view src/unexelfsgi.c @ 4677:8f1ee2d15784

Support full Common Lisp multiple values in C. lisp/ChangeLog 2009-08-11 Aidan Kehoe <kehoea@parhasard.net> * bytecomp.el : Update this file to support full C-level multiple values. This involves: -- Four new bytecodes, and special compiler functions to compile multiple-value-call, multiple-value-list-internal, values, values-list, and, since it now needs to pass back multiple values and is a special form, throw. -- There's a new compiler variable, byte-compile-checks-on-load, which is a list of forms that are evaluated at the very start of a file, with an error thrown if any of them give nil. -- The header is now inserted *after* compilation, giving a chance for the compilation process to influence what those checks are. There is still a check done before compilation for non-ASCII characters, to try to turn off dynamic docstrings if appopriate, in `byte-compile-maybe-reset-coding'. Space is reserved for checks; comments describing the version of the byte compiler generating the file are inserted if space remains for them. * bytecomp.el (byte-compile-version): Update this, we're a newer version of the byte compiler. * byte-optimize.el (byte-optimize-funcall): Correct a comment. * bytecomp.el (byte-compile-lapcode): Discard the arg with byte-multiple-value-call. * bytecomp.el (byte-compile-checks-and-comments-space): New variable, describe how many octets to reserve for checks at the start of byte-compiled files. * cl-compat.el: Remove the fake multiple-value implementation. Have the functions that use it use the real multiple-value implementation instead. * cl-macs.el (cl-block-wrapper, cl-block-throw): Revise the byte-compile properties of these symbols to work now we've made throw into a special form; keep the byte-compile properties as anonymous lambdas, since we don't have docstrings for them. * cl-macs.el (multiple-value-bind, multiple-value-setq) (multiple-value-list, nth-value): Update these functions to work with the C support for multiple values. * cl-macs.el (values): Modify the setf handler for this to call #'multiple-value-list-internal appropriately. * cl-macs.el (cl-setf-do-store): If the store form is a cons, treat it specially as wrapping the store value. * cl.el (cl-block-wrapper): Make this an alias of #'and, not #'identity, since it needs to pass back multiple values. * cl.el (multiple-value-apply): We no longer support this, mark it obsolete. * lisp-mode.el (eval-interactive-verbose): Remove a useless space in the docstring. * lisp-mode.el (eval-interactive): Update this function and its docstring. It now passes back a list, basically wrapping any eval calls with multiple-value-list. This allows multiple values to be printed by default in *scratch*. * lisp-mode.el (prin1-list-as-multiple-values): New function, printing a list as multiple values in the manner of Bruno Haible's clisp, separating each entry with " ;\n". * lisp-mode.el (eval-last-sexp): Call #'prin1-list-as-multiple-values on the return value of #'eval-interactive. * lisp-mode.el (eval-defun): Call #'prin1-list-as-multiple-values on the return value of #'eval-interactive. * mouse.el (mouse-eval-sexp): Deal with lists corresponding to multiple values from #'eval-interactive. Call #'cl-prettyprint, which is always available, instead of sometimes calling #'pprint and sometimes falling back to prin1. * obsolete.el (obsolete-throw): New function, called from eval.c when #'funcall encounters an attempt to call #'throw (now a special form) as a function. Only needed for compatibility with 21.4 byte-code. man/ChangeLog addition: 2009-08-11 Aidan Kehoe <kehoea@parhasard.net> * cl.texi (Organization): Remove references to the obsolete multiple-value emulating code. src/ChangeLog addition: 2009-08-11 Aidan Kehoe <kehoea@parhasard.net> * bytecode.c (enum Opcode /* Byte codes */): Add four new bytecodes, to deal with multiple values. (POP_WITH_MULTIPLE_VALUES): New macro. (POP): Modify this macro to ignore multiple values. (DISCARD_PRESERVING_MULTIPLE_VALUES): New macro. (DISCARD): Modify this macro to ignore multiple values. (TOP_WITH_MULTIPLE_VALUES): New