Mercurial > hg > xemacs-beta
view modules/README @ 4792:95b04754ea8c
Make #'equalp more compatible with CL; add a compiler macro, test & doc it.
lisp/ChangeLog addition:
2009-11-08 Aidan Kehoe <kehoea@parhasard.net>
* cl-extra.el (cl-string-vector-equalp)
(cl-bit-vector-vector-equalp, cl-vector-array-equalp)
(cl-hash-table-contents-equalp): New functions, to implement
equalp treating arrays with identical contents as equivalent, as
specified by Common Lisp.
(equalp): Revise this function to implement array equivalence,
and the hash-table equalp behaviour specified by CL.
* cl-macs.el (equalp): Add a compiler macro for this function,
used when one of the arguments is constant, and as such, its type
is known at compile time.
man/ChangeLog addition:
2009-11-08 Aidan Kehoe <kehoea@parhasard.net>
* lispref/objects.texi (Equality Predicates):
Document #'equalp here, as well as #'equal and #'eq.
tests/ChangeLog addition:
2009-12-31 Aidan Kehoe <kehoea@parhasard.net>
* automated/lisp-tests.el:
Test much of the functionality of equalp; add a pointer to Paul
Dietz' ANSI test suite for this function, converted to Emacs
Lisp. Not including the tests themselves in XEmacs because who
owns the copyright on the files is unclear and the GCL people
didn't respond to my queries.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Thu, 31 Dec 2009 15:09:41 +0000 |
parents | 25e260cb7994 |
children | da1365dd3f07 |
line wrap: on
line source
This directory contains a number of XEmacs dynamic modules. These modules can be loaded directly with the command 'M-x load-module'. However, the preferred method of loading a module is to issue a "(require 'module-name)" command to the Lisp interpreter. This will store information so that a later "(unload-feature 'module-name)" can succeed. To compile one of these modules, simply enter the desired directory, type 'configure', and then 'make'. If you are building the module for an installed XEmacs, then 'make install' will place the module in the appropriate directory for XEmacs to find it later (assuming you have permission to write to that directory). A subsequent 'load-module' or 'require' will then load the module, as described above. Each of these demonstrates different features and limitations of the XEmacs module loading technology. For a complete discussion on XEmacs dynamic modules, please consult the XEmacs Module Writers Guide, which can be found in the ../info directory. For those wanting to get started with module writing, please see the 'sample' directory. It contains two subdirectories: internal and external. The 'internal' subdirectory contains the framework needed to migrate some core piece of XEmacs functionality into code that can either be compiled into the core or built as a separate module. The 'external' subdirectory contains the somewhat simpler framework needed to build a module separately from XEmacs. These should be considered starting places for module writing.