view modules/README @ 4792:95b04754ea8c

Make #'equalp more compatible with CL; add a compiler macro, test & doc it. lisp/ChangeLog addition: 2009-11-08 Aidan Kehoe <kehoea@parhasard.net> * cl-extra.el (cl-string-vector-equalp) (cl-bit-vector-vector-equalp, cl-vector-array-equalp) (cl-hash-table-contents-equalp): New functions, to implement equalp treating arrays with identical contents as equivalent, as specified by Common Lisp. (equalp): Revise this function to implement array equivalence, and the hash-table equalp behaviour specified by CL. * cl-macs.el (equalp): Add a compiler macro for this function, used when one of the arguments is constant, and as such, its type is known at compile time. man/ChangeLog addition: 2009-11-08 Aidan Kehoe <kehoea@parhasard.net> * lispref/objects.texi (Equality Predicates): Document #'equalp here, as well as #'equal and #'eq. tests/ChangeLog addition: 2009-12-31 Aidan Kehoe <kehoea@parhasard.net> * automated/lisp-tests.el: Test much of the functionality of equalp; add a pointer to Paul Dietz' ANSI test suite for this function, converted to Emacs Lisp. Not including the tests themselves in XEmacs because who owns the copyright on the files is unclear and the GCL people didn't respond to my queries.
author Aidan Kehoe <kehoea@parhasard.net>
date Thu, 31 Dec 2009 15:09:41 +0000
parents 25e260cb7994
children da1365dd3f07
line wrap: on
line source

This directory contains a number of XEmacs dynamic modules.  These
modules can be loaded directly with the command 'M-x load-module'.
However, the preferred method of loading a module is to issue a
"(require 'module-name)" command to the Lisp interpreter.  This will
store information so that a later "(unload-feature 'module-name)" can
succeed.

To compile one of these modules, simply enter the desired directory,
type 'configure', and then 'make'.  If you are building the module for
an installed XEmacs, then 'make install' will place the module in the
appropriate directory for XEmacs to find it later (assuming you have
permission to write to that directory).  A subsequent 'load-module' or
'require' will then load the module, as described above.

Each of these demonstrates different features and limitations of the
XEmacs module loading technology.  For a complete discussion on XEmacs
dynamic modules, please consult the XEmacs Module Writers Guide, which
can be found in the ../info directory.

For those wanting to get started with module writing, please see the
'sample' directory.  It contains two subdirectories: internal and
external.  The 'internal' subdirectory contains the framework needed to
migrate some core piece of XEmacs functionality into code that can
either be compiled into the core or built as a separate module.  The
'external' subdirectory contains the somewhat simpler framework needed
to build a module separately from XEmacs.  These should be considered
starting places for module writing.