Mercurial > hg > xemacs-beta
view src/backtrace.h @ 771:943eaba38521
[xemacs-hg @ 2002-03-13 08:51:24 by ben]
The big ben-mule-21-5 check-in!
Various files were added and deleted. See CHANGES-ben-mule.
There are still some test suite failures. No crashes, though.
Many of the failures have to do with problems in the test suite itself
rather than in the actual code. I'll be addressing these in the next
day or so -- none of the test suite failures are at all critical.
Meanwhile I'll be trying to address the biggest issues -- i.e. build
or run failures, which will almost certainly happen on various platforms.
All comments should be sent to ben@xemacs.org -- use a Cc: if necessary
when sending to mailing lists. There will be pre- and post- tags,
something like
pre-ben-mule-21-5-merge-in, and
post-ben-mule-21-5-merge-in.
author | ben |
---|---|
date | Wed, 13 Mar 2002 08:54:06 +0000 |
parents | b39c14581166 |
children | a5954632b187 |
line wrap: on
line source
/* The lisp stack. Copyright (C) 1985, 1986, 1987, 1992, 1993 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. Contained redundantly in various C files in FSFmacs. */ /* Authorship: FSF: Original version; a long time ago. XEmacs: split out of some C files. (For some obscure reason, a header file couldn't be used in FSF Emacs, but XEmacs doesn't have that problem.) Mly (probably) or JWZ: Some changes. */ #ifndef INCLUDED_backtrace_h_ #define INCLUDED_backtrace_h_ #include <setjmp.h> /* These definitions are used in eval.c and alloc.c */ struct backtrace { struct backtrace *next; Lisp_Object *function; Lisp_Object *args; /* Points to vector of args. */ int nargs; /* Length of vector. If nargs is UNEVALLED, args points to slot holding list of unevalled args */ int pdlcount; /* specpdl_depth () when invoked */ char evalargs; /* Nonzero means call value of debugger when done with this operation. */ char debug_on_exit; }; /* This structure helps implement the `catch' and `throw' control structure. A struct catchtag contains all the information needed to restore the state of the interpreter after a non-local jump. Handlers for error conditions (represented by `struct handler' structures) just point to a catch tag to do the cleanup required for their jumps. catchtag structures are chained together in the C calling stack; the `next' member points to the next outer catchtag. A call like (throw TAG VAL) searches for a catchtag whose `tag' member is TAG, and then unbinds to it. The `val' member is used to hold VAL while the stack is unwound; `val' is returned as the value of the catch form. All the other members are concerned with restoring the interpreter state. */ struct catchtag { Lisp_Object tag; Lisp_Object val; struct catchtag *next; struct gcpro *gcpro; JMP_BUF jmp; struct backtrace *backlist; #if 0 /* FSFmacs */ /* FSF uses a separate handler stack to hold condition-cases, where we use Vcondition_handlers. We should switch to their system becaue it avoids the need to mess around with consing up stuff and then dangerously freeing it. See comment in condition_case_unwind(). */ struct handler *handlerlist; #endif int lisp_eval_depth; int pdlcount; #if 0 /* FSFmacs */ /* This is the equivalent of async_timer_suppress_count. We probably don't have to bother with this. */ int poll_suppress_count; #endif }; /* Dynamic-binding-o-rama */ /* Structure for recording Lisp call stack for backtrace purposes. */ /* The special binding stack holds the outer values of variables while they are bound by a function application or a let form, stores the code to be executed for Lisp unwind-protect forms, and stores the C functions to be called for record_unwind_protect. If func is non-zero, undoing this binding applies func to old_value; This implements record_unwind_protect. If func is zero and symbol is nil, undoing this binding evaluates the list of forms in old_value; this implements Lisp's unwind-protect form. Otherwise, undoing this binding stores old_value as symbol's value; this undoes the bindings made by a let form or function call. */ struct specbinding { Lisp_Object symbol; Lisp_Object old_value; Lisp_Object (*func) (Lisp_Object); /* for unwind-protect */ }; #if 0 /* FSFmacs */ /* #### */ /* Everything needed to describe an active condition case. */ struct handler { /* The handler clauses and variable from the condition-case form. */ Lisp_Object handler; Lisp_Object var; /* Fsignal stores here the condition-case clause that applies, and Fcondition_case thus knows which clause to run. */ Lisp_Object chosen_clause; /* Used to effect the longjmp() out to the handler. */ struct catchtag *tag; /* The next enclosing handler. */ struct handler *next; }; extern struct handler *handlerlist; #endif /* These are extern because GC needs to mark them */ extern struct specbinding *specpdl; extern struct specbinding *specpdl_ptr; extern struct catchtag *catchlist; extern struct backtrace *backtrace_list; /* Most callers should simply use specbind() and unbind_to_1(), but if speed is REALLY IMPORTANT, you can use the faster macros below */ void specbind_magic (Lisp_Object, Lisp_Object); void grow_specpdl (EMACS_INT reserved); void unbind_to_hairy (int); extern int specpdl_size; /* Inline version of specbind(). Use this instead of specbind() if speed is sufficiently important to save the overhead of even a single function call. */ #define SPECBIND(symbol_object, value_object) do { \ Lisp_Object SB_symbol = (symbol_object); \ Lisp_Object SB_newval = (value_object); \ Lisp_Object SB_oldval; \ Lisp_Symbol *SB_sym; \ \ SPECPDL_RESERVE (1); \ \ CHECK_SYMBOL (SB_symbol); \ SB_sym = XSYMBOL (SB_symbol); \ SB_oldval = SB_sym->value; \ \ if (!SYMBOL_VALUE_MAGIC_P (SB_oldval) || UNBOUNDP (SB_oldval)) \ { \ /* #### the following test will go away when we have a constant \ symbol magic object */ \ if (EQ (SB_symbol, Qnil) || \ EQ (SB_symbol, Qt) || \ SYMBOL_IS_KEYWORD (SB_symbol)) \ reject_constant_symbols (SB_symbol, SB_newval, 0, \ UNBOUNDP (SB_newval) ? \ Qmakunbound : Qset); \ \ specpdl_ptr->symbol = SB_symbol; \ specpdl_ptr->old_value = SB_oldval; \ specpdl_ptr->func = 0; \ specpdl_ptr++; \ specpdl_depth_counter++; \ \ SB_sym->value = (SB_newval); \ } \ else \ specbind_magic (SB_symbol, SB_newval); \ } while (0) /* An even faster, but less safe inline version of specbind(). Caller guarantees that: - SYMBOL is a non-constant symbol (i.e. not Qnil, Qt, or keyword). - specpdl_depth_counter >= specpdl_size. Else we crash. */ #define SPECBIND_FAST_UNSAFE(symbol_object, value_object) do { \ Lisp_Object SFU_symbol = (symbol_object); \ Lisp_Object SFU_newval = (value_object); \ Lisp_Symbol *SFU_sym = XSYMBOL (SFU_symbol); \ Lisp_Object