view src/dumper.c @ 3257:a36e73a971a2

[xemacs-hg @ 2006-02-25 22:51:31 by viteno] Update xemacs_extra_name.
author viteno
date Sat, 25 Feb 2006 22:51:31 +0000
parents 503174cac05a
children d674024a8674
line wrap: on
line source

/* Portable data dumper for XEmacs.
   Copyright (C) 1999-2000,2004 Olivier Galibert
   Copyright (C) 2001 Martin Buchholz
   Copyright (C) 2001, 2002, 2003, 2004, 2005 Ben Wing.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

/* This file has been Mule-ized, Ben Wing, 10-10-04. */

/* #### Put in much more assertions.  Whenever we store fixups in the
   process or writing out data, make sure the fixups (offsets) point to the
   beginning of an object, i.e. are registered.  Same whenever we read in
   -- verify offsets as registered, and when compute a fixup, verify the
   pointer is pointing within the pdump area.  registered and check within
   pdump area.  For specific types of pointers (e.g. to Lisp_Objects),
   check if they're pointing to the right kinds of types.  It should be
   possible to check that a putative Lisp_Object is really a Lisp_Object
   since it will follow a strict format in its header. */

#include <config.h>
#include "lisp.h"

#include "specifier.h"
#include "file-coding.h"
#include "elhash.h"
#include "lstream.h"
#include "sysfile.h"
#include "console-stream.h"

#ifdef WIN32_NATIVE
#include "syswindows.h"
#else
#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif
#ifdef DUMP_IN_EXEC
#include "dump-data.h"
#endif
#endif

typedef struct
{
  const void *blockaddr;
  Bytecount size;
  const struct memory_description *desc;
} pdump_root_block;

typedef struct
{
  Dynarr_declare (pdump_root_block);
} pdump_root_block_dynarr;

typedef struct
{
  void **ptraddress;
  const struct sized_memory_description *desc;
} pdump_root_block_ptr;

typedef struct
{
  Dynarr_declare (pdump_root_block_ptr);
} pdump_root_block_ptr_dynarr;

typedef struct
{
  const void *object;
  void *data;
  Bytecount size;
  EMACS_INT offset;
  EMACS_INT dest_offset;
  EMACS_INT save_offset;
  const struct opaque_convert_functions *fcts;
} pdump_cv_data_info;

typedef struct 
{
  Dynarr_declare (pdump_cv_data_info);
} pdump_cv_data_info_dynarr;

typedef struct
{
  EMACS_INT dest_offset;
  EMACS_INT save_offset;
  Bytecount size;
} pdump_cv_data_dump_info;

typedef struct
{
  const void *object;
  void *data;
  Bytecount size;
  EMACS_INT index;
  EMACS_INT save_offset;
  const struct opaque_convert_functions *fcts;
} pdump_cv_ptr_info;

typedef struct 
{
  Dynarr_declare (pdump_cv_ptr_info);
} pdump_cv_ptr_info_dynarr;

typedef struct
{
  EMACS_INT save_offset;
  Bytecount size;
} pdump_cv_ptr_dump_info;

typedef struct
{
  EMACS_INT save_offset;
  Bytecount size;
  void *adr;
} pdump_cv_ptr_load_info;

typedef struct
{
  Lisp_Object *address;
  Lisp_Object value;
} pdump_static_Lisp_Object;

typedef struct
{
  Rawbyte **address; /* Rawbyte * for ease of doing relocation */
  Rawbyte * value;
} pdump_static_pointer;

static pdump_root_block_dynarr *pdump_root_blocks;
static pdump_root_block_ptr_dynarr *pdump_root_block_ptrs;
static Lisp_Object_ptr_dynarr *pdump_root_lisp_objects;
static Lisp_Object_ptr_dynarr *pdump_weak_object_chains;
static pdump_cv_data_info_dynarr *pdump_cv_data;
static pdump_cv_ptr_info_dynarr *pdump_cv_ptr;

/* Mark SIZE bytes at non-heap address BLOCKADDR for dumping, described
   by DESC.  Called by outside callers during XEmacs initialization.  */

void
dump_add_root_block (const void *blockaddr, Bytecount size,
		     const struct memory_description *desc)
{
  pdump_root_block info;
  info.blockaddr = blockaddr;
  info.size = size;
  info.desc = desc;
  if (pdump_root_blocks == NULL)
    pdump_root_blocks = Dynarr_new (pdump_root_block);
  Dynarr_add (pdump_root_blocks, info);
}

/* Mark the block described by DESC and pointed to by the pointer at
   non-heap address PTRADDRESS for dumping.
   All the objects reachable from this pointer will also be dumped.
   Called by outside callers during XEmacs initialization. */
void
dump_add_root_block_ptr (void *ptraddress,
			 const struct sized_memory_description *desc)
{
  pdump_root_block_ptr info;
  info.ptraddress = (void **) ptraddress;
  info.desc = desc;
  if (pdump_root_block_ptrs == NULL)
    pdump_root_block_ptrs = Dynarr_new (pdump_root_block_ptr);
  Dynarr_add (pdump_root_block_ptrs, info);
}

/* Mark the Lisp_Object at non-heap address VARADDRESS for dumping.
   All the objects reachable from this var will also be dumped.
   Called by outside callers during XEmacs initialization.  */
void
dump_add_root_lisp_object (Lisp_Object *varaddress)
{
  if (pdump_root_lisp_objects == NULL)
    pdump_root_lisp_objects = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *);
  Dynarr_add (pdump_root_lisp_objects, varaddress);
}

/* Mark the list pointed to by the Lisp_Object at VARADDRESS for dumping.
   Called by outside callers during XEmacs initialization.  */
void
dump_add_weak_object_chain (Lisp_Object *varaddress)
{
  if (pdump_weak_object_chains == NULL)
    pdump_weak_object_chains = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *);
  Dynarr_add (pdump_weak_object_chains, varaddress);
}


inline static void
pdump_align_stream (FILE *stream, Bytecount alignment)
{
  long offset = ftell (stream);
  long adjustment = ALIGN_SIZE (offset, alignment) - offset;
  if (adjustment)
    fseek (stream, adjustment, SEEK_CUR);
}

#define PDUMP_ALIGN_OUTPUT(type) pdump_align_stream (pdump_out, ALIGNOF (type))

#define PDUMP_WRITE(type, object) \
retry_fwrite (&object, sizeof (object), 1, pdump_out);

#define PDUMP_WRITE_ALIGNED(type, object) do {	\
  PDUMP_ALIGN_OUTPUT (type);			\
  PDUMP_WRITE (type, object);			\
} while (0)

#define PDUMP_READ(ptr, type) \
(((type *) (ptr = (Rawbyte *) (((type *) ptr) + 1)))[-1])

#define PDUMP_READ_ALIGNED(ptr, type) \
((ptr = (Rawbyte *) ALIGN_PTR (ptr, type)), PDUMP_READ (ptr, type))



typedef struct
{
  const struct memory_description *desc;
  int count;
} pdump_reloc_table;

static Rawbyte *pdump_rt_list = 0;

#ifndef MC_ALLOC
void
pdump_objects_unmark (void)
{
  int i;
  Rawbyte *p = pdump_rt_list;
  if (p)
    for (;;)
      {
	pdump_reloc_table *rt = (pdump_reloc_table *)p;
	p += sizeof (pdump_reloc_table);
	if (rt->desc)
	  {
	    for (i=0; i<rt->count; i++)
	      {
		struct lrecord_header *lh = * (struct lrecord_header **) p;
		if (! C_READONLY_RECORD_HEADER_P (lh))
		  UNMARK_RECORD_HEADER (lh);
		p += sizeof (EMACS_INT);
	      }
	  } else
	    break;
      }
}
#endif /* not MC_ALLOC */


#ifdef MC_ALLOC
/* The structure of the dump file looks like this:
 0		- header
		- dumped objects
 stab_offset	- mc allocation table (count, size, address) for individual
		  allocation and  relocation at load time.
        	- nb_cv_data*struct(dest, adr) for in-object externally
		  represented data
		- nb_cv_ptr*(adr) for pointed-to externally represented data
            	- relocation table
             	- nb_root_struct_ptrs*struct(void *, adr)
		  for global pointers to structures
		- nb_root_blocks*struct(void *, size, info) for global
		  objects to restore
		- root lisp object address/value couples with the count
		  preceding the list
 */
#else /* not MC_ALLOC */
/* The structure of the dump file looks like this:
 0		- header
		- dumped objects
 stab_offset	- nb_cv_data*struct(dest, adr) for in-object externally
		  represented data
		- nb_cv_ptr*(adr) for pointed-to externally represented data
 		- nb_root_block_ptrs*struct(void *, adr)
		  for global pointers to heap blocks
		- nb_root_blocks*struct(void *, size, info) for global
		  data-segment blocks to restore
		- relocation table
		- root lisp object address/value couples with the count
		  preceding the list
 */
#endif /* not MC_ALLOC */


#define PDUMP_SIGNATURE "XEmacsDP"
#define PDUMP_SIGNATURE_LEN (sizeof (PDUMP_SIGNATURE) - 1)

typedef struct
{
  char signature[PDUMP_SIGNATURE_LEN];
  unsigned int id;
  EMACS_UINT stab_offset;
  EMACS_UINT reloc_address;
  int nb_root_block_ptrs;
  int nb_root_blocks;
  int nb_cv_data;
  int nb_cv_ptr;
} pdump_header;

Rawbyte *pdump_start;
Rawbyte *pdump_end;
static Bytecount pdump_length;

static pdump_cv_data_dump_info *pdump_loaded_cv_data;
static pdump_cv_ptr_load_info  *pdump_loaded_cv_ptr;

#ifdef WIN32_NATIVE
/* Handle for the dump file */
static HANDLE pdump_hFile = INVALID_HANDLE_VALUE;
/* Handle for the file mapping object for the dump file */
static HANDLE pdump_hMap = INVALID_HANDLE_VALUE;
#endif

static void (*pdump_free) (void);

static unsigned char pdump_align_table[] =
{
  64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1,
  16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1,
  32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1,
  16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1
};

static inline int
pdump_size_to_align (Bytecount size)
{
  return pdump_align_table[size % countof (pdump_align_table)];
}

/************************************************************************/
/*                     Registering memory blocks                        */
/************************************************************************/

/* "Registering" or recording a heap memory block (which will need to be
   written out, reloaded and relocated, and to which there may be pointers
   from other heap blocks or from the data segment) happens both in a list
   and in a hash table.  There is a single hash table covering all
   registered blocks, but different lists for different kinds of blocks.
   There is one list for "opaque data" (stuff identified as
   XD_OPAQUE_DATA_PTR, XD_ASCII_STRING, XD_DOC_STRING), one list for each
   type of Lisp object, and one list for each different memory descriptor.
   This lets similar-sized and aligned objects be grouped together when
   they are written out, to save space.

   pdump_block_list is a list keeping track of registered memory blocks.
   pdump_block_list_elt is a single entry through the list, and the list is
   threaded through the NEXT pointer.  The information in this list
   associated with a particular block of memory is

   -- address of the beginning
   -- number of elements at that address
   -- size of each element
   -- offset to this block in the dumped data

   pdump_desc_list is a list keeping track of the various descriptions
   that we've seen.  The primary purpose of this is so that memory blocks
   can be grouped depending on the particular memory description
   appropriate for them.  The format of the list is different from
   pdump_block_list -- a single array is used. (#### Dynarr should have
   been used!!!).  The information in this list associated with a
   description is

   -- pointer to the description
   -- a pdump_block_list of blocks using that description

   Functions for working with lists of memory blocks:

   -- Add a memory block to a list using pdump_add_block()

   -- Get a memory block from a pointer to its beginning using
      pdump_get_block().  This uses the hash table, which lists everything.

