Mercurial > hg > xemacs-beta
view src/tooltalk.doc @ 4677:8f1ee2d15784
Support full Common Lisp multiple values in C.
lisp/ChangeLog
2009-08-11 Aidan Kehoe <kehoea@parhasard.net>
* bytecomp.el :
Update this file to support full C-level multiple values. This
involves:
-- Four new bytecodes, and special compiler functions to compile
multiple-value-call, multiple-value-list-internal, values,
values-list, and, since it now needs to pass back multiple values
and is a special form, throw.
-- There's a new compiler variable, byte-compile-checks-on-load,
which is a list of forms that are evaluated at the very start of a
file, with an error thrown if any of them give nil.
-- The header is now inserted *after* compilation, giving a chance
for the compilation process to influence what those checks
are. There is still a check done before compilation for non-ASCII
characters, to try to turn off dynamic docstrings if appopriate,
in `byte-compile-maybe-reset-coding'.
Space is reserved for checks; comments describing the version of
the byte compiler generating the file are inserted if space
remains for them.
* bytecomp.el (byte-compile-version):
Update this, we're a newer version of the byte compiler.
* byte-optimize.el (byte-optimize-funcall):
Correct a comment.
* bytecomp.el (byte-compile-lapcode):
Discard the arg with byte-multiple-value-call.
* bytecomp.el (byte-compile-checks-and-comments-space):
New variable, describe how many octets to reserve for checks at
the start of byte-compiled files.
* cl-compat.el:
Remove the fake multiple-value implementation. Have the functions
that use it use the real multiple-value implementation instead.
* cl-macs.el (cl-block-wrapper, cl-block-throw):
Revise the byte-compile properties of these symbols to work now
we've made throw into a special form; keep the byte-compile
properties as anonymous lambdas, since we don't have docstrings
for them.
* cl-macs.el (multiple-value-bind, multiple-value-setq)
(multiple-value-list, nth-value):
Update these functions to work with the C support for multiple
values.
* cl-macs.el (values):
Modify the setf handler for this to call
#'multiple-value-list-internal appropriately.
* cl-macs.el (cl-setf-do-store):
If the store form is a cons, treat it specially as wrapping the
store value.
* cl.el (cl-block-wrapper):
Make this an alias of #'and, not #'identity, since it needs to
pass back multiple values.
* cl.el (multiple-value-apply):
We no longer support this, mark it obsolete.
* lisp-mode.el (eval-interactive-verbose):
Remove a useless space in the docstring.
* lisp-mode.el (eval-interactive):
Update this function and its docstring. It now passes back a list,
basically wrapping any eval calls with multiple-value-list. This
allows multiple values to be printed by default in *scratch*.
* lisp-mode.el (prin1-list-as-multiple-values):
New function, printing a list as multiple values in the manner of
Bruno Haible's clisp, separating each entry with " ;\n".
* lisp-mode.el (eval-last-sexp):
Call #'prin1-list-as-multiple-values on the return value of
#'eval-interactive.
* lisp-mode.el (eval-defun):
Call #'prin1-list-as-multiple-values on the return value of
#'eval-interactive.
* mouse.el (mouse-eval-sexp):
Deal with lists corresponding to multiple values from
#'eval-interactive. Call #'cl-prettyprint, which is always
available, instead of sometimes calling #'pprint and sometimes
falling back to prin1.
* obsolete.el (obsolete-throw):
New function, called from eval.c when #'funcall encounters an
attempt to call #'throw (now a special form) as a function. Only
needed for compatibility with 21.4 byte-code.
man/ChangeLog addition:
2009-08-11 Aidan Kehoe <kehoea@parhasard.net>
* cl.texi (Organization):
Remove references to the obsolete multiple-value emulating code.
src/ChangeLog addition:
2009-08-11 Aidan Kehoe <kehoea@parhasard.net>
* bytecode.c (enum Opcode /* Byte codes */):
Add four new bytecodes, to deal with multiple values.
(POP_WITH_MULTIPLE_VALUES): New macro.
(POP): Modify this macro to ignore multiple values.
(DISCARD_PRESERVING_MULTIPLE_VALUES): New macro.
(DISCARD): Modify this macro to ignore multiple values.
(TOP_WITH_MULTIPLE_VALUES): New macro.
(TOP_ADDRESS): New macro.
(TOP): Modify this macro to ignore multiple values.
(TOP_LVALUE): New macro.
(Bcall): Ignore multiple values where appropriate.
(Breturn): Pass back multiple values.
(Bdup): Preserve multiple values.
Use TOP_LVALUE with most bytecodes that assign anything to
anything.
(Bbind_multiple_value_limits, Bmultiple_value_call,
Bmultiple_value_list_internal, Bthrow): Implement the new
bytecodes.