macro. (TOP_ADDRESS): New macro. (TOP): Modify this macro to ignore multiple values. (TOP_LVALUE): New macro. (Bcall): Ignore multiple values where appropriate. (Breturn): Pass back multiple values. (Bdup): Preserve multiple values. Use TOP_LVALUE with most bytecodes that assign anything to anything. (Bbind_multiple_value_limits, Bmultiple_value_call, Bmultiple_value_list_internal, Bthrow): Implement the new bytecodes. (Bgotoifnilelsepop, Bgotoifnonnilelsepop, BRgotoifnilelsepop, BRgotoifnonnilelsepop): Discard any multiple values. * callint.c (Fcall_interactively): Ignore multiple values when calling #'eval, in two places. * device-x.c (x_IO_error_handler): * macros.c (pop_kbd_macro_event): * eval.c (Fsignal): * eval.c (flagged_a_squirmer): Call throw_or_bomb_out, not Fthrow, now that the latter is a special form. * eval.c: Make Qthrow, Qobsolete_throw available as symbols. Provide multiple_value_current_limit, multiple-values-limit (the latter as specified by Common Lisp. * eval.c (For): Ignore multiple values when comparing with Qnil, but pass any multiple values back for the last arg. * eval.c (Fand): Ditto. * eval.c (Fif): Ignore multiple values when examining the result of the condition. * eval.c (Fcond): Ignore multiple values when comparing what the clauses give, but pass them back if a clause gave non-nil. * eval.c (Fprog2): Never pass back multiple values. * eval.c (FletX, Flet): Ignore multiple when evaluating what exactly symbols should be bound to. * eval.c (Fwhile): Ignore multiple values when evaluating the test. * eval.c (Fsetq, Fdefvar, Fdefconst): Ignore multiple values. * eval.c (Fthrow): Declare this as a special form; ignore multiple values for TAG, preserve them for VALUE. * eval.c (throw_or_bomb_out): Make this available to other files, now Fthrow is a special form. * eval.c (Feval): Ignore multiple values when calling a compiled function, a non-special-form subr, or a lambda expression. * eval.c (Ffuncall): If we attempt to call #'throw (now a special form) as a function, don't error, call #'obsolete-throw instead. * eval.c (make_multiple_value, multiple_value_aset) (multiple_value_aref, print_multiple_value, mark_multiple_value) (size_multiple_value): Implement the multiple_value type. Add a long comment describing our implementation. * eval.c (bind_multiple_value_limits): New function, used by the bytecode and by #'multiple-value-call, #'multiple-value-list-internal. * eval.c (multiple_value_call): New function, used by the bytecode and #'multiple-value-call. * eval.c (Fmultiple_value_call): New special form. * eval.c (multiple_value_list_internal): New function, used by the byte code and #'multiple-value-list-internal. * eval.c (Fmultiple_value_list_internal, Fmultiple_value_prog1): New special forms. * eval.c (Fvalues, Fvalues_list): New Lisp functions. * eval.c (values2): New function, for C code returning multiple values. * eval.c (syms_of_eval): Make our new Lisp functions and symbols available. * eval.c (multiple-values-limit): Make this available to Lisp. * event-msw.c (dde_eval_string): * event-stream.c (execute_help_form): * glade.c (connector): * glyphs-widget.c (glyph_instantiator_to_glyph): * glyphs.c (evaluate_xpm_color_symbols): * gui-x.c (wv_set_evalable_slot, button_item_to_widget_value): * gui.c (gui_item_value, gui_item_display_flush_left): * lread.c (check_if_suppressed): * menubar-gtk.c (menu_convert, menu_descriptor_to_widget_1): * menubar-msw.c (populate_menu_add_item): * print.c (Fwith_output_to_temp_buffer): * symbols.c (Fsetq_default): Ignore multiple values when calling Feval. * symeval.h: Add the header declarations necessary for the multiple-values implementation. * inline.c: #include symeval.h, now that it has some inline functions. * lisp.h: Update Fthrow's declaration. Make throw_or_bomb_out available to all files. * lrecord.h (enum lrecord_type): Add the multiple_value type here.
author Aidan Kehoe <kehoea@parhasard.net>
date Sun, 16 Aug 2009 20:55:49 +0100
parents 04bc9d2f42c7
children
line wrap: on
line source

/* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992, 1999, 2000
   Free Software Foundation, Inc.