   -- Return the memory-block list (pdump_block_list) associated with a
      descriptor, using pdump_get_block_list().  If no entry found in the
      pdump_desc_list, add a new one.

*/ 

typedef struct pdump_block_list_elt
{
  struct pdump_block_list_elt *next;
  const void *obj;
  Bytecount size;
  int count;
  EMACS_INT save_offset;
} pdump_block_list_elt;

typedef struct
{
  pdump_block_list_elt *first;
  int align;
  int count;
} pdump_block_list;

typedef struct pdump_desc_list_elt
{
  pdump_block_list list;
  const struct memory_description *desc;
} pdump_desc_list_elt;

typedef struct
{
  pdump_desc_list_elt *list;
  int count;
  int size;
} pdump_desc_list;

static pdump_block_list *pdump_object_table;
static pdump_block_list pdump_opaque_data_list;
static pdump_desc_list pdump_desc_table;

static int *pdump_alert_undump_object;

static unsigned long cur_offset;
static Bytecount max_size;
static int pdump_fd;
static void *pdump_buf;
static FILE *pdump_out;

#ifdef MC_ALLOC
/* PDUMP_HASHSIZE is a large prime. */
#define PDUMP_HASHSIZE        1000003
/* Nothing special about PDUMP_HASH_MULTIPLIER: arbitrary odd integer
   smaller than PDUMP_HASHSIZE. */
#define PDUMP_HASH_MULTIPLIER   12347
/* Nothing special about PDUMP_HASH_STEP: arbitrary integer for linear
   probing. */
#define PDUMP_HASH_STEP        574853
#else /* not MC_ALLOC */
#define PDUMP_HASHSIZE 200001
#endif /* not MC_ALLOC */

static pdump_block_list_elt **pdump_hash;

#ifndef MC_ALLOC
/* Since most pointers are eight bytes aligned, the >>3 allows for a better hash */
#endif /* not MC_ALLOC */
static int
pdump_make_hash (const void *obj)
{
#ifdef MC_ALLOC
  return ((unsigned long)(obj) * PDUMP_HASH_MULTIPLIER) % PDUMP_HASHSIZE;
#else /* not MC_ALLOC */
  return ((unsigned long)(obj)>>3) % PDUMP_HASHSIZE;
#endif /* not MC_ALLOC */
}

/* Return the entry for an already-registered memory block at OBJ,
   or NULL if none. */

static pdump_block_list_elt *
pdump_get_block (const void *obj)
{
  int pos = pdump_make_hash (obj);
  pdump_block_list_elt *e;

  assert (obj != 0);

  while ((e = pdump_hash[pos]) != 0)
    {
      if (e->obj == obj)
	return e;

      pos++;
      if (pos == PDUMP_HASHSIZE)
	pos = 0;
    }
  return 0;
}

/* Register a new memory block on Return the entry for an already-registered heap (?) memory block at OBJ,
   or NULL if none. */

static void
pdump_add_block (pdump_block_list *list, const void *obj, Bytecount size,
		 int count)
{
  pdump_block_list_elt *e;
  int pos = pdump_make_hash (obj);

  while ((e = pdump_hash[pos]) != 0)
    {
      if (e->obj == obj)
	return;

      pos++;
      if (pos == PDUMP_HASHSIZE)
	pos = 0;
    }

  e = xnew (pdump_block_list_elt);

  e->next = list->first;
  e->obj = obj;
  e->size = size;
  e->count = count;
  list->first = e;

  list->count += count;
  pdump_hash[pos] = e;

  {
    int align = pdump_size_to_align (size);

    if (align < list->align)
      list->align = align;
  }
}

#ifdef MC_ALLOC
typedef struct mc_addr_elt
{
  const void *obj;
  EMACS_INT addr;
} mc_addr_elt;

static mc_addr_elt *pdump_mc_hash;

/* Return the entry for an already-registered memory block at OBJ,
   or NULL if none. */
static EMACS_INT
pdump_get_mc_addr (const void *obj)
{
  int pos = pdump_make_hash (obj);
  mc_addr_elt *mc_addr;

  assert (obj != 0);

  while (((mc_addr = &pdump_mc_hash[pos]) != 0) && (mc_addr->obj != 0))
    {
      if (mc_addr->obj == obj)
	return mc_addr->addr;

      pos += PDUMP_HASH_STEP;
      if (pos >= PDUMP_HASHSIZE)
	pos -= PDUMP_HASHSIZE;
    }

  /* If this code is reached, an heap address occurred which has not
     been written to the lookup table before.
     This is a bug! */
  ABORT();
  return 0;
}

/* For indirect address lookups, needed for convertibles: Ptr points
   to an address within an object. Indirect gives the offset by how
   many bytes the address of the object has to be adjusted to do a
   lookup in the mc_addr translation table and get the new location of
   the data. */
#define pdump_get_indirect_mc_addr(ptr, indirect) \
  pdump_get_mc_addr ((void *)((ptr) - indirect)) + indirect

static void
pdump_put_mc_addr (const void *obj, EMACS_INT addr)
{
  mc_addr_elt *mc_addr;
  int pos = pdump_make_hash (obj);

  while (((mc_addr = &pdump_mc_hash[pos]) != 0) && (mc_addr->obj != 0))
    {
      if (mc_addr->obj == obj)
	return;

      pos += PDUMP_HASH_STEP;
      if (pos >= PDUMP_HASHSIZE)
	pos -= PDUMP_HASHSIZE;
    }

  pdump_mc_hash[pos].obj = obj;
  pdump_mc_hash[pos].addr = addr;
}
#endif /* MC_ALLOC */

static pdump_block_list *
pdump_get_block_list (const struct memory_description *desc)
{
  int i;
  for (i=0; i<pdump_desc_table.count; i++)
    if (pdump_desc_table.list[i].desc == desc)
      return &pdump_desc_table.list[i].list;

  if (pdump_desc_table.size <= pdump_desc_table.count)
    {
      if (pdump_desc_table.size == -1)
	pdump_desc_table.size = 10;
      else
	pdump_desc_table.size = pdump_desc_table.size * 2;
      pdump_desc_table.list = (pdump_desc_list_elt *)
	xrealloc (pdump_desc_table.list,
		  pdump_desc_table.size * sizeof (pdump_desc_list_elt));
    }
  pdump_desc_table.list[pdump_desc_table.count].list.first = 0;
  pdump_desc_table.list[pdump_desc_table.count].list.align = ALIGNOF (max_align_t);
  pdump_desc_table.list[pdump_desc_table.count].list.count = 0;
  pdump_desc_table.list[pdump_desc_table.count].desc = desc;

  return &pdump_desc_table.list[pdump_desc_table.count++].list;
}

static pdump_cv_ptr_info *
pdump_find_in_cv_ptr_dynarr(const void *object)
{
  int i;
  for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++)
    if (Dynarr_at (pdump_cv_ptr, i).object == object)
      return Dynarr_atp (pdump_cv_ptr, i);
  return 0;
}

#define BACKTRACE_MAX 65536

static struct
{
  struct lrecord_header *obj;
  int position;
  int offset;
} backtrace[BACKTRACE_MAX];

static int pdump_depth;

void
pdump_backtrace (void)
{
  int i;
  stderr_out ("pdump backtrace :\n");
  for (i = 0; i < pdump_depth; i++)
    {
      if (!backtrace[i].obj)
	stderr_out ("  - ind. (%d, %d)\n",
		    backtrace[i].position,
		    backtrace[i].offset);
      else
	{
	  stderr_out ("  - %s (%d, %d)\n",
		      LHEADER_IMPLEMENTATION (backtrace[i].obj)->name,
		      backtrace[i].position,
		      backtrace[i].offset);
	}
    }
}

static void
pdump_unsupported_dump_type (enum memory_description_type type,
			     int do_backtrace)
{
  stderr_out ("Unsupported dump type : %d\n", type);
#ifdef WIN32_NATIVE
  stderr_out ("Are you compiling with SUPPORT_EDIT_AND_CONTINUE?\n");
  stderr_out ("See the PROBLEMS file.\n");
#endif
  if (do_backtrace)
    pdump_backtrace ();
  ABORT ();
}

static void
pdump_bump_depth (void)
{
  int me = pdump_depth++;
  if (me >= BACKTRACE_MAX)
    {
      stderr_out ("Backtrace overflow, loop ?\n");
      ABORT ();
    }
  backtrace[me].obj = 0;
  backtrace[me].position = 0;
  backtrace[me].offset = 0;
}

static void pdump_register_object (Lisp_Object obj);
#ifdef NEW_GC
static void pdump_register_object_array (Lisp_Object data,
					 Bytecount size,
					 const struct memory_description *desc,
					 int count);
#endif /* NEW_GC */
static void pdump_register_block_contents (const void *data,
					   Bytecount size,
					   const struct memory_description *
					   desc,
					   int count);
static void pdump_register_block (const void *data,
				  Bytecount size,
				  const struct memory_description *desc,
				  int count);

static void
pdump_register_sub (const void *data, const struct memory_description *desc)
{
  int pos;
  int me = pdump_depth - 1;

  for (pos = 0; desc[pos].type != XD_END; pos++)
    {
      const struct memory_description *desc1 = &desc[pos];
      EMACS_INT offset = lispdesc_indirect_count (desc1->offset, desc,
						  data);
      const void *rdata = (const Rawbyte *) data + offset;

      backtrace[me].position = pos;
      backtrace[me].offset = offset;

    union_switcheroo:

      /* If the flag says don't dump, then don't dump. */
      if ((desc1->flags) & XD_FLAG_NO_PDUMP)
	continue;

      switch (desc1->type)
	{
	case XD_BYTECOUNT:
	case XD_ELEMCOUNT:
	case XD_HASHCODE:
	case XD_INT:
	case XD_LONG:
	case XD_INT_RESET:
	case XD_LO_LINK:
	  break;
	case XD_OPAQUE_DATA_PTR:
	  {
	    EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
						       data);

	    pdump_add_block (&pdump_opaque_data_list,
			     *(void **)rdata, count, 1);
	    break;
	  }
	case XD_ASCII_STRING:
	  {
	    const Ascbyte *str = * (const Ascbyte **) rdata;
	    if (str)
	      pdump_add_block (&pdump_opaque_data_list, str, strlen (str) + 1,
			       1);
	    break;
	  }
	case XD_DOC_STRING:
	  {
	    const Ascbyte *str = * (const Ascbyte **) rdata;
	    if ((EMACS_INT) str > 0)
	      pdump_add_block (&pdump_opaque_data_list, str, strlen (str) + 1,
			       1);
	    break;
	  }
	case XD_LISP_OBJECT:
	  {
	    const Lisp_Object *pobj = (const Lisp_Object *) rdata;

	    assert (desc1->data1 == 0);

	    backtrace[me].offset =
	      (const Rawbyte *) pobj - (const Rawbyte *) data;
	    pdump_register_object (*pobj);
	    break;
	  }
	case XD_LISP_OBJECT_ARRAY:
	  {
	    int i;
	    EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
						       data);

	    for (i = 0; i < count; i++)
	      {
		const Lisp_Object *pobj = ((const Lisp_Object *) rdata) + i;
		Lisp_Object dobj = *pobj;

		backtrace[me].offset =
		  (const Rawbyte *) pobj - (const Rawbyte *) data;
		pdump_register_object (dobj);
	      }
	    break;
	  }
#ifdef NEW_GC
	case XD_LISP_OBJECT_BLOCK_PTR:
	  {
	    EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
						       data);
	    const struct sized_memory_description *sdesc =
	      lispdesc_indirect_description (data, desc1->data2.descr);
	    const Lisp_Object *pobj = (const Lisp_Object *) rdata;
	    if (pobj)
	      pdump_register_object_array 
		(*pobj, sdesc->size, sdesc->description, count);
	    break;
	  }
#endif /* NEW_GC */
	case XD_BLOCK_PTR:
	  {
	    EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
						       data);
	    const struct sized_memory_description *sdesc =
	      lispdesc_indirect_description (data, desc1->data2.descr);
	    const Rawbyte *dobj = *(const Rawbyte **)rdata;
	    if (dobj)
	      pdump_register_block (dobj, sdesc->size, sdesc->description,
				    count);
	    break;
	  }
	case XD_BLOCK_ARRAY:
	  {
	    EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
						       data);
	    const struct sized_memory_description *sdesc =
	      lispdesc_indirect_description (data, desc1->data2.descr);

	    pdump_register_block_contents (rdata, sdesc->size,
					   sdesc->description, count);
	    break;
	  }
	case XD_UNION:
	case XD_UNION_DYNAMIC_SIZE:
	  desc1 = lispdesc_process_xd_union (desc1, desc, data);
	  if (desc1)
	    goto union_switcheroo;
	  break;
	case XD_OPAQUE_PTR_CONVERTIBLE:
	  {
	    pdump_cv_ptr_info info;
	    info.object = *(void **)rdata;
	    info.fcts = desc1->data2.funcs;
	    if (!pdump_find_in_cv_ptr_dynarr (info.object))
	      {
		info.fcts->convert(info.object, &info.data, &info.size);
		Dynarr_add (pdump_cv_ptr, info);
	      }
	    break;
	  }
	case XD_OPAQUE_DATA_CONVERTIBLE:
	  {
	    pdump_cv_data_info info;
	    info.object = data;
	    info.offset = offset;
	    info.fcts = desc1->data2.funcs;

	    info.fcts->convert(rdata, &info.data, &info.size);
	    Dynarr_add (pdump_cv_data, info);
	    break;
	  }

	default:
	  pdump_unsupported_dump_type (desc1->type, 1);
	}
    }
}

static void
pdump_register_object (Lisp_Object obj)
{
  struct lrecord_header *objh;
  const struct lrecord_implementation *imp;

  if (!POINTER_TYPE_P (XTYPE (obj)))
    return;

  objh = XRECORD_LHEADER (obj);
  if (!objh)
    return;

  if (pdump_get_block (objh))
    return;

  imp = LHEADER_IMPLEMENTATION (objh);

  if (imp->description
      && RECORD_DUMPABLE (objh))
    {
      pdump_bump_depth ();
      backtrace[pdump_depth - 1].obj = objh;
      pdump_add_block (pdump_object_table + objh->type,
		       objh, detagged_lisp_object_size (objh), 1);
      pdump_register_sub (objh, imp->description);
      --pdump_depth;
    }
  else
    {
      pdump_alert_undump_object[objh->type]++;
      stderr_out ("Undumpable object type : %s\n", imp->name);
      pdump_backtrace ();
    }
}

#ifdef NEW_GC
static void
pdump_register_object_array (Lisp_Object obj,
			     Bytecount size,
			     const struct memory_description *desc,
			     int count)
{
  struct lrecord_header *objh;
  const struct lrecord_implementation *imp;

  if (!POINTER_TYPE_P (XTYPE (obj)))
    return;

  objh = XRECORD_LHEADER (obj);
  if (!objh)
    return;

  if (pdump_get_block (objh))
    return;

  imp = LHEADER_IMPLEMENTATION (objh);

  if (imp->description
      && RECORD_DUMPABLE (objh))
    {
      pdump_bump_depth ();
      backtrace[pdump_depth - 1].obj = objh;
      pdump_add_block (pdump_object_table + objh->type,
		       objh, lispdesc_block_size_1 (objh, size, desc), count);
      pdump_register_block_contents (objh, size, desc, count);
      --pdump_depth;
    }
  else
    {
      pdump_alert_undump_object[objh->type]++;
      stderr_out ("Undumpable object type : %s\n", imp->name);
      pdump_backtrace ();
    }
}
#endif /* NEW_GC */

/* Register the referenced objects in the array of COUNT blocks located at
   DATA; each block is described by SIZE and DESC.  "Block" here simply
   means any block of memory.

   This does not register the block of memory itself; it may, for
   example, be an array of structures inlined in another memory block
   and thus should not be registered.  See pdump_register_block(),
   which does register the memory block. */

static void
pdump_register_block_contents (const void *data,
			       Bytecount size,
			       const struct memory_description *desc,
			       int count)
{
  int i;
  Bytecount elsize;

  pdump_bump_depth ();
  elsize = lispdesc_block_size_1 (data, size, desc);
  for (i = 0; i < count; i++)
    {
      pdump_register_sub (((Rawbyte *) data) + elsize * i, desc);
    }
  --pdump_depth;
}

/* Register the array of COUNT blocks located at DATA; each block is
   described by SDESC.  "Block" here simply means any block of memory,
   which is more accurate and less confusing than terms like `struct' and
   `object'.  A `block' need not actually be a C "struct".  It could be a
   single integer or Lisp_Object, for example, as long as the description
   is accurate.

   This is like pdump_register_block_contents() but also registers
   the memory block itself. */

static void
pdump_register_block (const void *data,
		      Bytecount size,
		      const struct memory_description *desc,
		      int count)
{
  if (data && !pdump_get_block (data))
    {
      pdump_add_block (pdump_get_block_list (desc), data,
		       lispdesc_block_size_1 (data, size, desc), count);
      pdump_register_block_contents (data, size, desc, count);
    }
}


/* Store the already-calculated new pointer offsets for all pointers in the
   COUNT contiguous blocks of memory, each described by DESC and of size
   SIZE, whose original is located at ORIG_DATA and the modifiable copy at
   DATA.  We examine the description to figure out where the pointers are,
   and then look up the replacement values using pdump_get_block().

   This is done just before writing the modified block of memory to the
   dump file.  The new pointer offsets have been carefully calculated so
   that the data being pointed gets written at that offset in the dump
   file.  That way, the dump file is a correct memory image except perhaps
   for a constant that needs to be added to all pointers. (#### In fact, we
   SHOULD be starting up a dumped XEmacs, seeing where the dumped file gets
   loaded into memory, and then rewriting the dumped file after relocating
   all the pointers relative to this memory location.  That way, if the
   file gets loaded again at the same location, which will be common, we
   don't have to do any relocating, which is both faster at startup and
   allows the read-only part of the dumped data to be shared read-only
   between different invocations of XEmacs.)

   #### Do we distinguish between read-only and writable dumped data?
   Should we?  It's tricky because the dumped data, once loaded again,
   cannot really be free()d or garbage collected since it's all stored in
   one contiguous block of data with no malloc() headers, and we don't keep
   track of the pointers used internally in malloc() and the Lisp allocator
   to track allocated blocks of memory. */

static void
pdump_store_new_pointer_offsets (int count, void *data, const void *orig_data,
				 const struct memory_description *desc,
				 int size)
{
  int pos, i;
  /* Process each block one by one */
  for (i = 0; i < count; i++)
    {
      /* CUR points to the beginning of each block in the new data. */
      Rawbyte *cur = ((Rawbyte *)data) + i * size;
      /* Scan each line of the description for relocatable pointers */
      for (pos = 0; desc[pos].type != XD_END; pos++)
	{
	  /* RDATA points to the beginning of each element in the new data. */
	  const struct memory_description *desc1 = &desc[pos];
	  /* #### Change ORIG_DATA to DATA.  See below. */
	  void *rdata = cur + lispdesc_indirect_count (desc1->offset, desc,
						       orig_data);
	union_switcheroo:

	  /* If the flag says don't dump, then don't dump. */
	  if ((desc1->flags) & XD_FLAG_NO_PDUMP)
	    continue;

	  switch (desc1->type)
	    {
	    case XD_BYTECOUNT:
	    case XD_ELEMCOUNT:
	    case XD_HASHCODE:
	    case XD_INT:
	    case XD_LONG:
	      break;
	    case XD_INT_RESET:
	      {
		EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc,
							 orig_data);
		* (int *) rdata = val;
		break;
	      }
#ifdef NEW_GC
	    case XD_LISP_OBJECT_BLOCK_PTR:
#endif /* NEW_GC */
	    case XD_OPAQUE_DATA_PTR:
	    case XD_ASCII_STRING:
	    case XD_BLOCK_PTR:
	      {
		void *ptr = * (void **) rdata;
		if (ptr)
		  * (EMACS_INT *) rdata = pdump_get_block (ptr)->save_offset;
		break;
	      }
	    case XD_LO_LINK:
	      {
		/* As described in lrecord.h, this is a weak link.
                   Thus, we need to link this object not (necessarily)
                   to the object directly pointed to, but to the next
                   referenced object in the chain.  None of the
                   intermediate objects will be written out, so we
                   traverse down the chain of objects until we find a
                   referenced one. (The Qnil or Qunbound that ends the
                   chain will always be a referenced object.) */
		Lisp_Object obj = * (Lisp_Object *) rdata;
		pdump_block_list_elt *elt1;
		/* #### Figure out how to handle indirect offsets here.
		   #### In general, when computing indirect counts, do we
		   really need to use the orig_data pointer?  Why not just
		   use the new stuff?