(Bgotoifnilelsepop, Bgotoifnonnilelsepop, BRgotoifnilelsepop,
BRgotoifnonnilelsepop):
Discard any multiple values.
* callint.c (Fcall_interactively):
Ignore multiple values when calling #'eval, in two places.
* device-x.c (x_IO_error_handler):
* macros.c (pop_kbd_macro_event):
* eval.c (Fsignal):
* eval.c (flagged_a_squirmer):
Call throw_or_bomb_out, not Fthrow, now that the latter is a
special form.
* eval.c:
Make Qthrow, Qobsolete_throw available as symbols.
Provide multiple_value_current_limit, multiple-values-limit (the
latter as specified by Common Lisp.
* eval.c (For):
Ignore multiple values when comparing with Qnil, but pass any
multiple values back for the last arg.
* eval.c (Fand):
Ditto.
* eval.c (Fif):
Ignore multiple values when examining the result of the
condition.
* eval.c (Fcond):
Ignore multiple values when comparing what the clauses give, but
pass them back if a clause gave non-nil.
* eval.c (Fprog2):
Never pass back multiple values.
* eval.c (FletX, Flet):
Ignore multiple when evaluating what exactly symbols should be
bound to.
* eval.c (Fwhile):
Ignore multiple values when evaluating the test.
* eval.c (Fsetq, Fdefvar, Fdefconst):
Ignore multiple values.
* eval.c (Fthrow):
Declare this as a special form; ignore multiple values for TAG,
preserve them for VALUE.
* eval.c (throw_or_bomb_out):
Make this available to other files, now Fthrow is a special form.
* eval.c (Feval):
Ignore multiple values when calling a compiled function, a
non-special-form subr, or a lambda expression.
* eval.c (Ffuncall):
If we attempt to call #'throw (now a special form) as a function,
don't error, call #'obsolete-throw instead.
* eval.c (make_multiple_value, multiple_value_aset)
(multiple_value_aref, print_multiple_value, mark_multiple_value)
(size_multiple_value):
Implement the multiple_value type. Add a long comment describing
our implementation.
* eval.c (bind_multiple_value_limits):
New function, used by the bytecode and by #'multiple-value-call,
#'multiple-value-list-internal.
* eval.c (multiple_value_call):
New function, used by the bytecode and #'multiple-value-call.
* eval.c (Fmultiple_value_call):
New special form.
* eval.c (multiple_value_list_internal):
New function, used by the byte code and
#'multiple-value-list-internal.
* eval.c (Fmultiple_value_list_internal, Fmultiple_value_prog1):
New special forms.
* eval.c (Fvalues, Fvalues_list):
New Lisp functions.
* eval.c (values2):
New function, for C code returning multiple values.
* eval.c (syms_of_eval):
Make our new Lisp functions and symbols available.
* eval.c (multiple-values-limit):
Make this available to Lisp.
* event-msw.c (dde_eval_string):
* event-stream.c (execute_help_form):
* glade.c (connector):
* glyphs-widget.c (glyph_instantiator_to_glyph):
* glyphs.c (evaluate_xpm_color_symbols):
* gui-x.c (wv_set_evalable_slot, button_item_to_widget_value):
* gui.c (gui_item_value, gui_item_display_flush_left):
* lread.c (check_if_suppressed):
* menubar-gtk.c (menu_convert, menu_descriptor_to_widget_1):
* menubar-msw.c (populate_menu_add_item):
* print.c (Fwith_output_to_temp_buffer):
* symbols.c (Fsetq_default):
Ignore multiple values when calling Feval.
* symeval.h:
Add the header declarations necessary for the multiple-values
implementation.
* inline.c:
#include symeval.h, now that it has some inline functions.
* lisp.h:
Update Fthrow's declaration. Make throw_or_bomb_out available to
all files.
