view tests/automated/symbol-tests.el @ 4792:95b04754ea8c

Make #'equalp more compatible with CL; add a compiler macro, test & doc it. lisp/ChangeLog addition: 2009-11-08 Aidan Kehoe <kehoea@parhasard.net> * cl-extra.el (cl-string-vector-equalp) (cl-bit-vector-vector-equalp, cl-vector-array-equalp) (cl-hash-table-contents-equalp): New functions, to implement equalp treating arrays with identical contents as equivalent, as specified by Common Lisp. (equalp): Revise this function to implement array equivalence, and the hash-table equalp behaviour specified by CL. * cl-macs.el (equalp): Add a compiler macro for this function, used when one of the arguments is constant, and as such, its type is known at compile time. man/ChangeLog addition: 2009-11-08 Aidan Kehoe <kehoea@parhasard.net> * lispref/objects.texi (Equality Predicates): Document #'equalp here, as well as #'equal and #'eq. tests/ChangeLog addition: 2009-12-31 Aidan Kehoe <kehoea@parhasard.net> * automated/lisp-tests.el: Test much of the functionality of equalp; add a pointer to Paul Dietz' ANSI test suite for this function, converted to Emacs Lisp. Not including the tests themselves in XEmacs because who owns the copyright on the files is unclear and the GCL people didn't respond to my queries.
author Aidan Kehoe <kehoea@parhasard.net>
date Thu, 31 Dec 2009 15:09:41 +0000
parents 3906442b491b
children 189fb67ca31a
line wrap: on
line source

;; Copyright (C) 1999 Free Software Foundation, Inc.

;; Author: Hrvoje Niksic <hniksic@xemacs.org>
;; Maintainer: Hrvoje Niksic <hniksic@xemacs.org>
;; Created: 1999
;; Keywords: tests

;; This file is part of XEmacs.

;; XEmacs is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; XEmacs is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with XEmacs; see the file COPYING.  If not, write to the Free
;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
;; 02111-1307, USA.

;;; Synched up with: Not in FSF.

;;; Commentary:

;; Test symbols operations.
;; See test-harness.el for instructions on how to run these tests.

(eval-when-compile
  (condition-case nil
      (require 'test-harness)
    (file-error
     (push "." load-path)
     (when (and (boundp 'load-file-name) (stringp load-file-name))
       (push (file-name-directory load-file-name) load-path))
     (require 'test-harness))))


(defun ts-fresh-symbol-name (name)
  "Return a variant of NAME (a string) that is not interned."
  (when (intern-soft name)
    (let ((count 1)
	  (orig name))
      (while (progn
	       (setq name (format "%s-%d" orig count))
	       (intern-soft name))
	(incf count))))
  name)

;;-----------------------------------------------------
;; Creating, reading, and printing symbols
;;-----------------------------------------------------

(dolist (name '("foo" "bar" ""
		"something with space in it"
		"a string with \0 in the middle."
		"100" "10.0" "#<>[]]]];'\\';"
		"!@#$%^^&*(()__"))
  (let ((interned (intern name))
	(uninterned (make-symbol name)))
    (Assert (symbolp interned))
    (Assert (symbolp uninterned))
    (Assert (equal (symbol-name interned) name))
    (Assert (equal (symbol-name uninterned) name))
    (Assert (not (eq interned uninterned)))
    (Assert (not (equal interned uninterned)))))

(flet ((check-weak-list-unique (weak-list &optional reversep)
	 "Check that elements of WEAK-LIST are referenced only there."
	 (let ((len (length (weak-list-list weak-list))))
	   (if (string-match "Using the new GC algorithms."
			     Installation-string)
	       (Implementation-Incomplete-Expect-Failure
		(Assert (not (zerop len)))
		(garbage-collect)
		(Assert (eq (length (weak-list-list weak-list))
			    (if (not reversep) 0 len))))
	     (Assert (not (zerop len)))
	     (garbage-collect)
	     (Assert (eq (length (weak-list-list weak-list))
			 (if (not reversep) 0 len)))))))
  (let ((weak-list (make-weak-list))
	(gc-cons-threshold most-positive-fixnum))
    ;; Symbols created with `make-symbol' and `gensym' should be fresh
    ;; and not referenced anywhere else.  We check that no other
    ;; references are available using a weak list.
    (eval
     ;; This statement must not be run byte-compiled, or the values
     ;; remain referenced on the bytecode interpreter stack.
     '(set-weak-list-list weak-list (list (make-symbol "foo") (gensym "foo"))))
    (check-weak-list-unique weak-list)

    ;; Equivalent test for `intern' and `gentemp'.
    (eval
     '(set-weak-list-list weak-list
			  (list (intern (ts-fresh-symbol-name "foo"))
				(gentemp (ts-fresh-symbol-name "bar")))))
    (check-weak-list-unique weak-list 'not)))