		   No, we don't usually need orig_data.  We only need it
		   when fetching pointers out of the data, not integers.
		   This currently occurs only with description maps.  We
		   should change the other places to DATA to emphasize
		   this. */
		assert (!XD_IS_INDIRECT (desc1->offset));
		for (;;)
		  {
		    elt1 = pdump_get_block (XRECORD_LHEADER (obj));
		    if (elt1)
		      break;
		    obj = * (Lisp_Object *) (desc1->offset +
					     (Rawbyte *)
					     (XRECORD_LHEADER (obj)));
		  }
		* (EMACS_INT *) rdata = elt1->save_offset;
		break;
	      }
	    case XD_LISP_OBJECT:
	      {
		Lisp_Object *pobj = (Lisp_Object *) rdata;

		assert (desc1->data1 == 0);

		if (POINTER_TYPE_P (XTYPE (*pobj)) && XRECORD_LHEADER (*pobj))
		  * (EMACS_INT *) pobj =
		    pdump_get_block (XRECORD_LHEADER (*pobj))->save_offset;
		break;
	      }
	    case XD_LISP_OBJECT_ARRAY:
	      {
		EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
							 orig_data);
		int j;

		for (j = 0; j < num; j++)
		  {
		    Lisp_Object *pobj = ((Lisp_Object *) rdata) + j;
		    if (POINTER_TYPE_P (XTYPE (*pobj)) &&
			XRECORD_LHEADER (*pobj))
		      * (EMACS_INT *) pobj =
			pdump_get_block (XRECORD_LHEADER (*pobj))->save_offset;
		  }
		break;
	      }
	    case XD_DOC_STRING:
	      {
		EMACS_INT str = *(EMACS_INT *)rdata;
		if (str > 0)
		  * (EMACS_INT *) rdata =
		    pdump_get_block ((void *)str)->save_offset;
		break;
	      }
	    case XD_BLOCK_ARRAY:
	      {
		EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
							 orig_data);
		const struct sized_memory_description *sdesc =
		  lispdesc_indirect_description (orig_data, desc1->data2.descr);

		pdump_store_new_pointer_offsets
		  (num, rdata,
		   ((Rawbyte *) rdata - (Rawbyte *) data) +
		   (Rawbyte *) orig_data,
		   sdesc->description,
		   lispdesc_block_size
		   (((Rawbyte *) rdata - (Rawbyte *) data) +
		    (Rawbyte *) orig_data, sdesc));
		break;
	      }
	    case XD_UNION:
	    case XD_UNION_DYNAMIC_SIZE:
	      desc1 = lispdesc_process_xd_union (desc1, desc, orig_data);
	      if (desc1)
		goto union_switcheroo;
	      break;

	    case XD_OPAQUE_PTR_CONVERTIBLE:
	      *(EMACS_INT *)rdata = pdump_find_in_cv_ptr_dynarr (*(void **)rdata)->index;
	      break;

	    case XD_OPAQUE_DATA_CONVERTIBLE:
	      /* in-object, nothing to do */
	      break;

	    default:
	      pdump_unsupported_dump_type (desc1->type, 0);
	    }
	}
    }
}

/* Write out to global file descriptor PDUMP_OUT the element (one or
   more contiguous blocks of identical size/description) recorded in
   ELT and described by DESC.  The element is first copied to a buffer
   and then all pointers (this includes Lisp_Objects other than
   integer/character) are relocated to the (pre-computed) offset in
   the dump file. */

static void
pdump_dump_data (pdump_block_list_elt *elt,
		 const struct memory_description *desc)
{
  Bytecount size = elt->size;
  int count = elt->count;
  if (desc)
    {
      /* Copy to temporary buffer */
      memcpy (pdump_buf, elt->obj, size*count);

      /* Store new offsets into all pointers in block */
      pdump_store_new_pointer_offsets (count, pdump_buf, elt->obj, desc, size);
    }
  retry_fwrite (desc ? pdump_buf : elt->obj, size, count, pdump_out);
}

#ifdef MC_ALLOC
/* To be able to relocate during load time, more information about the
   dumped objects are needed: The count (for array-like data
   structures), the size of the object, and the location in the dumped
   data.
 */
static void
pdump_dump_mc_data (pdump_block_list_elt *elt,
		   const struct memory_description *UNUSED(desc))
{
  EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset;
  int j;
  PDUMP_WRITE_ALIGNED (int, elt->count);
  PDUMP_WRITE_ALIGNED (Bytecount, elt->size);
  for (j = 0; j < elt->count; j++)
    {
      PDUMP_WRITE_ALIGNED (EMACS_INT, rdata);
      rdata += elt->size;
    }
}

static void
pdump_scan_lisp_objects_by_alignment (void (*f)
				      (pdump_block_list_elt *,
				       const struct memory_description *))
{
  int align;

  for (align = ALIGNOF (max_align_t); align; align>>=1)
    {
      int i;
      pdump_block_list_elt *elt;

      for (i=0; i<lrecord_type_count; i++)
	if (pdump_object_table[i].align == align)
	  for (elt = pdump_object_table[i].first; elt; elt = elt->next)
	    {
#ifndef NEW_GC
	      assert (elt->count == 1);
#endif /* not NEW_GC */
	      f (elt, lrecord_implementations_table[i]->description);
	    }
    }
}

static void
pdump_scan_non_lisp_objects_by_alignment (void (*f)
					  (pdump_block_list_elt *,
					   const struct memory_description *))
{
  int align;

  for (align = ALIGNOF (max_align_t); align; align>>=1)
    {
      int i;
      pdump_block_list_elt *elt;

      for (i=0; i<pdump_desc_table.count; i++)
	{
	  pdump_desc_list_elt list = pdump_desc_table.list[i];
	  if (list.list.align == align)
	    for (elt = list.list.first; elt; elt = elt->next)
	      f (elt, list.desc);
	}

      for (elt = pdump_opaque_data_list.first; elt; elt = elt->next)
	if (pdump_size_to_align (elt->size) == align)
	  f (elt, 0);
    }
}



static void
pdump_reloc_one_mc (void *data, const struct memory_description *desc)
{
  int pos;

  for (pos = 0; desc[pos].type != XD_END; pos++)
    {
      const struct memory_description *desc1 = &desc[pos];
      void *rdata =
	(Rawbyte *) data + lispdesc_indirect_count (desc1->offset,
							desc, data);

    union_switcheroo:

      /* If the flag says don't dump, then don't dump. */
      if ((desc1->flags) & XD_FLAG_NO_PDUMP)
	continue;

      switch (desc1->type)
	{
	case XD_BYTECOUNT:
	case XD_ELEMCOUNT:
	case XD_HASHCODE:
	case XD_INT:
	case XD_LONG:
	case XD_INT_RESET:
	  break;
#ifdef NEW_GC
	case XD_LISP_OBJECT_BLOCK_PTR:
#endif /* NEW_GC */
	case XD_OPAQUE_DATA_PTR:
	case XD_ASCII_STRING:
	case XD_BLOCK_PTR:
	case XD_LO_LINK:
	  {
	    EMACS_INT ptr = *(EMACS_INT *) rdata;
	    if (ptr)
	      *(EMACS_INT *) rdata = pdump_get_mc_addr ((void *) ptr);
	    break;
	  }
	case XD_LISP_OBJECT:
	  {
	    Lisp_Object *pobj = (Lisp_Object *) rdata;

	    assert (desc1->data1 == 0);

	    if (POINTER_TYPE_P (XTYPE (*pobj))
		&& ! EQ (*pobj, Qnull_pointer))
	      *pobj = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr 
				      (XPNTR (*pobj)));
	    break;
	  }
	case XD_LISP_OBJECT_ARRAY:
	  {
	    EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
						     data);
	    int j;

	    for (j=0; j<num; j++)
	      {
		Lisp_Object *pobj = (Lisp_Object *) rdata + j;

		if (POINTER_TYPE_P (XTYPE (*pobj))
		    && ! EQ (*pobj, Qnull_pointer))
		  *pobj = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr 
					  (XPNTR (*pobj)));
	      }
	    break;
	  }
	case XD_DOC_STRING:
	  {
	    EMACS_INT str = *(EMACS_INT *) rdata;
	    if (str > 0)
	      *(EMACS_INT *) rdata = pdump_get_mc_addr ((void *) str);
	    break;
	  }
	case XD_BLOCK_ARRAY:
	  {
	    EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
						     data);
	    int j;
	    const struct sized_memory_description *sdesc =
	      lispdesc_indirect_description (data, desc1->data2.descr);
	    Bytecount size = lispdesc_block_size (rdata, sdesc);

	    /* Note: We are recursing over data in the block itself */
	    for (j = 0; j < num; j++)
	      pdump_reloc_one_mc ((Rawbyte *) rdata + j * size,
				  sdesc->description);

	    break;
	  }
	case XD_UNION:
	case XD_UNION_DYNAMIC_SIZE:
	  desc1 = lispdesc_process_xd_union (desc1, desc, data);
	  if (desc1)
	    goto union_switcheroo;
	  break;

	case XD_OPAQUE_PTR_CONVERTIBLE:
	  {
	    pdump_cv_ptr_load_info *p = pdump_loaded_cv_ptr + *(EMACS_INT *)rdata;
	    if (!p->adr)
	      p->adr = desc1->data2.funcs->deconvert(0, 
						     pdump_start + p->save_offset,
						     p->size);
	    *(void **)rdata = p->adr;
	    break;
	  }

	case XD_OPAQUE_DATA_CONVERTIBLE:
	  {
	    EMACS_INT dest_offset = (EMACS_INT) rdata;
	    EMACS_INT indirect = 
	      lispdesc_indirect_count (desc1->offset, desc, data);
	    pdump_cv_data_dump_info *p;

	    for(p = pdump_loaded_cv_data; 
		pdump_get_indirect_mc_addr (p->dest_offset, indirect)
		  != dest_offset; 
		p++);

	    desc1->data2.funcs->deconvert(rdata, pdump_start + p->save_offset,
					  p->size);
	    break;
	  }

	default:
	  pdump_unsupported_dump_type (desc1->type, 0);
	}
    }
}
#else /* not MC_ALLOC */
/* Relocate a single memory block at DATA, described by DESC, from its
   assumed load location to its actual one by adding DELTA to all pointers
   in the block.  Does not recursively relocate any other memory blocks
   pointed to. (We already have a list of all memory blocks in the dump
   file.)  This is used once the dump data has been loaded back in, both
   for blocks sitting in the dumped data (former heap blocks) and in global
   data-sgment blocks whose contents have been restored from the dumped
   data. */

static void
pdump_reloc_one (void *data, EMACS_INT delta,
		 const struct memory_description *desc)
{
  int pos;

  for (pos = 0; desc[pos].type != XD_END; pos++)
    {
      const struct memory_description *desc1 = &desc[pos];
      void *rdata =
	(Rawbyte *) data + lispdesc_indirect_count (desc1->offset,
							desc, data);

    union_switcheroo:

      /* If the flag says don't dump, then don't dump. */
      if ((desc1->flags) & XD_FLAG_NO_PDUMP)
	continue;

      switch (desc1->type)
	{
	case XD_BYTECOUNT:
	case XD_ELEMCOUNT:
	case XD_HASHCODE:
	case XD_INT:
	case XD_LONG:
	case XD_INT_RESET:
	  break;
	case XD_OPAQUE_DATA_PTR:
	case XD_ASCII_STRING:
	case XD_BLOCK_PTR:
	case XD_LO_LINK:
	  {
	    EMACS_INT ptr = *(EMACS_INT *)rdata;
	    if (ptr)
	      *(EMACS_INT *)rdata = ptr+delta;
	    break;
	  }
	case XD_LISP_OBJECT:
	  {
	    Lisp_Object *pobj = (Lisp_Object *) rdata;

	    assert (desc1->data1 == 0);

	    if (POINTER_TYPE_P (XTYPE (*pobj))
		&& ! EQ (*pobj, Qnull_pointer))
	      *pobj = wrap_pointer_1 ((Rawbyte *) XPNTR (*pobj) + delta);

	    break;
	  }
	case XD_LISP_OBJECT_ARRAY:
	  {
	    EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
						     data);
	    int j;

	    for (j=0; j<num; j++)
	      {
		Lisp_Object *pobj = (Lisp_Object *) rdata + j;

		if (POINTER_TYPE_P (XTYPE (*pobj))
		    && ! EQ (*pobj, Qnull_pointer))
		  *pobj = wrap_pointer_1 ((Rawbyte *) XPNTR (*pobj) +
					  delta);
	      }
	    break;
	  }
	case XD_DOC_STRING:
	  {
	    EMACS_INT str = *(EMACS_INT *)rdata;
	    if (str > 0)
	      *(EMACS_INT *)rdata = str + delta;
	    break;
	  }
	case XD_BLOCK_ARRAY:
	  {
	    EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
						     data);
	    int j;
	    const struct sized_memory_description *sdesc =
	      lispdesc_indirect_description (data, desc1->data2.descr);
	    Bytecount size = lispdesc_block_size (rdata, sdesc);