   This file is part of XEmacs.

   XEmacs is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   XEmacs is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with XEmacs; see the file COPYING.  If not, write to the
   Free Software Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.

   In other words, you are welcome to use, share and improve this
   program.  You are forbidden to forbid anyone else to use, share and
   improve what you give them.  Help stamp out software-hoarding!  */


/*
 * unexec.c - Convert a running program into an a.out file.
 *
 * Author:	Spencer W. Thomas
 * 		Computer Science Dept.
 * 		University of Utah
 * Date:	Tue Mar  2 1982
 * Modified heavily since then.
 *
 * Synopsis:
 * void
 * unexec (char *new_name,
 *	   char *old_name,
 *	   uintptr_t data_start,
 *	   uintptr_t bss_start,
 *	   uintptr_t entry_address)
 *
 * The basic idea is that we start with an ELF file which contains
 * .bss (uninitialized global data) section which is normally not in
 * the file. As we load lisp the variables, which were first set to 0,
 * will change their values. We want to save those changed values into
 * another ELF file, which will become a new xemacs image. To do this,
 * we need to change several structures in the ELF file.
 *
 *   First of all, we need to change the programm header which tells
 *   the linker how to load stuff into memory so that data will come
 *   from the file and not from the /dev/zero. To do this, we find the
 *   segment, which is marked as loadable (type PT_LOAD) and which
 *   covers the old .bss section. We will next change the filesz and
 *   memsz for that segment to extend over the new data section.
 *
 *   Next we have to make sure that section header for the stuff which
 *   used to be uninitialized is changed to be initialized and to come
 *   from the file. To do this, we change the size and the type of the old
 *   .bss section (and all other section of the type SHT_NOBITS) to cover the
 *   new section and to be of type SHT_PROCBITS.
 *
 *   We also insert a new SHT_NOBITS section to keep some tools, which expect
 *   .bss happy.
 *
 *   Finally we need to patch up some references to the section
 *   indexes since we change the order and undo the relocation info to
 *   be the same as it was "before" because we actually used the data
 *   from the memory which were changed by the run-time linker.
 */

#ifndef emacs
#define fatal(a, b, c) fprintf (stderr, a, b, c), exit (1)
#include <string.h>
#else
#include <config.h>
extern void fatal (const char *, ...);
#endif

#include <sys/types.h>
#include <stdio.h>
#include <sys/stat.h>
#include <memory.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#ifdef HAVE_ELF_H
#include <elf.h>
#endif
#include <sys/mman.h>
#if defined (__sony_news) && defined (_SYSTYPE_SYSV)
#include <sys/elf_mips.h>
#include <sym.h>
#endif /* __sony_news && _SYSTYPE_SYSV */
#if __sgi
#include <syms.h> /* for HDRR declaration */
#endif /* __sgi */

#if __GNU_LIBRARY__ - 0 >= 6
# include <link.h>	/* get ElfW etc */
#endif

#include "compiler.h"

#ifndef ElfW
# ifdef __STDC__
#  define ElfBitsW(bits, type) Elf##bits##_##type
# else
#  define ElfBitsW(bits, type) Elf/**/bits/**/_/**/type
# endif
# ifdef _LP64
#  define ELFSIZE 64
# else
#  define ELFSIZE 32
# endif
  /* This macro expands `bits' before invoking ElfBitsW.  */
# define ElfExpandBitsW(bits, type) ElfBitsW (bits, type)
# define ElfW(type) ElfExpandBitsW (ELFSIZE, type)
#endif