* lrecord.h (enum lrecord_type):
Add the multiple_value type here.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Sun, 16 Aug 2009 20:55:49 +0100 |
parents | 576fb035e263 |
children | 365bc8cb5894 |
line wrap: on
line source
Emacs Tooltalk API Summary The Emacs Lisp interface to Tooltalk is similar, at least in spirit, to the standard C Tootalk API. Only the message and pattern parts of the API are supported at present, more of the API could be added if needed. The Lisp interface departs from the C API in a few ways: - Tooltalk is initialized automatically at emacs startup-time. Messages can only be sent other Tooltalk applications connected to the same X11 server that emacs is running on. - There are fewer entry points, polymorphic functions with keyword arguments are used instead. - The callback interface is simpler and marginally less functional. A single callback may be associated with a message or a pattern, the callback is specified with a Lisp symbol (the symbol should have a function binding). - The session attribute for messages and patterns is always initialized to the default session. - Anywhere a Tooltalk enum constant, e.g. TT_SESSION, is valid one can substitute the corresponding symbol, e.g. 'TT_SESSION. This simplifies building lists that represent messages and patterns. * Example: Receiving Messages Here's a simple example of a handler for a message that tells emacs to display a string in the mini-buffer area. The message operation is called "emacs-display-string", its first (0th) argument is the string to display: (defun tooltalk-display-string-handler (msg) (message (get-tooltalk-message-attribute msg 'arg_val 0))) (defvar display-string-pattern '(category TT_HANDLE scope TT_SESSION op "emacs-display-string" callback tooltalk-display-string-handler)) (let ((p (make-tooltalk-pattern display-string-pattern))) (register-tooltalk-pattern p)) * Example: Sending Messages Here's a simple example that sends a query to another application and then displays its reply. Both the query and the reply are stored in the first argument of the message. (defun tooltalk-random-query-handler (msg) (let ((state (get-tooltalk-message-attribute msg 'state))) (cond ((eq state 'TT_HANDLED) (message (get-tooltalk-message-attribute msg arg_val 0))) ((memq state '(TT_FAILED TT_REJECTED)) (message "Random query turns up nothing"))))) (defvar random-query-message '( class TT_REQUEST scope TT_SESSION address TT_PROCEDURE op "random-query" args '((TT_INOUT "?" "string")) callback tooltalk-random-query-handler)) (let ((m (make-tooltalk-message random-query-message))) (send-tooltalk-message m)) * Emacs Lisp Tooltalk API ** Sending Messages: (make-tooltalk-message attributes) Create a tooltalk message and initialize its attributes. The value of attributes must be a list of alternating keyword/values, where keywords are symbols that name valid message attributes. For example: (make-tooltalk-message '(class TT_NOTICE scope TT_SESSION address TT_PROCEDURE op "do-something" args ("arg1" 12345 (TT_INOUT "arg3" "string")))) Values must always be strings, integers, or symbols that represent Tooltalk constants. Attribute names are the same as those supported by set-tooltalk-message-attribute, plus 'args. The value of args should be a list of message arguments where each message argument has the following form: (mode [value [type]]) or just value Where mode is one of TT_IN, TT_OUT, TT_INOUT and type is a string. If type isn't specified then "int" is used if the value is a number otherwise "string" is used. If type is "string" then value is converted to a string (if it isn't a string already) with prin1-to-string. If only a value is specified then mode defaults to TT_IN. If mode is TT_OUT then value and type don't need to be specified. You can find out more about the semantics and uses of ToolTalk message arguments in chapter 4 of the Tooltalk Programmers Guide. (send-tooltalk-message msg) Send the message on its way. Once the message has been sent it's almost always a good idea to get rid of it with destroy-tooltalk-message. (return-tooltalk-message msg &optional mode) Send a reply to this message. The second argument can be 'reply, 'reject or 'fail, the default is 'reply. Before sending a reply all message arguments whose mode is TT_INOUT or TT_OUT should have been filled in - see set-tooltalk-message-attribute." (get-tooltalk-message-attribute msg attribute &optional argn) Returns the indicated Tooltalk message attribute. Attributes are identified by symbols with the same name (underscores and all) as the suffix of the Tooltalk tt_message_<attribute> function that extracts the value. String attribute values are copied, enumerated type values (except disposition) are converted to symbols - e.g. TT_HANDLER is 'TT_HANDLER, uid and gid are represented by fixnums (small integers), opnum is converted to a string, and disposition is converted to a fixnum. We convert opnum (a C int) to a string, e.g. 123 => \"123\" because there's no guarantee that opnums will fit within the range of Emacs Lisp integers. [TBD] Use the 'plist attribute instead of C API 'user attribute for user defined message data. To retrieve the value of a message property specify the indicator for argn. For example to get the value of a property called 'rflagg, use (get-tooltalk-message-attribute msg 'plist 'rflag) To get the value of a message argument use one of the 'arg_val (strings), 'arg_ival (integers), or 'arg_bval (strings with embedded nulls), attributes. Because integer valued arguments can be larger than Emacs Lisp integers 'arg_ival yields a string. If the value is will fit within 24 bits then convert it to an integer with string-to-int. For example to get the integer value of the third argument: (string-to-int (get-tooltalk-message-attribute msg 'arg_ival 2)) As you can see, argument numbers are zero