	    /* Note: We are recursing over data in the block itself */
	    for (j = 0; j < num; j++)
	      pdump_reloc_one ((Rawbyte *) rdata + j * size, delta,
			       sdesc->description);

	    break;
	  }
	case XD_UNION:
	case XD_UNION_DYNAMIC_SIZE:
	  desc1 = lispdesc_process_xd_union (desc1, desc, data);
	  if (desc1)
	    goto union_switcheroo;
	  break;

	case XD_OPAQUE_PTR_CONVERTIBLE:
	  {
	    pdump_cv_ptr_load_info *p = pdump_loaded_cv_ptr + *(EMACS_INT *)rdata;
	    if (!p->adr)
	      p->adr = desc1->data2.funcs->deconvert(0, pdump_start +
						     p->save_offset, p->size);
	    *(void **)rdata = p->adr;
	    break;
	  }

	case XD_OPAQUE_DATA_CONVERTIBLE:
	  {
	    EMACS_INT dest_offset = (Rawbyte *)rdata - pdump_start;
	    pdump_cv_data_dump_info *p;

	    for(p = pdump_loaded_cv_data; p->dest_offset != dest_offset; p++);

	    desc1->data2.funcs->deconvert(rdata, pdump_start + p->save_offset,
					  p->size);
	    break;
	  }

	default:
	  pdump_unsupported_dump_type (desc1->type, 0);
	}
    }
}
#endif /* not MC_ALLOC */

static void
pdump_allocate_offset (pdump_block_list_elt *elt,
		       const struct memory_description *UNUSED (desc))
{
  Bytecount size = elt->count * elt->size;
  elt->save_offset = cur_offset;
  if (size > max_size)
    max_size = size;
  cur_offset += size;
}

/* Write out to global file descriptor PDUMP_OUT the result of an
   external element.  It's just opaque data. */

static void
pdump_dump_cv_data (pdump_cv_data_info *elt)
{
  retry_fwrite (elt->data, elt->size, 1, pdump_out);
}

static void
pdump_dump_cv_ptr (pdump_cv_ptr_info *elt)
{
  retry_fwrite (elt->data, elt->size, 1, pdump_out);
}

static void
pdump_allocate_offset_cv_data (pdump_cv_data_info *elt)
{
  elt->save_offset = cur_offset;
  if (elt->size>max_size)
    max_size = elt->size;
  cur_offset += elt->size;
}

static void
pdump_allocate_offset_cv_ptr (pdump_cv_ptr_info *elt)
{
  elt->save_offset = cur_offset;
  if (elt->size>max_size)
    max_size = elt->size;
  cur_offset += elt->size;
}

/* Traverse through all the heap blocks, once the "register" stage of
   dumping has finished.  To compress space as much as possible, we
   logically sort all blocks by alignment, hitting all blocks with
   alignment == the maximum (which may be 8 bytes, for doubles), then
   all blocks with the next lower alignment (4 bytes), etc.

   Within each alignment we hit

   -- first the Lisp objects, type-by-type

   -- then the heap memory blocks that are not Lisp objects, description-by-
      description -- i.e. all blocks with the same description will be
      placed together

   -- then the "opaque" data objects declared as XD_OPAQUE_DATA_PTR,
      XD_ASCII_STRING and XD_DOC_STRING.

   The idea is to have as little blank space as possible in the laid-out
   data.

   For each item that we have hit, we process it by calling F, the function
   passed it.  In dumper.c, pdump_scan_by_alignment() is called twice with
   two different functions -- pdump_allocate_offset() in stage 2 to compute
   the offset to each block, and pdump_dump_data() in stage 3 to
   successively write each block to disk.

   It's extremely important that the SAME traversal order gets invoked
   in both stage 2 and 3.
*/

static void
pdump_scan_by_alignment (void (*f)(pdump_block_list_elt *,
				   const struct memory_description *),
			 void (*g)(pdump_cv_data_info *),
			 void (*h)(pdump_cv_ptr_info *))
{
  int align;

  for (align = ALIGNOF (max_align_t); align; align>>=1)
    {
      int i;
      pdump_block_list_elt *elt;

      for (i=0; i<lrecord_type_count; i++)
	if (pdump_object_table[i].align == align)
	  for (elt = pdump_object_table[i].first; elt; elt = elt->next)
	    f (elt, lrecord_implementations_table[i]->description);

      for (i=0; i<pdump_desc_table.count; i++)
	{
	  pdump_desc_list_elt list = pdump_desc_table.list[i];
	  if (list.list.align == align)
	    for (elt = list.list.first; elt; elt = elt->next)
	      f (elt, list.desc);
	}

      for (elt = pdump_opaque_data_list.first; elt; elt = elt->next)
	if (pdump_size_to_align (elt->size) == align)
	  f (elt, 0);

      for (i=0; i < Dynarr_length (pdump_cv_data); i++)
	if (pdump_size_to_align (Dynarr_atp (pdump_cv_data, i)->size) == align)
	  g (Dynarr_atp (pdump_cv_data, i));

      for (i=0; i < Dynarr_length (pdump_cv_ptr); i++)
	if (pdump_size_to_align (Dynarr_atp (pdump_cv_ptr, i)->size) == align)
	  h (Dynarr_atp (pdump_cv_ptr, i));
    }
}

static void
pdump_dump_cv_data_info (void)
{
  int i;
  Elemcount count = Dynarr_length (pdump_cv_data);
  pdump_cv_data_dump_info *data = alloca_array (pdump_cv_data_dump_info, count);
  for (i = 0; i < count; i++)
    {
      data[i].dest_offset = Dynarr_at (pdump_cv_data, i).dest_offset;
      data[i].save_offset = Dynarr_at (pdump_cv_data, i).save_offset;
      data[i].size        = Dynarr_at (pdump_cv_data, i).size;
    }

  PDUMP_ALIGN_OUTPUT (pdump_cv_data_dump_info);
  retry_fwrite (data, sizeof (pdump_cv_data_dump_info), count, pdump_out); 
}

static void
pdump_dump_cv_ptr_info (void)
{
  int i;
  Elemcount count = Dynarr_length (pdump_cv_ptr);
  pdump_cv_ptr_dump_info *data = alloca_array (pdump_cv_ptr_dump_info, count);
  for (i = 0; i < count; i++)
    {
      data[i].save_offset = Dynarr_at (pdump_cv_ptr, i).save_offset;
      data[i].size        = Dynarr_at (pdump_cv_ptr, i).size;
    }

  PDUMP_ALIGN_OUTPUT (pdump_cv_ptr_dump_info);
  retry_fwrite (data, sizeof (pdump_cv_ptr_dump_info), count, pdump_out); 
}

/* Dump out the root block pointers, part of stage 3 (the "WRITE" stage) of
   dumping.  For each pointer we dump out a structure containing the
   location of the pointer and its value, replaced by the appropriate
   offset into the dumped data. */

static void
pdump_dump_root_block_ptrs (void)
{
  int i;
  Elemcount count = Dynarr_length (pdump_root_block_ptrs);
  pdump_static_pointer *data = alloca_array (pdump_static_pointer, count);
  for (i = 0; i < count; i++)
    {
      data[i].address =
	(Rawbyte **) Dynarr_atp (pdump_root_block_ptrs, i)->ptraddress;
      data[i].value   =
	(Rawbyte *) pdump_get_block (* data[i].address)->save_offset;
    }
  PDUMP_ALIGN_OUTPUT (pdump_static_pointer);
  retry_fwrite (data, sizeof (pdump_static_pointer), count, pdump_out);
}

/* Dump out the root blocks, part of stage 3 (the "WRITE" stage) of
   dumping.  For each block we dump a structure containing info about the
   block (its location, size and description) and then the block itself,
   with its pointers replaced with offsets into the dump data. */

static void
pdump_dump_root_blocks (void)
{
  int i;
  for (i = 0; i < Dynarr_length (pdump_root_blocks); i++)
    {
      pdump_root_block info = Dynarr_at (pdump_root_blocks, i);
      PDUMP_WRITE_ALIGNED (pdump_root_block, info);

      if (info.desc)
	{
	  /* Copy to temporary buffer */
	  memcpy (pdump_buf, info.blockaddr, info.size);

	  /* Store new offsets into all pointers in block */
	  pdump_store_new_pointer_offsets (1, pdump_buf, info.blockaddr,
					   info.desc, info.size);
	}
      retry_fwrite (info.desc ? pdump_buf : info.blockaddr,
		    info.size, 1, pdump_out);
    }
}

static void
pdump_dump_rtables (void)
{
  int i;
  pdump_block_list_elt *elt;
  pdump_reloc_table rt;

  for (i=0; i<lrecord_type_count; i++)
    {
      elt = pdump_object_table[i].first;
      if (!elt)
	continue;
      rt.desc = lrecord_implementations_table[i]->description;
      rt.count = pdump_object_table[i].count;
      PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt);
      while (elt)
	{
	  EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset;
#ifdef NEW_GC
	  int j;
	  for (j=0; j<elt->count; j++)
	    {
	      PDUMP_WRITE_ALIGNED (EMACS_INT, rdata);
	      rdata += elt->size;
	    }
#else /* not NEW_GC */
	  PDUMP_WRITE_ALIGNED (EMACS_INT, rdata);
#endif /* not NEW_GC */
	  elt = elt->next;
	}
    }

  rt.desc = 0;
  rt.count = 0;
  PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt);

  for (i=0; i<pdump_desc_table.count; i++)
    {
      elt = pdump_desc_table.list[i].list.first;
      rt.desc = pdump_desc_table.list[i].desc;
      rt.count = pdump_desc_table.list[i].list.count;
      PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt);
      while (elt)
	{
	  EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset;
	  int j;
	  for (j=0; j<elt->count; j++)
	    {
	      PDUMP_WRITE_ALIGNED (EMACS_INT, rdata);
	      rdata += elt->size;
	    }
	  elt = elt->next;
	}
    }
  rt.desc = 0;
  rt.count = 0;
  PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt);
}

static void
pdump_dump_root_lisp_objects (void)
{
  Elemcount count = (Dynarr_length (pdump_root_lisp_objects) +
			 Dynarr_length (pdump_weak_object_chains));
  Elemcount i;