(Assert (not (intern-soft (make-symbol "foo"))))
(Assert (not (intern-soft (gensym "foo"))))
(Assert (intern-soft (intern (ts-fresh-symbol-name "foo"))))
(Assert (intern-soft (gentemp (ts-fresh-symbol-name "bar"))))

;; Reading a symbol should intern it automatically, unless the symbol
;; is marked specially.
(dolist (string (mapcar #'ts-fresh-symbol-name '("foo" "bar" "\\\0\\\1")))
  (setq symbol (read string)
	string (read (concat "\"" string "\"")))
  (Assert (intern-soft string))
  (Assert (intern-soft symbol))
  (Assert (eq (intern-soft string) (intern-soft symbol))))

(let ((fresh (read (concat "#:" (ts-fresh-symbol-name "foo")))))
  (Assert (not (intern-soft fresh))))

;; Check #N=OBJECT and #N# read syntax.
(let* ((list (read "(#1=#:foo #1# #2=#:bar #2# #1# #2#)"))
       (foo  (nth 0 list))
       (foo2 (nth 1 list))
       (bar  (nth 2 list))
       (bar2 (nth 3 list))
       (foo3 (nth 4 list))
       (bar3 (nth 5 list)))
  (Assert (symbolp foo))
  (Assert (not (intern-soft foo)))
  (Assert (equal (symbol-name foo) "foo"))
  (Assert (symbolp bar))
  (Assert (not (intern-soft bar)))
  (Assert (equal (symbol-name bar) "bar"))

  (Assert (eq foo foo2))
  (Assert (eq foo2 foo3))
  (Assert (eq bar bar2))
  (Assert (eq bar2 bar3)))

;; Check #N=OBJECT and #N# print syntax.
(let* ((foo (make-symbol "foo"))
       (bar (make-symbol "bar"))
       (list (list foo foo bar bar foo bar)))
  (let* ((print-gensym nil)
	 (printed-list (prin1-to-string list)))
    (Assert (equal printed-list "(foo foo bar bar foo bar)")))
  (let* ((print-gensym t)
	 (printed-list (prin1-to-string list)))
    (Assert (equal printed-list "(#1=#:foo #1# #2=#:bar #2# #1# #2#)"))))

;;-----------------------------------------------------
;; Read-only symbols
;;-----------------------------------------------------

(Check-Error setting-constant
  (set nil nil))
(Check-Error setting-constant
  (set t nil))

;;-----------------------------------------------------
;; Variable indirections
;;-----------------------------------------------------

(let ((foo 0)
      (bar 1))
  (defvaralias 'foo 'bar)
  (Assert (eq foo bar))
  (Assert (eq foo 1))
  (Assert (eq (variable-alias 'foo) 'bar))
  (defvaralias 'bar 'foo)
  (Check-Error cyclic-variable-indirection
    (symbol-value 'foo))
  (Check-Error cyclic-variable-indirection
    (symbol-value 'bar))
  (defvaralias 'foo nil)
  (Assert (eq foo 0))
  (defvaralias 'bar nil)
  (Assert (eq bar 1)))

;;-----------------------------------------------------
;; Keywords
;;-----------------------------------------------------

;;; Reading keywords

;; In Elisp, a keyword is by definition a symbol beginning with `:'
;; that is interned in the global obarray.

;; In Elisp, a keyword is interned as any other symbol.
(Assert (eq (read ":foo") (intern ":foo")))

;; A keyword is self-quoting and evaluates to itself.
(Assert (eq (eval (intern ":foo")) :foo))

;; Keywords are recognized as such only if interned in the global
;; obarray, and `keywordp' is aware of that.
(Assert (keywordp :foo))
(Assert (not (keywordp (intern ":foo" [0]))))

;; Keywords used to be initialized at read-time, which resulted in
;; (symbol-value (intern ":some-new-keyword")) signaling an error.
;; Now we handle keywords at the time when the symbol is interned, so
;; that (intern ":something) and (read ":something) will be
;; equivalent.  These tests check various operations on symbols that
;; are guaranteed to be freshly interned.