based. The type of each arguments can be retrieved, with the 'arg_type attribute, however Tooltalk doesn't define any semantics for the string value of 'arg_type. Conventionally "string" is used for strings and "int" for 32 bit integers. Note that Emacs Lisp stores the lengths of strings explicitly (unlike C) so treating the value returned by 'arg_bval like a string is fine. (set-tooltalk-message-attribute value msg attribute &optional argn) Initialize one ToolTalk message attribute. Attribue names and values are the same as for get-tooltalk-message-attribute. A property list is provided for user data (instead of the 'user message attribute), see get-tooltalk-message-attribute. Callbacks are handled slightly differently than in the C Tooltalk API. The value of callback should be the name of a function of one argument. It will be called each time the state of the message changes. This is usually used to notice when the messages state has changed to TT_HANDLED (or TT_FAILED), so that reply argument values can be used. If one of the argument attributes is specified, 'arg_val, 'arg_ival, or 'arg_bval then argn must be the number of an already created argument. Arguments can be added to a message with add-tooltalk-message-arg. (add-tooltalk-message-arg msg mode type &optional value) Append one new argument to the message. Mode must be one of: TT_IN, TT_INOUT, or TT_OUT, type must be a string, and value can be a string or an integer. Tooltalk doesn't define any semantics for type, so only the participants in the protocol you're using need to agree what types mean (if anything). Conventionally "string" is used for strings and "int" for 32 bit integers. Arguments can initialized by providing a value or with set-tooltalk-message-attribute, the latter is necessary if you want to initialize the argument with a string that can contain embedded nulls (use 'arg_bval). (create-tooltalk-message) Create a new tooltalk message. The messages session attribute is initialized to the default session. Other attributes can be initialized with set-tooltalk-message-attribute. Make-tooltalk-message is the preferred to create and initialize a message. (destroy-tooltalk-message msg) Apply tt_message_destroy to the message. It's not necessary to destroy messages after they've been processed by a message or pattern callback, the Lisp/Tooltalk callback machinery does this for you. ** Receiving Messages: (make-tooltalk-pattern attributes) Create a tooltalk pattern and initialize its attributes. The value of attributes must be a list of alternating keyword/values, where keywords are symbols that name valid pattern attributes or lists of valid attributes. For example: (make-tooltalk-pattern '(category TT_OBSERVE scope TT_SESSION op ("operation1" "operation2") args ("arg1" 12345 (TT_INOUT "arg3" "string")))) Attribute names are the same as those supported by add-tooltalk-pattern-attribute, plus 'args. Values must always be strings, integers, or symbols that represent Tooltalk constants or lists of same. When a list of values is provided all of the list elements are added to the attribute. In the example above, messages whose op attribute is "operation1" or "operation2" would match the pattern. The value of args should be a list of pattern arguments where each pattern argument has the following form: (mode [value [type]]) or just value Where mode is one of TT_IN, TT_OUT, TT_INOUT and type is a string. If type isn't specified then "int" is used if the value is a number otherwise "string" is used. If type is "string" then value is converted to a string (if it isn't a string already) with prin1-to-string. If only a value is specified then mode defaults to TT_IN. If mode is TT_OUT then value and type don't need to be specified. You can find out more about the semantics and uses of ToolTalk pattern arguments in chapter 3 of the Tooltalk Programmers Guide. (register-tooltalk-pattern pat) Emacs will begin receiving messages that match this pattern. (unregister-tooltalk-pattern pat) Emacs will stop receiving messages that match this pattern. (add-tooltalk-pattern-attribute value pat indicator) Add one value to the indicated pattern attribute. The names of attributes are the same as the Tooltalk accessors used to set them less the "tooltalk_pattern_" prefix and the "_add" suffix). For example the name of the attribute for tt_pattern_disposition_add attribute is 'disposition. The 'category attribute is handled specially, since a pattern can only be a member of one category (TT_OBSERVE or TT_HANDLE. Callbacks are handled slightly differently than in the C Tooltalk API. The value of callback should be the name of a function of one argument. It will be called each time the pattern matches an incoming message. (add-tooltalk-pattern-arg pat mode type value) Add one, fully specified, argument to a tooltalk pattern. Mode must be one of TT_IN, TT_INOUT, or TT_OUT, type must be a string. Value can be an integer, string or nil. If value is an integer then an integer argument (tt_pattern_iarg_add) added otherwise a string argument is added. At present there's no way to add a binary data argument. (create-tooltalk-pattern) Create a new Tooltalk pattern and initialize its session attribute to be the default session. (destroy-tooltalk-pattern pat) Apply tt_pattern_destroy to the pattern. This effecticely unregisters the pattern. (describe-tooltalk-message msg &optional stream) Print the messages attributes and arguments to stream. This is often useful for debugging. * Things to be Done - At the moment there is almost no support for detecting and handling ToolTalk errors. This should be added. - Message and patterns should support a plist attribute. This would be based on one more Tooltalk user data key. This would also make it useful to apply the message and pattern callbacks to both the message and the matching pattern.