  PDUMP_WRITE_ALIGNED (Elemcount, count);
  PDUMP_ALIGN_OUTPUT (pdump_static_Lisp_Object);

  for (i = 0; i < Dynarr_length (pdump_root_lisp_objects); i++)
    {
      pdump_static_Lisp_Object obj;
      obj.address = Dynarr_at (pdump_root_lisp_objects, i);
      obj.value   = * obj.address;

      if (POINTER_TYPE_P (XTYPE (obj.value)))
	obj.value =
	  wrap_pointer_1 ((void *) pdump_get_block (XRECORD_LHEADER
						    (obj.value))->save_offset);

      PDUMP_WRITE (pdump_static_Lisp_Object, obj);
    }

  for (i = 0; i < Dynarr_length (pdump_weak_object_chains); i++)
    {
      pdump_block_list_elt *elt;
      pdump_static_Lisp_Object obj;

      obj.address = Dynarr_at (pdump_weak_object_chains, i);
      obj.value   = * obj.address;

      for (;;)
	{
	  const struct memory_description *desc;
	  int pos;
	  elt = pdump_get_block (XRECORD_LHEADER (obj.value));
	  if (elt)
	    break;
	  desc = XRECORD_LHEADER_IMPLEMENTATION (obj.value)->description;
	  for (pos = 0; desc[pos].type != XD_LO_LINK; pos++)
	    assert (desc[pos].type != XD_END);

	  /* #### Figure out how to handle indirect offsets here. */
	  assert (!XD_IS_INDIRECT (desc[pos].offset));
	  obj.value =
	    * (Lisp_Object *) (desc[pos].offset +
			       (Rawbyte *) (XRECORD_LHEADER (obj.value)));
	}
      obj.value = wrap_pointer_1 ((void *) elt->save_offset);

      PDUMP_WRITE (pdump_static_Lisp_Object, obj);
    }
}


/*########################################################################
  #                             Pdump                                    #
  ########################################################################

  [ben]

  DISCUSSION OF DUMPING:

  The idea of dumping is to record the state of XEmacs in a file, so that
  it can be reloaded later.  This avoids having to reload all of the basic
  Lisp code each time XEmacs is run, which is a rather time-consuming
  process.  (Less so on new machines, but still noticeable.  As an example
  of a program with similar issues but which does not have a dumping
  process and as a result has a slow startup time, consider Adobe Photoshop
  5.0 or Adobe Photoshop Elements 2.0.)

  We don't actually record ALL the state of XEmacs (some of it, for example,
  is dependent on the run-time environment and needs to be initialized
  whenever XEmacs is run), but whatever state we don't record needs to be
  reinitialized every time XEmacs is run.

  The old way of dumping was to make a new executable file with the data
  segment expanded to contain the heap and written out from memory.  This
  is what the unex* files do.  Unfortunately this process is extremely
  system-specific and breaks easily with OS changes.

  Another simple, more portable trick, the "static heap" method, involves
  replacing the allocator with our own allocator which allocates all space
  out of a very large array declared in our data segment until we run out,
  then uses the underlying malloc() to start allocating on the heap.  If we
  ensure that the large array is big enough to hold all data allocated
  during the dump stage, then all of the data we need to save is in the
  data segment, and it's easy to calculate the location and size of the
  data segment we want to save (we don't want to record and reinitialize
  the data segment of library functions) by using appropriately declared
  variables in the first and last file linked.  This method is known as the
  "static heap" method, and is used by the non-pdump version of the dumper
  under Cygwin, and was also used under VMS and in Win-Emacs.

  The "static heap" method works well in practice.  Nonetheless, a more
  complex method of dumping was written by Olivier Galibert, which requires
  that structural descriptions of all data allocated in the heap be provided
  and the roots of all pointers into the heap be noted through function calls
  to the pdump API.  This way, all the heap data can be traversed and written
  out to a file, and then reloaded at run-time and the pointers relocated to
  point at the new location of the loaded data.  This is the "pdump" method
  used in this file.

  There are two potential advantages of "pdump" over the "static heap":

  (1) It doesn't require any tricks to calculate the beginning and end of
      the data segment, or even that the XEmacs section of the data segment
      be contiguous. (It's not clear whether this is an issue in practice.)
  (2) Potentially, it could handle an OS that does not always load the
      static data segment at a predictable location.  The "static heap"
      method by its nature needs the data segment to stay in the same place
      from invocation to invocation, since it simply dumps out memory and
      reloads it, without any pointer relocation.  I say "potentially"
      because as it is currently written pdump does assume that the data
      segment is never relocated.  However, changing pdump to remove this
      assumption is probably not difficult, as all the mechanism to handle
      pointer relocation is already present.


  DISCUSSION OF PDUMP WORKINGS:

  See man/internals/internals.texi for more information.

  NOTE that we have two kinds of memory to handle: memory on the heap
  (i.e. allocated through malloc()) or the like, and static memory in the
  data segment of the program, i.e. stuff declared as global or static.
  All heap memory needs to be written out to the dump file and reproduced
  (i.e. reloaded and any necessary relocations performed).  Data-segment
  memory that is not statically initialized (i.e. through declarations in
  the C code) needs either to be written out and reloaded, or
  reinitialized.  In addition, any pointers in data-segment memory to heap
  memory must be written out, reloaded and relocated.

  NOTE that we currently don't handle relocation of pointers into data-
  segment memory. (See overview discussion above.) These are treated in
  the descriptions as opaque data not needing relocation.  If this becomes a
  problem, it can be fixed through new kinds of types in
  enum memory_description_type.

  Three basic steps to dumping out:

  (1) "REGISTER":
      Starting with all sources of relocatable memory (currently this means
      all data-segment pointers to heap memory -- see above about pointers
      to data-segment memory), recursively traverse the tree of pointers
      and "register" (make a note of) every memory block seen.

  (2) "LAYOUT":
      Go through all of the registered blocks and compute the location of
      each one in the dump data (i.e. the "offset" that will be added to
      the address corresponding to start of the loaded-in data to get the
      new pointer referring to this block).  The blocks will be laid out
      sequentially according to the order we traverse them.  Also note the
      maximum-sized block for use in step 3.

  (3) "WRITE":
      After writing some header stuff, go through all of the registered
      blocks and write out each one to the dump file.  Note that we are
      simply writing out the blocks sequentially as we see them, and our
      traversal path is identical to that in step 2, so blocks will end up
      at the locations computed for them.  In order to write out a block,
      first copy it to a temporary location (hence the maximum-block-size
      computation in the previous step), then for each relocatable pointer
      in the block, write in its place the offset to the heap block in the
      dump data.  When the dump data is loaded, the address of the
      beginning of the dump data will be added to the offset in each
      pointer, and thence become accurate.

  --ben
*/

void
pdump (void)
{
  int i;
  Lisp_Object t_console, t_device, t_frame;
  int none;
  pdump_header header;

  in_pdump = 1;

  pdump_object_table = xnew_array (pdump_block_list, lrecord_type_count);
  pdump_alert_undump_object = xnew_array (int, lrecord_type_count);

  assert (ALIGNOF (max_align_t) <= pdump_align_table[0]);

  for (i = 0; i < countof (pdump_align_table); i++)
    if (pdump_align_table[i] > ALIGNOF (max_align_t))
      pdump_align_table[i] = ALIGNOF (max_align_t);

  flush_all_buffer_local_cache ();

  /* These appear in a DEFVAR_LISP, which does a staticpro() */
  t_console = Vterminal_console; Vterminal_console = Qnil;
  t_frame   = Vterminal_frame;   Vterminal_frame   = Qnil;
  t_device  = Vterminal_device;  Vterminal_device  = Qnil;

  dump_add_opaque (&lrecord_implementations_table,
		   lrecord_type_count *
		   sizeof (lrecord_implementations_table[0]));
#ifdef USE_KKCC  
  dump_add_opaque (&lrecord_memory_descriptions,
		   lrecord_type_count 
		   * sizeof (lrecord_memory_descriptions[0]));
#else /* not USE_KKCC */
  dump_add_opaque (&lrecord_markers,
		   lrecord_type_count * sizeof (lrecord_markers[0]));
#endif /* not USE_KKCC */

  pdump_hash = xnew_array_and_zero (pdump_block_list_elt *, PDUMP_HASHSIZE);

  for (i = 0; i<lrecord_type_count; i++)
    {
      pdump_object_table[i].first = 0;
      pdump_object_table[i].align = ALIGNOF (max_align_t);
      pdump_object_table[i].count = 0;
      pdump_alert_undump_object[i] = 0;
    }
  pdump_desc_table.count = 0;
  pdump_desc_table.size = -1;

  pdump_opaque_data_list.first = 0;
  pdump_opaque_data_list.align = ALIGNOF (max_align_t);
  pdump_opaque_data_list.count = 0;
  pdump_depth = 0;

  pdump_cv_data = Dynarr_new2 (pdump_cv_data_info_dynarr, pdump_cv_data_info);
  pdump_cv_ptr  = Dynarr_new2 (pdump_cv_ptr_info_dynarr,  pdump_cv_ptr_info);

  /* (I) The "register" stage: Note all heap memory blocks to be relocated
     */

  /* Try various roots of accessibility: */

  /* (1) Lisp objects, both those declared using DEFVAR_LISP*() and  those
         staticpro()d. */
  for (i = 0; i < Dynarr_length (pdump_root_lisp_objects); i++)
    pdump_register_object (* Dynarr_at (pdump_root_lisp_objects, i));

  none = 1;
  for (i = 0; i < lrecord_type_count; i++)
    if (pdump_alert_undump_object[i])
      {
	if (none)
	  stderr_out ("Undumpable types list :\n");
	none = 0;
	stderr_out ("  - %s (%d)\n", lrecord_implementations_table[i]->name,
		    pdump_alert_undump_object[i]);
      }
  if (!none)
    {
      in_pdump = 0;
      return;
    }

  /* (2) Register out the data-segment pointer variables to heap blocks */
  for (i = 0; i < Dynarr_length (pdump_root_block_ptrs); i++)
    {
      pdump_root_block_ptr info = Dynarr_at (pdump_root_block_ptrs, i);
      pdump_register_block (*(info.ptraddress), info.desc->size,
			    info.desc->description, 1);
    }

  /* (3) Register out the data-segment blocks, maybe with pointers to heap
     blocks */
  for (i = 0; i < Dynarr_length (pdump_root_blocks); i++)
    {
      pdump_root_block *info = Dynarr_atp (pdump_root_blocks, i);
      if (info->desc)
	{
	  /* Size may have been given as 0 meaning "compute later".
	     Compute now and update.  If no DESC, size must always be
	     correct as there is no other way of computing it. */
	  info->size = lispdesc_block_size_1 (info->blockaddr, info->size,
					      info->desc);
	  pdump_register_block_contents (info->blockaddr, info->size,
					 info->desc, 1);
	}
    }

  /* (II) The "layout" stage: Compute the offsets and max-size */

  /* (1) Determine header size */
  memcpy (header.signature, PDUMP_SIGNATURE, PDUMP_SIGNATURE_LEN);
  header.id = dump_id;
  header.reloc_address = 0;
  header.nb_root_block_ptrs = Dynarr_length (pdump_root_block_ptrs);
  header.nb_root_blocks = Dynarr_length (pdump_root_blocks);
  header.nb_cv_data = Dynarr_length (pdump_cv_data);
  header.nb_cv_ptr =  Dynarr_length (pdump_cv_ptr);

  cur_offset = MAX_ALIGN_SIZE (sizeof (header));
  max_size = 0;