#ifndef ELF_BSS_SECTION_NAME
#define ELF_BSS_SECTION_NAME ".bss"
#endif

/* Get the address of a particular section or program header entry,
 * accounting for the size of the entries. */

#define OLD_SECTION_H(n) \
     (*(ElfW(Shdr) *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
#define NEW_SECTION_H(n) \
     (*(ElfW(Shdr) *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
#define OLD_PROGRAM_H(n) \
     (*(ElfW(Phdr) *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
#define NEW_PROGRAM_H(n) \
     (*(ElfW(Phdr) *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))

#define PATCH_INDEX(n) \
  do { \
	 if ((int) (n) >= growme_index) \
	   (n)++; } while (0)

typedef unsigned char byte;

/* Round X up to a multiple of Y.  */

static ElfW(Addr)
round_up (ElfW(Addr) x, ElfW(Addr) y)
{
  int rem = x % y;
  if (rem == 0)
    return x;
  return x - rem + y;
}

/* Return the index of the section named NAME.
   SECTION_NAMES, FILE_NAME and FILE_H give information
   about the file we are looking in.

   If we don't find the section NAME, that is a fatal error
   if NOERROR is 0; we return -1 if NOERROR is nonzero.  */

static int
find_section (char *name,
	      const char *section_names,
	      char *file_name,
	      ElfW(Ehdr) *old_file_h,
	      ElfW(Shdr) *old_section_h,
	      int noerror)
{
  int idx;

  for (idx = 1; idx < old_file_h->e_shnum; idx++)
    {
#ifdef DEBUG
      fprintf (stderr, "Looking for %s - found %s\n", name,
	       section_names + OLD_SECTION_H (idx).sh_name);
#endif
      if (!strcmp (section_names + OLD_SECTION_H (idx).sh_name,
		   name))
	  return idx;
    }

  /* If we're here, we found nothing or return did not work */
  if ( ! noerror)
      fatal ("Can't find %s in %s.\n", name, file_name);

  return -1;
}

/* ****************************************************************
 * unexec
 *
 * driving logic.
 *
 * In ELF, this works by replacing the old .bss section with a new
 * .data section, and inserting an empty .bss immediately afterwards.
 *
 */
void
unexec (char *new_name,
	char *old_name,
	uintptr_t UNUSED (data_start),
	uintptr_t UNUSED (bss_start),
	uintptr_t UNUSED (entry_address))
{
  int old_file;

  struct stat stat_buf;
  caddr_t old_base, new_base;

  ElfW(Ehdr) *old_file_h, * new_file_h;
  ElfW(Phdr) *old_program_h, * new_program_h;
  ElfW(Shdr) *old_section_h, * new_section_h;
  ElfW(Shdr) * growme = NULL, * grown = NULL;
  ElfW(Addr) old_bss_addr = 0,  new_data2_addr = 0;

  int growme_index = -1;
  int n, nn;
  const char *old_section_names;
  int old_mdebug_index, old_data_index;
  int new_bss_addr, new_data2_size, new_data2_offset, new_file, new_file_size;

  /* Open the old file */
  if ( (old_file = open (old_name, O_RDONLY)) < 0 )
      fatal ("Can't open %s for reading: errno %d\n", old_name, errno);

  if (fstat (old_file, &stat_buf) == -1)
      fatal ("Can't fstat (%s): errno %d\n", old_name, errno);

  /* map old file into the address space. */
  old_base = (caddr_t) mmap ((caddr_t) 0, stat_buf.st_size,
			     PROT_READ, MAP_SHARED, old_file, 0);
  if (old_base == (caddr_t) MAP_FAILED)
    fatal ("Can't mmap (%s): errno %d\n", old_name, errno);

  old_file_h    = (ElfW(Ehdr) *) old_base;
  old_program_h = (ElfW(Phdr) *) ((byte *) old_base + old_file_h->e_phoff);
  old_section_h = (ElfW(Shdr) *) ((byte *) old_base + old_file_h->e_shoff);
  old_section_names = (const char *) old_base
      + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset;