SFU_oldval = SFU_sym->value; \ if (!SYMBOL_VALUE_MAGIC_P (SFU_oldval) || UNBOUNDP (SFU_oldval)) \ { \ specpdl_ptr->symbol = SFU_symbol; \ specpdl_ptr->old_value = SFU_oldval; \ specpdl_ptr->func = 0; \ specpdl_ptr++; \ specpdl_depth_counter++; \ \ SFU_sym->value = (SFU_newval); \ } \ else \ specbind_magic (SFU_symbol, SFU_newval); \ } while (0) /* Request enough room for SIZE future entries on special binding stack */ #define SPECPDL_RESERVE(size) do { \ EMACS_INT SR_size = (size); \ if (specpdl_depth() + SR_size >= specpdl_size) \ grow_specpdl (SR_size); \ } while (0) /* Inline version of unbind_to_1(). [[Use this instead of unbind_to_1() if speed is sufficiently important to save the overhead of even a single function call.]] This is bogus pseudo-optimization. --ben Most of the time, unbind_to_1() is called only on ordinary variables, so optimize for that. */ #define UNBIND_TO_GCPRO(count, value) do { \ int UNBIND_TO_count = (count); \ while (specpdl_depth_counter != UNBIND_TO_count) \ { \ Lisp_Symbol *sym; \ --specpdl_ptr; \ --specpdl_depth_counter; \ \ if (specpdl_ptr->func != 0 || \ ((sym = XSYMBOL (specpdl_ptr->symbol)), \ SYMBOL_VALUE_MAGIC_P (sym->value))) \ { \ struct gcpro gcpro1; \ GCPRO1 (value); \ unbind_to_hairy (UNBIND_TO_count); \ UNGCPRO; \ break; \ } \ \ sym->value = specpdl_ptr->old_value; \ } \ } while (0) /* A slightly faster inline version of unbind_to_1, that doesn't offer GCPROing services. */ #define UNBIND_TO(count) do { \ int UNBIND_TO_count = (count); \ while (specpdl_depth_counter != UNBIND_TO_count) \ { \ Lisp_Symbol *sym; \ --specpdl_ptr; \ --specpdl_depth_counter; \ \ if (specpdl_ptr->func != 0 || \ ((sym = XSYMBOL (specpdl_ptr->symbol)), \ SYMBOL_VALUE_MAGIC_P (sym->value))) \ { \ unbind_to_hairy (UNBIND_TO_count); \ break; \ } \ \ sym->value = specpdl_ptr->old_value; \ } \ } while (0) #ifdef ERROR_CHECK_TYPECHECK #define CHECK_SPECBIND_VARIABLE assert (specpdl_ptr->func == 0) #else #define CHECK_SPECBIND_VARIABLE DO_NOTHING #endif #if 0 /* Unused. It's too hard to guarantee that the current bindings contain only variables. */ /* Another inline version of unbind_to_1(). VALUE is GC-protected. Caller guarantees that: - all of the elements on the binding stack are variable bindings. Else we crash. */ #define UNBIND_TO_GCPRO_VARIABLES_ONLY(count, value) do { \ int UNBIND_TO_count = (count); \ while (specpdl_depth_counter != UNBIND_TO_count) \ { \ Lisp_Symbol *sym; \ --specpdl_ptr; \ --specpdl_depth_counter; \ \ CHECK_SPECBIND_VARIABLE; \ sym = XSYMBOL (specpdl_ptr->symbol); \ if (!SYMBOL_VALUE_MAGIC_P (sym->value)) \ sym->value = specpdl_ptr->old_value; \ else \ { \ struct gcpro gcpro1; \ GCPRO1 (value); \ unbind_to_hairy (UNBIND_TO_count); \ UNGCPRO; \ break; \ } \ } \ } while (0) #endif /* unused */ /* A faster, but less safe inline version of Fset(). Caller guarantees that: - SYMBOL is a non-constant symbol (i.e. not Qnil, Qt, or keyword). Else we crash. */ #define FSET_FAST_UNSAFE(sym, newval) do { \ Lisp_Object FFU_sym = (sym); \ Lisp_Object FFU_newval = (newval); \ Lisp_Symbol *FFU_symbol = XSYMBOL (FFU_sym); \ Lisp_Object FFU_oldval = FFU_symbol->value; \ if (!SYMBOL_VALUE_MAGIC_P (FFU_oldval) || UNBOUNDP (FFU_oldval)) \ FFU_symbol->value = FFU_newval; \ else \ Fset (FFU_sym, FFU_newval); \ } while (0) #endif /* INCLUDED_backtrace_h_ */