  /* (2) Traverse all heap blocks and compute their offsets; keep track
         of maximum block size seen */
  pdump_scan_by_alignment (pdump_allocate_offset,
			   pdump_allocate_offset_cv_data,
			   pdump_allocate_offset_cv_ptr);
  cur_offset = MAX_ALIGN_SIZE (cur_offset);
  header.stab_offset = cur_offset;

  /* (3) Update maximum size based on root (data-segment) blocks */
  for (i = 0; i < Dynarr_length (pdump_root_blocks); i++)
    {
      pdump_root_block info = Dynarr_at (pdump_root_blocks, i);

      /* If no DESC, no relocation needed and we copy directly instead of
	 into a temp buffer. */
      if (info.desc)
	{
	  if (info.size > max_size)
	    max_size = info.size;
	}
    }

  /* (III) The "write "stage: Dump out the data, storing the offsets in
           place of pointers whenever we write out memory blocks */

  pdump_buf = xmalloc (max_size);
  /* EMACS_PROGNAME is entirely ASCII so this should be Mule-safe */
  pdump_fd = open (EMACS_PROGNAME ".dmp",
		   O_WRONLY | O_CREAT | O_TRUNC | OPEN_BINARY, 0666);
  if (pdump_fd < 0)
    report_file_error ("Unable to open dump file",
		       build_string (EMACS_PROGNAME ".dmp"));
  pdump_out = fdopen (pdump_fd, "w");
  if (pdump_out < 0)
    report_file_error ("Unable to open dump file for writing",
		       build_string (EMACS_PROGNAME ".dmp"));

  retry_fwrite (&header, sizeof (header), 1, pdump_out);
  PDUMP_ALIGN_OUTPUT (max_align_t);

  for (i = 0; i < Dynarr_length (pdump_cv_data); i++)
    {
      pdump_cv_data_info *elt = Dynarr_atp (pdump_cv_data, i);
      elt->dest_offset =
	pdump_get_block (elt->object)->save_offset + elt->offset;
    }

  for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++)
    Dynarr_at (pdump_cv_ptr, i).index = i;

  pdump_scan_by_alignment (pdump_dump_data, pdump_dump_cv_data, pdump_dump_cv_ptr);

  for (i = 0; i < Dynarr_length (pdump_cv_data); i++)
    {
      pdump_cv_data_info *elt = Dynarr_atp (pdump_cv_data, i);
      if(elt->fcts->convert_free)
	elt->fcts->convert_free(elt->object, elt->data, elt->size);
    }

  for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++)
    {
      pdump_cv_ptr_info *elt = Dynarr_atp (pdump_cv_ptr, i);
      if(elt->fcts->convert_free)
	elt->fcts->convert_free(elt->object, elt->data, elt->size);
    }

  fseek (pdump_out, header.stab_offset, SEEK_SET);

#ifdef MC_ALLOC
  {
    EMACS_INT zero = 0;
    pdump_scan_lisp_objects_by_alignment (pdump_dump_mc_data);
    PDUMP_WRITE_ALIGNED (EMACS_INT, zero);
    pdump_scan_non_lisp_objects_by_alignment (pdump_dump_mc_data);
    PDUMP_WRITE_ALIGNED (EMACS_INT, zero);
  }
#endif /* MC_ALLOC */
  pdump_dump_cv_data_info ();
  pdump_dump_cv_ptr_info ();
#ifdef MC_ALLOC
  pdump_dump_rtables ();
#endif /* MC_ALLOC */
  pdump_dump_root_block_ptrs ();
  pdump_dump_root_blocks ();
#ifndef MC_ALLOC
  pdump_dump_rtables ();
#endif /* not MC_ALLOC */
  pdump_dump_root_lisp_objects ();

  retry_fclose (pdump_out);
  retry_close (pdump_fd);

  free (pdump_buf);

  free (pdump_hash);

  Vterminal_console = t_console;
  Vterminal_frame   = t_frame;
  Vterminal_device  = t_device;
  in_pdump = 0;
}

static int
pdump_load_check (void)
{
  return (!memcmp (((pdump_header *) pdump_start)->signature,
		   PDUMP_SIGNATURE, PDUMP_SIGNATURE_LEN)
	  && ((pdump_header *)pdump_start)->id == dump_id);
}

/*----------------------------------------------------------------------*/
/*			Reading the dump file				*/
/*----------------------------------------------------------------------*/
static int
pdump_load_finish (void)
{
  int i;
  Rawbyte *p;
  EMACS_INT delta;
  EMACS_INT count;
  pdump_header *header = (pdump_header *) pdump_start;

#ifdef NEW_GC
  /* This is a DEFVAR_BOOL and gets dumped, but the actual value was
     already determined by vdb_install_signal_handler () in
     vdb-mprotect.c, which could be different from the value in the
     dump file. So store it here and restore it after loading the dump
     file. */
  int allow_inc_gc = allow_incremental_gc;
#endif /* NEW_GC */
  pdump_end = pdump_start + pdump_length;

  delta = ((EMACS_INT) pdump_start) - header->reloc_address;
  p = pdump_start + header->stab_offset;

#ifdef MC_ALLOC
  pdump_mc_hash = xnew_array_and_zero (mc_addr_elt, PDUMP_HASHSIZE);

  /* Allocate space for each object individually. First the
     Lisp_Objects, then the blocks. */
  count = 2;
  for (;;)
    {
      EMACS_INT elt_count = PDUMP_READ_ALIGNED (p, EMACS_INT);
      if (elt_count)
	{
	  Rawbyte *mc_addr = 0;
	  Bytecount size = PDUMP_READ_ALIGNED (p, Bytecount);
	  for (i = 0; i < elt_count; i++)
	    {
	      EMACS_INT rdata = PDUMP_READ_ALIGNED (p, EMACS_INT);
	  
	      if (i == 0)
		{
		  Bytecount real_size = size * elt_count;
		  if (count == 2)
		    {
		      if (elt_count <= 1)
			mc_addr = (Rawbyte *) mc_alloc (real_size);
#ifdef NEW_GC
		      else 
			mc_addr = (Rawbyte *) mc_alloc_array (size, elt_count);
#endif /* NEW_GC */
#ifdef ALLOC_TYPE_STATS
		      inc_lrecord_stats (real_size, 
					 (const struct lrecord_header *) 
					 ((Rawbyte *) rdata + delta));
#endif /* ALLOC_TYPE_STATS */
		    }
		  else
		    mc_addr = (Rawbyte *) xmalloc_and_zero (real_size);
		}
	      else
		mc_addr += size;
	  
	      pdump_put_mc_addr ((void *) rdata, (EMACS_INT) mc_addr);
	      memcpy (mc_addr, (Rawbyte *) rdata + delta, size);
	    }
	}
      else if (!(--count))
	break;
    }
#endif /* MC_ALLOC */

  /* Get the cv_data array */
  p = (Rawbyte *) ALIGN_PTR (p, pdump_cv_data_dump_info);
  pdump_loaded_cv_data = (pdump_cv_data_dump_info *)p;
  p += header->nb_cv_data*sizeof(pdump_cv_data_dump_info);

  /* Build the cv_ptr array */
  p = (Rawbyte *) ALIGN_PTR (p, pdump_cv_ptr_dump_info);
  pdump_loaded_cv_ptr =
    alloca_array (pdump_cv_ptr_load_info, header->nb_cv_ptr);
  for (i = 0; i < header->nb_cv_ptr; i++)
    {
      pdump_cv_ptr_dump_info info = PDUMP_READ (p, pdump_cv_ptr_dump_info);
      pdump_loaded_cv_ptr[i].save_offset = info.save_offset;
      pdump_loaded_cv_ptr[i].size        = info.size;
      pdump_loaded_cv_ptr[i].adr         = 0;
    }

#ifdef MC_ALLOC
  /* Relocate the heap objects */
  pdump_rt_list = p;
  count = 2;
  for (;;)
    {
      pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table);
      p = (Rawbyte *) ALIGN_PTR (p, Rawbyte *);
      if (rt.desc)
	{
	  Rawbyte **reloc = (Rawbyte **) p;
	  for (i = 0; i < rt.count; i++)
	    {
	      reloc[i] = (Rawbyte *) pdump_get_mc_addr (reloc[i]);
	      pdump_reloc_one_mc (reloc[i], rt.desc);
	    }
	  p += rt.count * sizeof (Rawbyte *);
	}
      else if (!(--count))
	  break;
    }
#endif /* MC_ALLOC */

  /* Put back the pdump_root_block_ptrs */
  p = (Rawbyte *) ALIGN_PTR (p, pdump_static_pointer);
  for (i = 0; i < header->nb_root_block_ptrs; i++)
    {
      pdump_static_pointer ptr = PDUMP_READ (p, pdump_static_pointer);
#ifdef MC_ALLOC
      (* ptr.address) = (Rawbyte *) pdump_get_mc_addr (ptr.value);
#else /* not MC_ALLOC */
      (* ptr.address) = ptr.value + delta;
#endif /* not MC_ALLOC */
    }

  /* Put back the pdump_root_blocks and relocate */
  for (i = 0; i < header->nb_root_blocks; i++)
    {
      pdump_root_block info = PDUMP_READ_ALIGNED (p, pdump_root_block);
      memcpy ((void *) info.blockaddr, p, info.size);
      if (info.desc)
#ifdef MC_ALLOC
	pdump_reloc_one_mc ((void *) info.blockaddr, info.desc);
#else /* not MC_ALLOC */
	pdump_reloc_one ((void *) info.blockaddr, delta, info.desc);
#endif /* not MC_ALLOC */
      p += info.size;
    }

#ifndef MC_ALLOC
  /* Relocate the heap objects */
  pdump_rt_list = p;
  count = 2;
  for (;;)
    {
      pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table);
      p = (Rawbyte *) ALIGN_PTR (p, Rawbyte *);
      if (rt.desc)
	{
	  Rawbyte **reloc = (Rawbyte **) p;
	  for (i = 0; i < rt.count; i++)
	    {
	      reloc[i] += delta;
	      pdump_reloc_one (reloc[i], delta, rt.desc);
	    }
	  p += rt.count * sizeof (Rawbyte *);
	}
      else if (!(--count))
	  break;
    }
#endif /* not MC_ALLOC */

  /* Put the pdump_root_lisp_objects variables in place */
  i = PDUMP_READ_ALIGNED (p, Elemcount);
  p = (Rawbyte *) ALIGN_PTR (p, pdump_static_Lisp_Object);
  while (i--)
    {
      pdump_static_Lisp_Object obj = PDUMP_READ (p, pdump_static_Lisp_Object);

      if (POINTER_TYPE_P (XTYPE (obj.value)))
#ifdef MC_ALLOC
	obj.value = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr 
				    (XPNTR (obj.value)));
#else /* not MC_ALLOC */
        obj.value = wrap_pointer_1 ((Rawbyte *) XPNTR (obj.value) + delta);
#endif /* not MC_ALLOC */