  /* Find a section which we will grow by looking for the SHT_NOBITS
   * section with ALLOCATE flag and with the biggest address. */
  for (n = 1; n < old_file_h->e_shnum; n++) {
      ElfW(Shdr) * sh = & OLD_SECTION_H(n);

      if ((sh->sh_type == SHT_NOBITS) && (sh->sh_flags & SHF_ALLOC)) {
	  if ( old_bss_addr < sh->sh_addr ) {
	      growme = sh;
	      growme_index = n;
	      new_data2_addr = old_bss_addr =  sh->sh_addr;
	  }
      }
  }

  if (growme == NULL )
      fatal ("Can't find a section to grow\n", 0, 0);

  old_data_index = find_section (".data", old_section_names,
				 old_name, old_file_h, old_section_h, 0);

  new_bss_addr = (ElfW(Addr)) sbrk (0);
  new_data2_size = new_bss_addr - old_bss_addr;
  new_data2_offset  = OLD_SECTION_H (old_data_index).sh_offset +
      (new_data2_addr - OLD_SECTION_H (old_data_index).sh_addr);

  if ( new_bss_addr < old_bss_addr + growme->sh_size )
      fatal (".bss shrank when undumping???\n", 0, 0);

  /* Set the output file to the right size and mmap it. */
  if ( (new_file = open (new_name, O_RDWR | O_CREAT, 0666)) < 0 )
      fatal ("Can't create (%s): errno %d\n", new_name, errno);

  new_file_size = stat_buf.st_size +  old_file_h->e_shentsize + new_data2_size;

  if (ftruncate (new_file, new_file_size))
      fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno);

  new_base = (caddr_t) mmap ((caddr_t) 0, new_file_size,
			     PROT_READ | PROT_WRITE,
#ifdef UNEXEC_USE_MAP_PRIVATE
			     MAP_PRIVATE,
#else
			     MAP_SHARED,
#endif
			     new_file, 0);

  if (new_base == (caddr_t) -1)
      fatal ("Can't mmap (%s): errno %d\n", new_name, errno);

  new_file_h = (ElfW(Ehdr) *) new_base;
  new_program_h = (ElfW(Phdr) *) ((byte *) new_base + old_file_h->e_phoff);
  new_section_h = (ElfW(Shdr) *) ((byte *) new_base + old_file_h->e_shoff +
				  new_data2_size);

  /* Make our new file, program and section headers as copies of the
   * originals.  */
  memcpy (new_file_h, old_file_h, old_file_h->e_ehsize);
  memcpy (new_program_h, old_program_h,
	  old_file_h->e_phnum * old_file_h->e_phentsize);

  /* Modify the e_shstrndx if necessary. */
  PATCH_INDEX (new_file_h->e_shstrndx);

  /* Fix up file header.  We'll add one section.  Section header is
   * further away now.  */
  new_file_h->e_shoff += new_data2_size;
  new_file_h->e_shnum += 1;

  /* Fix up a new program header by extending the writable data
   * segment so that the bss area is covered too. Find that segment by
   * looking for one that starts before and ends after the .bss and is
   * PT_LOADable. */
  for (n = new_file_h->e_phnum - 1; n >= 0; n--) {
      ElfW(Phdr) * ph = & NEW_PROGRAM_H(n);
#ifdef DEBUG
      printf ("%d @ %0x + %0x against %0x + %0x",
	      n, ph->p_vaddr, ph->p_memsz,growme->sh_addr, growme->sh_size);
#endif
      if ((ph->p_type == PT_LOAD) &&
	  (ph->p_vaddr <= growme->sh_addr) &&
	  ((ph->p_vaddr+ph->p_memsz) >= (growme->sh_addr + growme->sh_size))) {
	  /* Make sure that the size includes any padding before the
	   * old .bss section.  */
	  ph->p_memsz = ph->p_filesz = new_bss_addr - ph->p_vaddr;
#ifdef DEBUG
	  puts (" That's the one!");
#endif
	  break;
      }
#ifdef DEBUG
      putchar ('\n');
#endif
  }

  if (n < 0)
      fatal ("Couldn't find segment which covers %s",
	     old_section_names + growme->sh_name);

