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) if (predicate (e->key, e->contents, arg)) { e->key = 0; e->contents = NULL_ENTRY; } }