;; Interning a fresh keyword string should produce a regular
;; keyword.
(let* ((fresh-keyword-name (ts-fresh-symbol-name ":foo"))
       (fresh-keyword (intern fresh-keyword-name)))
  (Assert (eq (symbol-value fresh-keyword) fresh-keyword))
  (Assert (keywordp fresh-keyword)))

;; Likewise, reading a fresh keyword string should produce a regular
;; keyword.
(let* ((fresh-keyword-name (ts-fresh-symbol-name ":foo"))
       (fresh-keyword (read fresh-keyword-name)))
  (Assert (eq (symbol-value fresh-keyword) fresh-keyword))
  (Assert (keywordp fresh-keyword)))

;;; Assigning to keywords

;; You shouldn't be able to set its value to something bogus.
(Check-Error setting-constant
  (set :foo 5))

;; But, for backward compatibility, setting to the same value is OK.
(Assert
  (eq (set :foo :foo) :foo))

;; Playing games with `intern' shouldn't fool us.
(Check-Error setting-constant
  (set (intern ":foo" obarray) 5))
(Assert
  (eq (set (intern ":foo" obarray) :foo) :foo))

;; But symbols not interned in the global obarray are not real
;; keywords (in elisp):
(Assert (eq (set (intern ":foo" [0]) 5) 5))

;;; Printing keywords

(let ((print-gensym t))
  (Assert (equal (prin1-to-string :foo)                ":foo"))
  (Assert (equal (prin1-to-string (intern ":foo"))     ":foo"))
  (Assert (equal (prin1-to-string (intern ":foo" [0])) "#::foo")))

(let ((print-gensym nil))
  (Assert (equal (prin1-to-string :foo)                ":foo"))
  (Assert (equal (prin1-to-string (intern ":foo"))     ":foo"))
  (Assert (equal (prin1-to-string (intern ":foo" [0])) ":foo")))

;; #### Add many more tests for printing and reading symbols, as well
;; as print-gensym and print-gensym-alist!

;;-----------------------------------------------------
;; Magic symbols
;;-----------------------------------------------------

;; Magic symbols are only half implemented.  However, a subset of the
;; functionality is being used to implement backward compatibility or
;; clearer error messages for new features such as specifiers and
;; glyphs.  These tests try to test that working subset.

(let ((mysym (make-symbol "test-symbol"))
      save)
  (dontusethis-set-symbol-value-handler
   mysym
   'set-value
   (lambda (&rest args)
     (throw 'test-tag args)))
  (Assert (not (boundp mysym)))
  (Assert (equal (catch 'test-tag
		   (set mysym 'foo))
		 `(,mysym (foo) set nil nil)))
  (Assert (not (boundp mysym)))
  (dontusethis-set-symbol-value-handler
   mysym
   'set-value
   (lambda (&rest args) (setq save (nth 1 args))))
  (set mysym 'foo)
  (Assert (equal save '(foo)))
  (Assert (eq (symbol-value mysym) 'foo))
  )

(let ((mysym (make-symbol "test-symbol"))
      save)
  (dontusethis-set-symbol-value-handler
   mysym
   'make-unbound
   (lambda (&rest args)
     (throw 'test-tag args)))
  (Assert (equal (catch 'test-tag
		   (makunbound mysym))
		 `(,mysym nil makunbound nil nil)))
  (dontusethis-set-symbol-value-handler
   mysym
   'make-unbound
   (lambda (&rest args) (setq save (nth 2 args))))
  (Assert (not (boundp mysym)))
  (set mysym 'bar)
  (Assert (null save))
  (Assert (eq (symbol-value mysym) 'bar))
  (makunbound mysym)
  (Assert (not (boundp mysym)))
  (Assert (eq save 'makunbound))
  )

;; pathname-coding-system is no more.
; (when (featurep 'file-coding)
;   (Assert (eq pathname-coding-system file-name-coding-system))
;   (let ((val1 file-name-coding-system)
; 	(val2 pathname-coding-system))
;     (Assert (eq val1 val2))
;     (let ((file-name-coding-system 'no-conversion-dos))
;       (Assert (eq file-name-coding-system 'no-conversion-dos))
;       (Assert (eq pathname-coding-system file-name-coding-system)))
;     (let ((pathname-coding-system 'no-conversion-mac))
;       (Assert (eq file-name-coding-system 'no-conversion-mac))
;       (Assert (eq pathname-coding-system file-name-coding-system)))
;     (Assert (eq file-name-coding-system pathname-coding-system))
;     (Assert (eq val1 file-name-coding-system)))
;   (Assert (eq pathname-coding-system file-name-coding-system)))


;(let ((mysym (make-symbol "test-symbol")))
;  (dontusethis-set-symbol-value-handler
;   mysym
;   'make-local
;   (lambda (&rest args)
;     (throw 'test-tag args)))
;  (Assert (equal (catch 'test-tag
;		   (set mysym 'foo))
;		 `(,mysym (foo) make-local nil nil))))

;; ----------------------------------------------------------------
;; Symbol documentation
;; ----------------------------------------------------------------

;; built-in variable documentation
(Assert (string= (built-in-symbol-file 'internal-doc-file-name)
		 "doc.c"))

;; built-in function documentation
(Assert (string= (built-in-symbol-file 'built-in-symbol-file)
		 "doc.c"))

;; built-in macro documentation
(Assert (string= (built-in-symbol-file 'when)
		 "eval.c"))

;; #### we should handle symbols defined in Lisp, dumped, autoloaded,
;; and required, too.