  /* Walk through all section headers, insert the new data2 section
   * right before the new bss section. */
  for (n = 1, nn = 1; n < (int) old_file_h->e_shnum;  n++, nn++) {
      ElfW(Shdr) * nsec = & NEW_SECTION_H(nn);
      ElfW(Shdr) * osec = & OLD_SECTION_H(n);

      /* If this is the section we want to grow, insert the new data
       * section before it. */
      if ( osec == growme ) {
	  /* Steal the data section header for this data2 section but
	   * use the * 'grow' section's alignment. This * will assure
	   * that the new section * always be placed in the same spot
	   * * as the old section by any other * application. */
	  ElfW(Shdr) * od = &OLD_SECTION_H(old_data_index);

	  memcpy (nsec, od, new_file_h->e_shentsize);

	  nsec->sh_addr = new_data2_addr;
	  nsec->sh_offset =  new_data2_offset;
	  nsec->sh_size = new_data2_size;
	  nsec->sh_addralign = osec->sh_addralign;

	  /* Copy over what we have in memory now. */
	  memcpy (nsec->sh_offset + new_base, (caddr_t) osec->sh_addr,
		  new_data2_size);
	  nn++;
	  grown = nsec++;
      }

      memcpy (nsec, osec, old_file_h->e_shentsize);

      if ( osec == growme ) {
	  /* The new bss section's size is zero, and its file offset
	   * and virtual address should be off by NEW_DATA2_SIZE.  */
	  nsec->sh_offset = grown->sh_offset + new_data2_size;
	  nsec->sh_addr = grown->sh_addr + new_data2_size;

	  /* Let the new bss section address alignment be the same as
	   * the section address alignment followed the old bss
	   * section, so this section will be placed in exactly the
	   * same place. */
	  nsec->sh_addralign = osec->sh_addralign;
	  nsec->sh_size = 0;
      } else {
	  /* Any section that was originally placed AFTER the bss
	   * section should now be off by NEW_DATA2_SIZE. */
	  if ( round_up (nsec->sh_offset, growme->sh_addralign) >=
	       new_data2_offset)
	      nsec->sh_offset += new_data2_size;
      }

      /* Any section that was originally placed after the section *
       * header table should now be off by the size of one section
       * header table entry.  */
      if (nsec->sh_offset > new_file_h->e_shoff)
	  nsec->sh_offset += new_file_h->e_shentsize;


      /* If any section hdr refers to the section after the new .data
       * section, make it refer to next one because we have inserted a
       * new section in between.  */
      PATCH_INDEX (nsec->sh_link);

      /* For symbol tables, info is a symbol table index, so don't
       * change it.  */
      if (nsec->sh_type != SHT_SYMTAB && nsec->sh_type != SHT_DYNSYM)
	  PATCH_INDEX (nsec->sh_info);

      /* Any section which used to be NOBITS will now becomes PROGBITS
       * if it's ALLOC-atable, unless, of cause, it's not the one we
       * decided to grow */
      if ( (osec->sh_type == SHT_NOBITS) && (osec->sh_flags & SHF_ALLOC) &&
	   (osec != growme ) ) {
	  nsec->sh_type = SHT_PROGBITS;
      }

      /* Now, start to copy the content of sections */
      if ( nsec->sh_type != SHT_NULL || nsec->sh_type != SHT_NOBITS ) {

