Mercurial > hg > xemacs-beta
view lib-src/qsort.c @ 4844:91b3d00e717f
Various cleanups for Dynarr code, from Unicode-internal ws
dynarr.c: Add comment explaining Dynarr_largest() use.
dynarr.c: In Dynarr_insert_many(), don't call Dynarr_resize() unless we
actually need to resize, and note that an assert() that we are
inserting at or below the current end could be wrong if code
wants to access stuff between `len' and `largest'.
dynarr.c: Don't just Dynarr_resize() to the right size; instead use
Dynarr_reset() then Dynarr_add_many(), so that the 'len' and
'largest' and such get set properly.
dynarr.c, faces.c, gutter.c, lisp.h, lread.c, lrecord.h, redisplay-output.c, redisplay.c: Rename Dynarr member 'cur' to 'len' since it's the length of
the dynarr, not really a pointer to a "current insertion point".
Use type_checking_assert() instead of just assert() in some places.
Add additional assertions (Dynarr_verify*()) to check that we're
being given positions within range. Use them in Dynarr_at,
Dynarr_atp, etc. New Dynarr_atp_allow_end() for retrieving a
pointer to a position that might be the element past the last one.
New Dynarr_past_lastp() to retrieve a pointer to the position
past the last one, using Dynarr_atp_allow_end(). Change code
appropriately to use it.
Rename Dynarr_end() to Dynarr_lastp() (pointer to the last
element) for clarity, and change code appropriately to use it.
Change code appropriately to use Dynarr_begin().
Rewrite Dynarr_add_many(). New version can accept a NULL pointer
to mean "reserve space but don't put anything in it". Used by
stack_like_malloc().
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Wed, 13 Jan 2010 04:07:42 -0600 |
parents | 576fb035e263 |
children | 061f4f90f874 |
line wrap: on
line source
/* Plug-compatible replacement for UNIX qsort. Copyright (C) 1989 Free Software Foundation, Inc. Written by Douglas C. Schmidt (schmidt@ics.uci.edu) This file is part of GNU CC. GNU QSORT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU QSORT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU QSORT; see the file COPYING. If not, write to the Free the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.28. */ #ifdef sparc #include <alloca.h> #endif /* Invoke the comparison function, returns either 0, < 0, or > 0. */ #define CMP(A,B) ((*cmp)((A),(B))) /* Byte-wise swap two items of size SIZE. */ #define SWAP(A,B,SIZE) do {int sz = (SIZE); char *a = (A); char *b = (B); \ do { char _temp = *a;*a++ = *b;*b++ = _temp;} while (--sz);} while (0) /* Copy SIZE bytes from item B to item A. */ #define COPY(A,B,SIZE) {int sz = (SIZE); do { *(A)++ = *(B)++; } while (--sz); } /* This should be replaced by a standard ANSI macro. */ #define BYTES_PER_WORD 8 /* The next 4 #defines implement a very fast in-line stack abstraction. */ #define STACK_SIZE (BYTES_PER_WORD * sizeof (long)) #define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0) #define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0) #define STACK_NOT_EMPTY (stack < top) /* Discontinue quicksort algorithm when partition gets below this size. This particular magic number was chosen to work best on a Sun 4/260. */ #define MAX_THRESH 4 /* Stack node declarations used to store unfulfilled partition obligations. */ typedef struct { char *lo; char *hi; } stack_node; /* Order size using quicksort. This implementation incorporates four optimizations discussed in Sedgewick: 1. Non-recursive, using an explicit stack of pointer that store the next array partition to sort. To save time, this maximum amount of space required to store an array of MAX_INT is allocated on the stack. Assuming a 32-bit integer, this needs only 32 * sizeof (stack_node) == 136 bits. Pretty cheap, actually. 2. Choose the pivot element using a median-of-three decision tree. This reduces the probability of selecting a bad pivot value and eliminates certain extraneous comparisons. 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving insertion sort to order the MAX_THRESH items within each partition. This is a big win, since insertion sort is faster for small, mostly sorted array segments. 