      (* obj.address) = obj.value;
    }

  /* Final cleanups */
  /*   reorganize hash tables */
  p = pdump_rt_list;
  for (;;)
    {
      pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table);
      p = (Rawbyte *) ALIGN_PTR (p, Lisp_Object);
      if (!rt.desc)
	break;
      if (rt.desc == hash_table_description)
	{
	  for (i = 0; i < rt.count; i++)
	    pdump_reorganize_hash_table (PDUMP_READ (p, Lisp_Object));
	  break;
	}
      else
	p += sizeof (Lisp_Object) * rt.count;
    }

#ifdef MC_ALLOC
  xfree (pdump_mc_hash, mc_addr_elt *);
#endif /* MC_ALLOC */

#ifdef NEW_GC
  allow_incremental_gc = allow_inc_gc;
#endif /* NEW_GC */

  return 1;
}

#ifdef WIN32_NATIVE
/* Free the mapped file if we decide we don't want it after all */
static void
pdump_file_unmap (void)
{
  UnmapViewOfFile (pdump_start);
  CloseHandle (pdump_hFile);
  CloseHandle (pdump_hMap);
}

static int
pdump_file_get (const Wexttext *wpath)
{
  Extbyte *path;
  if (XEUNICODE_P)
    path = (Extbyte *) wpath;
  else
    path = WEXTTEXT_TO_MULTIBYTE (wpath);

  pdump_hFile =
    qxeCreateFile (path,
		   GENERIC_READ + GENERIC_WRITE,  /* Required for copy on
						     write */
		   0,		            /* Not shared */
		   NULL,		    /* Not inheritable */
		   OPEN_EXISTING,
		   FILE_ATTRIBUTE_NORMAL,
		   NULL);		    /* No template file */
  if (pdump_hFile == INVALID_HANDLE_VALUE)
    return 0;

  pdump_length = GetFileSize (pdump_hFile, NULL);
  pdump_hMap =
    qxeCreateFileMapping (pdump_hFile,
			  NULL,           /* No security attributes */
			  PAGE_WRITECOPY, /* Copy on write */
			  0,              /* Max size, high half */
			  0,              /* Max size, low half */
			  NULL);          /* Unnamed */
  if (pdump_hMap == INVALID_HANDLE_VALUE)
    return 0;

  pdump_start =
    (Rawbyte *) MapViewOfFile (pdump_hMap,
				   FILE_MAP_COPY, /* Copy on write */
				   0,	      /* Start at zero */
				   0,
				   0);	      /* Map all of it */
  pdump_free = pdump_file_unmap;
  return 1;
}

/* pdump_resource_free is called (via the pdump_free pointer) to release
   any resources allocated by pdump_resource_get.  Since the Windows API
   specs specifically state that you don't need to (and shouldn't) free the
   resources allocated by FindResource, LoadResource, and LockResource this
   routine does nothing.  */
static void
pdump_resource_free (void)
{
}

static int
pdump_resource_get (void)
{
  HRSRC hRes;			/* Handle to dump resource */
  HRSRC hResLoad;		/* Handle to loaded dump resource */

  /* See Q126630 which describes how Windows NT and 95 trap writes to
     resource sections and duplicate the page to allow the write to proceed.
     It also describes how to make the resource section read/write (and hence
     private to each process).  Doing this avoids the exceptions and related
     overhead, but causes the resource section to be private to each process
     that is running XEmacs.  Since the resource section contains little
     other than the dumped data, which should be private to each process, we
     make the whole resource section read/write so we don't have to copy it. */

  hRes = FindResourceA (NULL, MAKEINTRESOURCE (101), "DUMP");
  if (hRes == NULL)
    return 0;

  /* Found it, use the data in the resource */
  hResLoad = (HRSRC) LoadResource (NULL, hRes);
  if (hResLoad == NULL)
    return 0;

  pdump_start = (Rawbyte *) LockResource (hResLoad);
  if (pdump_start == NULL)
    return 0;

  pdump_free = pdump_resource_free;
  pdump_length = SizeofResource (NULL, hRes);
  if (pdump_length <= (Bytecount) sizeof (pdump_header))
    {
      pdump_start = 0;
      return 0;
    }

  return 1;
}

#else /* !WIN32_NATIVE */

static void
pdump_file_free (void)
{
  xfree (pdump_start, Rawbyte *);
}

#ifdef HAVE_MMAP
static void
pdump_file_unmap (void)
{
  munmap (pdump_start, pdump_length);
}
#endif

static int
pdump_file_get (const Wexttext *path)
{
  int fd = wext_retry_open (path, O_RDONLY | OPEN_BINARY);
  if (fd < 0)
    return 0;

  pdump_length = lseek (fd, 0, SEEK_END);
  if (pdump_length < (Bytecount) sizeof (pdump_header))
    {
      retry_close (fd);
      return 0;
    }

  lseek (fd, 0, SEEK_SET);

#ifdef HAVE_MMAP
/* Unix 98 requires that sys/mman.h define MAP_FAILED,
   but many earlier implementations don't. */
# ifndef MAP_FAILED
#  define MAP_FAILED ((void *) -1L)
# endif
  pdump_start =
    (Rawbyte *) mmap (0, pdump_length, PROT_READ|PROT_WRITE, MAP_PRIVATE,
			  fd, 0);
  if (pdump_start != (Rawbyte *) MAP_FAILED)
    {
      pdump_free = pdump_file_unmap;
      retry_close (fd);
      return 1;
    }
#endif /* HAVE_MMAP */

  pdump_start = xnew_array (Rawbyte, pdump_length);
  pdump_free = pdump_file_free;
  retry_read (fd, pdump_start, pdump_length);

  retry_close (fd);
  return 1;
}

#ifdef DUMP_IN_EXEC
static int
pdump_ram_try (void)
{
  pdump_start = dumped_data_get ();
  pdump_length = dumped_data_size ();

  return pdump_load_check ();
}
#endif

#endif /* !WIN32_NATIVE */


static int
pdump_file_try (Wexttext *exe_path)
{
  Wexttext *w = exe_path + wext_strlen (exe_path);

  /* We look for various names, including those with the version and dump ID,
     those with just the dump ID, and those without either.  We first try
     adding directly to the executable name, then lopping off any extension
     (e.g. .exe) or version name in the executable (xemacs-21.5.18). */
  do
    {
      wext_sprintf (w, WEXTSTRING ("-%s-%08x.dmp"), WEXTSTRING (EMACS_VERSION),
		    dump_id);
      if (pdump_file_get (exe_path))
	{
	  if (pdump_load_check ())
	    return 1;
	  pdump_free ();
	}

      wext_sprintf (w, WEXTSTRING ("-%08x.dmp"), dump_id);
      if (pdump_file_get (exe_path))
	{
	  if (pdump_load_check ())
	    return 1;
	  pdump_free ();
	}

      wext_sprintf (w, WEXTSTRING (".dmp"));
      if (pdump_file_get (exe_path))
	{
	  if (pdump_load_check ())
	    return 1;
	  pdump_free ();
	}

      do
	w--;
      /* !!#### See comment below about how this is unsafe. */
      while (w > exe_path && !IS_DIRECTORY_SEP (*w) && (*w != '-') &&
	     (*w != '.'));
    }
  while (w > exe_path && !IS_DIRECTORY_SEP (*w));
  return 0;
}

int
pdump_load (const Wexttext *argv0)
{
#ifdef WIN32_NATIVE
  Wexttext *exe_path = NULL;
  int bufsize = 4096;
  int cchpathsize;
#define DUMP_SLACK 100 /* Enough to include dump ID, version name, .DMP */

  /* Copied from mswindows_get_module_file_name ().  Not clear if it's
     kosher to malloc() yet. */
  while (1)
    {
      exe_path = alloca_array (Wexttext, bufsize);
      cchpathsize = qxeGetModuleFileName (NULL, (Extbyte *) exe_path,
					  bufsize);
      if (!cchpathsize)
	goto fail;
      if (cchpathsize + DUMP_SLACK <= bufsize)
	break;
      bufsize *= 2;
    }

  if (!XEUNICODE_P)
    {
      Wexttext *wexe = MULTIBYTE_TO_WEXTTEXT ((Extbyte *) exe_path);
      wext_strcpy (exe_path, wexe);
    }
#else /* !WIN32_NATIVE */
  Wexttext *exe_path;
  Wexttext *w;
  const Wexttext *dir, *p;

#ifdef DUMP_IN_EXEC
  if (pdump_ram_try ())
    {
      pdump_load_finish ();
      in_pdump = 0;
      return 1;
    }
#endif

  in_pdump = 1;
  dir = argv0;
  if (dir[0] == '-')
    {
      /* XEmacs as a login shell, oh goody! */
      dir = wext_getenv ("SHELL"); /* not egetenv -- not yet initialized and we
				      want external-format data */
    }

  p = dir + wext_strlen (dir);
  /* !!#### This is bad as it may fail with certain non-ASCII-compatible
     external formats such as JIS.  Maybe we should be using the mb*()
     routines in libc?  But can we reliably trust them on all Unix
     platforms?  (We can't convert to internal since those conversion
     routines aren't yet initialized) */
  while (p != dir && !IS_ANY_SEP (p[-1]))
    p--;

  if (p != dir)
    {
      /* invocation-name includes a directory component -- presumably it
	 is relative to cwd, not $PATH */
      exe_path = alloca_array (Wexttext, 1 + wext_strlen (dir));
      wext_strcpy (exe_path, dir);
    }
  else
    {
      const Wexttext *path = wext_getenv ("PATH"); /* not egetenv --
						     not yet init. */
      const Wexttext *name = p;
      exe_path = alloca_array (Wexttext,
			       10 + max (wext_strlen (name),
					 wext_strlen (path)));
      for (;;)
	{
	  p = path;
	  while (*p && *p != SEPCHAR)
	    p++;
	  if (p == path)
	    {
	      exe_path[0] = '.';
	      w = exe_path + 1;
	    }
	  else
	    {
	      memcpy (exe_path, path, (p - path) * sizeof (Wexttext));
	      w = exe_path + (p - path);
	    }
	  if (!IS_DIRECTORY_SEP (w[-1]))
	    *w++ = '/';
	  wext_strcpy (w, name);

	  {
	    struct stat statbuf;
	    if (wext_access (exe_path, X_OK) == 0
		&& wext_stat (exe_path, &statbuf) == 0
		&& ! S_ISDIR (statbuf.st_mode))
	      break;
	  }

	  if (!*p)
	    {
	      /* Oh well, let's have some kind of default */
	      wext_sprintf (exe_path, "./%s", name);
	      break;
	    }
	  path = p + 1;
	}
    }
#endif /* WIN32_NATIVE */

  if (pdump_file_try (exe_path))
    {
      pdump_load_finish ();
      in_pdump = 0;
#ifdef MC_ALLOC
      pdump_free ();
#endif /* MC_ALLOC */
      return 1;
    }

#ifdef WIN32_NATIVE
  if (pdump_resource_get ())
    {
      if (pdump_load_check ())
	{
	  pdump_load_finish ();
	  in_pdump = 0;
#ifdef MC_ALLOC
	  pdump_free ();
#endif /* MC_ALLOC */
	  return 1;
	}
      pdump_free ();
    }

fail:
#endif

  in_pdump = 0;
  return 0;
}