	  /* Write out the sections. .data and .data1 (and data2,
	   * called ".data" in the strings table) get copied from the
	   * current process instead of the old file.  */
	  caddr_t src =  old_base + osec->sh_offset;
	  const char * secname = old_section_names + nsec->sh_name;
	  const char * names[] = {
	      ".data",".sdata", ".lit4", ".lit8", ".sdata1", ".data1",
	      ".sbss", NULL};
	  int i;

	  for ( i=0; names[i] != NULL; i++ ) {
	      if ( ! strcmp (secname, names[i]) ) {
		  src = (caddr_t) osec->sh_addr;
		  break;
	      }
	  }

	  memcpy (nsec->sh_offset + new_base, src, nsec->sh_size);
      }

      old_mdebug_index = find_section (".mdebug", old_section_names,
				       old_name, old_file_h, old_section_h, 1);

#if defined (__sony_news) && defined (_SYSTYPE_SYSV)
      if (nsec->sh_type == SHT_MIPS_DEBUG && old_mdebug_index != -1) {
	  int diff = nsec->sh_offset-OLD_SECTION_H(old_mdebug_index).sh_offset;
	  HDRR *phdr = (HDRR *)(nsec->sh_offset + new_base);

	  if (diff) {
	      phdr->cbLineOffset += diff;
	      phdr->cbDnOffset   += diff;
	      phdr->cbPdOffset   += diff;
	      phdr->cbSymOffset  += diff;
	      phdr->cbOptOffset  += diff;
	      phdr->cbAuxOffset  += diff;
	      phdr->cbSsOffset   += diff;
	      phdr->cbSsExtOffset += diff;
	      phdr->cbFdOffset   += diff;
	      phdr->cbRfdOffset  += diff;
	      phdr->cbExtOffset  += diff;
	  }
      }
#endif /* __sony_news && _SYSTYPE_SYSV */

#if __sgi
      /* Adjust the HDRR offsets in .mdebug and copy the line data if
       * it's in its usual 'hole' in the object.  Makes the new file
       * debuggable with dbx.  patches up two problems: the absolute
       * file offsets in the HDRR record of .mdebug (see
       * /usr/include/syms.h), and the ld bug that gets the line table
       * in a hole in the elf file rather than in the .mdebug section
       * proper.
       *
       * David Anderson. davea@sgi.com Jan 16,1994 */
#define MDEBUGADJUST(__ct,__fileaddr)		\
  if (n_phdrr->__ct > 0)			\
    {						\
      n_phdrr->__fileaddr += movement;		\
    }

      if (n == old_mdebug_index) {
	  HDRR * o_phdrr = (HDRR *)((byte *)old_base + osec->sh_offset);
	  HDRR * n_phdrr = (HDRR *)((byte *)new_base + nsec->sh_offset);
	  unsigned movement = new_data2_size;

	  MDEBUGADJUST (idnMax, cbDnOffset);
	  MDEBUGADJUST (ipdMax, cbPdOffset);
	  MDEBUGADJUST (isymMax, cbSymOffset);
	  MDEBUGADJUST (ioptMax, cbOptOffset);
	  MDEBUGADJUST (iauxMax, cbAuxOffset);
	  MDEBUGADJUST (issMax, cbSsOffset);
	  MDEBUGADJUST (issExtMax, cbSsExtOffset);
	  MDEBUGADJUST (ifdMax, cbFdOffset);
	  MDEBUGADJUST (crfd, cbRfdOffset);
	  MDEBUGADJUST (iextMax, cbExtOffset);

	  /* The Line Section, being possible off in a hole of the
	   * object, requires special handling.  */
	  if (n_phdrr->cbLine > 0) {
	      if (o_phdrr->cbLineOffset >
		  osec->sh_offset+ osec->sh_size){
		  /* line data is in a hole in elf. do special copy
		   * and adjust for this ld mistake.  */
		  n_phdrr->cbLineOffset += movement;