4. The larger of the two sub-partitions is always pushed onto the stack first, with the algorithm then concentrating on the smaller partition. This *guarantees* no more than log (n) stack size is needed (actually O(1) in this case)! */ int qsort (base_ptr, total_elems, size, cmp) char *base_ptr; int total_elems; int size; int (*cmp)(); { /* Allocating SIZE bytes for a pivot buffer facilitates a better algorithm below since we can do comparisons directly on the pivot. */ char *pivot_buffer = (char *) alloca (size); int max_thresh = MAX_THRESH * size; if (total_elems > MAX_THRESH) { char *lo = base_ptr; char *hi = lo + size * (total_elems - 1); stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */ stack_node *top = stack + 1; while (STACK_NOT_EMPTY) { char *left_ptr; char *right_ptr; { char *pivot = pivot_buffer; { /* Select median value from among LO, MID, and HI. Rearrange LO and HI so the three values are sorted. This lowers the probability of picking a pathological pivot value and skips a comparison for both the LEFT_PTR and RIGHT_PTR. */ char *mid = lo + size * ((hi - lo) / size >> 1); if (CMP (mid, lo) < 0) SWAP (mid, lo, size); if (CMP (hi, mid) < 0) SWAP (mid, hi, size); else goto jump_over; if (CMP (mid, lo) < 0) SWAP (mid, lo, size); jump_over: COPY (pivot, mid, size); pivot = pivot_buffer; } left_ptr = lo + size; right_ptr = hi - size; /* Here's the famous ``collapse the walls'' section of quicksort. Gotta like those tight inner loops! They are the main reason that this algorithm runs much faster than others. */ do { while (CMP (left_ptr, pivot) < 0) left_ptr += size; while (CMP (pivot, right_ptr) < 0) right_ptr -= size; if (left_ptr < right_ptr) { SWAP (left_ptr, right_ptr, size); left_ptr += size; right_ptr -= size; } else if (left_ptr == right_ptr) { left_ptr += size; right_ptr -= size; break; } } while (left_ptr <= right_ptr); } /* Set up pointers for next iteration. First determine whether left and right partitions are below the threshold size. If so, ignore one or both. Otherwise, push the larger partition's bounds on the stack and continue sorting the smaller one. */ if ((right_ptr - lo) <= max_thresh) { if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */ POP (lo, hi); else /* Ignore small left partition. */ lo = left_ptr; } else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */ hi = right_ptr; else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */ { PUSH (lo, right_ptr); lo = left_ptr; } else /* Push larger right partition indices. */ { PUSH (left_ptr, hi); hi = right_ptr; } } } /* Once the BASE_PTR array is partially sorted by quicksort the rest is completely sorted using insertion sort, since this is efficient for partitions below MAX_THRESH size. BASE_PTR points to the beginning of the array to sort, and END_PTR points at the very last element in the array (*not* one beyond it!). */ #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) { char *end_ptr = base_ptr + size * (total_elems - 1); char *run_ptr; char *tmp_ptr = base_ptr; char *thresh = MIN (end_ptr, base_ptr + max_thresh); /* Find smallest element in first threshold and place it at the array's beginning. This is the smallest array element, and the operation speeds up insertion sort's inner loop. */ for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size) if (CMP (run_ptr, tmp_ptr) < 0) tmp_ptr = run_ptr; if (tmp_ptr != base_ptr) SWAP (tmp_ptr, base_ptr, size); /* Insertion sort, running from left-hand-side up to `right-hand-side.' Pretty much straight out of the original GNU qsort routine. */ for (run_ptr = base_ptr + size; (tmp_ptr = run_ptr += size) <= end_ptr; ) { while (CMP (run_ptr, tmp_ptr -= size) < 0) ; if ((tmp_ptr += size) != run_ptr) { char *trav; for (trav = run_ptr + size; --trav >= run_ptr;) { char c = *trav; char *hi, *lo; for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo) *hi = *lo; *hi = c; } } } } return 1; }