		  memcpy (n_phdrr->cbLineOffset + new_base,
			  o_phdrr->cbLineOffset + old_base, n_phdrr->cbLine);
	      } else {
		  /* somehow line data is in .mdebug as it is supposed
		   * to be.  */
		  MDEBUGADJUST (cbLine, cbLineOffset);
	      }
	  }
      }
#endif /* __sgi */
      /* If it is the symbol table, its st_shndx field needs to be
       * patched.  */
      if (nsec->sh_type == SHT_SYMTAB || nsec->sh_type == SHT_DYNSYM) {
	  unsigned int num = nsec->sh_size / nsec->sh_entsize;
	  ElfW(Sym) * sym = (ElfW(Sym) *)(nsec->sh_offset + new_base);
	  byte *symnames = ((byte *) new_base +
			    NEW_SECTION_H (nsec->sh_link).sh_offset);

	  for (; num--; sym++) {
	      const char * symnam = (char *) (symnames + sym->st_name);

	      /* Update the symbol values of _edata and _end. */
	      if (strcmp (symnam, "_end") == 0
		  || strcmp (symnam, "end") == 0
		  || strcmp (symnam, "_edata") == 0
		  || strcmp (symnam, "edata") == 0)
		  memcpy (&sym->st_value, &new_bss_addr,sizeof (new_bss_addr));


	      if ((sym->st_shndx == SHN_UNDEF) || (sym->st_shndx == SHN_ABS)
		  || (sym->st_shndx == SHN_COMMON)
		  || (sym->st_shndx >= SHN_LOPROC &&
		      sym->st_shndx <= SHN_HIPROC))
		  continue;

	      PATCH_INDEX (sym->st_shndx);
	  }
      }
  }

  /* This loop seeks out relocation sections for the data section, so
   * that it can undo relocations performed by the runtime linker.  */
  for (n = new_file_h->e_shnum - 1; n; n--) {
      ElfW(Shdr) section = NEW_SECTION_H (n);

      if ( section.sh_type == SHT_REL || section.sh_type == SHT_RELA ) {
	  /* This code handles two different size structs, but there
	   * should be no harm in that provided that r_offset is
	   * always the first member.  */
	  ElfW(Shdr) * info = & NEW_SECTION_H(section.sh_info);
	  const char * nm = old_section_names + info->sh_name;

	  if (!strcmp (nm, ".data") || !strcmp (nm, ".sdata")
	      || !strcmp (nm, ".lit4") || !strcmp (nm, ".lit8")
	      || !strcmp (nm, ".sdata1") || !strcmp (nm, ".data1")) {
	      ElfW(Addr) offset =  info->sh_addr - info->sh_offset;
	      caddr_t end, reloc = old_base + section.sh_offset;

	      for (end = reloc + section.sh_size; reloc < end;
		   reloc += section.sh_entsize) {
		  ElfW(Addr) addr = ((ElfW(Rel) *) reloc)->r_offset - offset;
#ifdef __alpha__
		  /* The Alpha ELF binutils currently have a bug that
		   * sometimes results in relocs that contain all
		   * zeroes.  Work around this for now...  */
		  if (((ElfW(Rel) *) reloc)->r_offset == 0)
		      continue;
#endif
		  memcpy (new_base + addr, old_base + addr,
			  sizeof(ElfW(Addr)));
	      }
	  }
      }
  }

#ifdef UNEXEC_USE_MAP_PRIVATE
  if (lseek (new_file, 0, SEEK_SET) == -1)
      fatal ("Can't rewind (%s): errno %d\n", new_name, errno);

  if (write (new_file, new_base, new_file_size) != new_file_size)
      fatal ("Can't write (%s): errno %d\n", new_name, errno);
#endif

  /* Close the files and make the new file executable.  */
  if (close (old_file))
      fatal ("Can't close (%s): errno %d\n", old_name, errno);

  if (close (new_file))
      fatal ("Can't close (%s): errno %d\n", new_name, errno);

  if (stat (new_name, &stat_buf) == -1)
      fatal ("Can't stat (%s): errno %d\n", new_name, errno);

  n = umask (777);
  umask (n);
  stat_buf.st_mode |= 0111 & ~n;
  if (chmod (new_name, stat_buf.st_mode) == -1)
      fatal ("Can't chmod (%s): errno %d\n", new_name, errno);
}