Mercurial > hg > xemacs-beta
view lisp/regexp-opt.el @ 4677:8f1ee2d15784
Support full Common Lisp multiple values in C.
lisp/ChangeLog
2009-08-11 Aidan Kehoe <kehoea@parhasard.net>
* bytecomp.el :
Update this file to support full C-level multiple values. This
involves:
-- Four new bytecodes, and special compiler functions to compile
multiple-value-call, multiple-value-list-internal, values,
values-list, and, since it now needs to pass back multiple values
and is a special form, throw.
-- There's a new compiler variable, byte-compile-checks-on-load,
which is a list of forms that are evaluated at the very start of a
file, with an error thrown if any of them give nil.
-- The header is now inserted *after* compilation, giving a chance
for the compilation process to influence what those checks
are. There is still a check done before compilation for non-ASCII
characters, to try to turn off dynamic docstrings if appopriate,
in `byte-compile-maybe-reset-coding'.
Space is reserved for checks; comments describing the version of
the byte compiler generating the file are inserted if space
remains for them.
* bytecomp.el (byte-compile-version):
Update this, we're a newer version of the byte compiler.
* byte-optimize.el (byte-optimize-funcall):
Correct a comment.
* bytecomp.el (byte-compile-lapcode):
Discard the arg with byte-multiple-value-call.
* bytecomp.el (byte-compile-checks-and-comments-space):
New variable, describe how many octets to reserve for checks at
the start of byte-compiled files.
* cl-compat.el:
Remove the fake multiple-value implementation. Have the functions
that use it use the real multiple-value implementation instead.
* cl-macs.el (cl-block-wrapper, cl-block-throw):
Revise the byte-compile properties of these symbols to work now
we've made throw into a special form; keep the byte-compile
properties as anonymous lambdas, since we don't have docstrings
for them.
* cl-macs.el (multiple-value-bind, multiple-value-setq)
(multiple-value-list, nth-value):
Update these functions to work with the C support for multiple
values.
* cl-macs.el (values):
Modify the setf handler for this to call
#'multiple-value-list-internal appropriately.
* cl-macs.el (cl-setf-do-store):
If the store form is a cons, treat it specially as wrapping the
store value.
* cl.el (cl-block-wrapper):
Make this an alias of #'and, not #'identity, since it needs to
pass back multiple values.
* cl.el (multiple-value-apply):
We no longer support this, mark it obsolete.
* lisp-mode.el (eval-interactive-verbose):
Remove a useless space in the docstring.
* lisp-mode.el (eval-interactive):
Update this function and its docstring. It now passes back a list,
basically wrapping any eval calls with multiple-value-list. This
allows multiple values to be printed by default in *scratch*.
* lisp-mode.el (prin1-list-as-multiple-values):
New function, printing a list as multiple values in the manner of
Bruno Haible's clisp, separating each entry with " ;\n".
* lisp-mode.el (eval-last-sexp):
Call #'prin1-list-as-multiple-values on the return value of
#'eval-interactive.
* lisp-mode.el (eval-defun):
Call #'prin1-list-as-multiple-values on the return value of
#'eval-interactive.
* mouse.el (mouse-eval-sexp):
Deal with lists corresponding to multiple values from
#'eval-interactive. Call #'cl-prettyprint, which is always
available, instead of sometimes calling #'pprint and sometimes
falling back to prin1.
* obsolete.el (obsolete-throw):
New function, called from eval.c when #'funcall encounters an
attempt to call #'throw (now a special form) as a function. Only
needed for compatibility with 21.4 byte-code.
man/ChangeLog addition:
2009-08-11 Aidan Kehoe <kehoea@parhasard.net>
* cl.texi (Organization):
Remove references to the obsolete multiple-value emulating code.
src/ChangeLog addition:
2009-08-11 Aidan Kehoe <kehoea@parhasard.net>
* bytecode.c (enum Opcode /* Byte codes */):
Add four new bytecodes, to deal with multiple values.
(POP_WITH_MULTIPLE_VALUES): New macro.
(POP): Modify this macro to ignore multiple values.
(DISCARD_PRESERVING_MULTIPLE_VALUES): New macro.
(DISCARD): Modify this macro to ignore multiple values.
(TOP_WITH_MULTIPLE_VALUES): New macro.
(TOP_ADDRESS): New macro.
(TOP): Modify this macro to ignore multiple values.
(TOP_LVALUE): New macro.
(Bcall): Ignore multiple values where appropriate.
(Breturn): Pass back multiple values.
(Bdup): Preserve multiple values.
Use TOP_LVALUE with most bytecodes that assign anything to
anything.
(Bbind_multiple_value_limits, Bmultiple_value_call,
Bmultiple_value_list_internal, Bthrow): Implement the new
bytecodes.
(Bgotoifnilelsepop, Bgotoifnonnilelsepop, BRgotoifnilelsepop,
BRgotoifnonnilelsepop):
Discard any multiple values.
* callint.c (Fcall_interactively):
Ignore multiple values when calling #'eval, in two places.
* device-x.c (x_IO_error_handler):
* macros.c (pop_kbd_macro_event):
* eval.c (Fsignal):
* eval.c (flagged_a_squirmer):
Call throw_or_bomb_out, not Fthrow, now that the latter is a
special form.
* eval.c:
Make Qthrow, Qobsolete_throw available as symbols.
Provide multiple_value_current_limit, multiple-values-limit (the
latter as specified by Common Lisp.
* eval.c (For):
Ignore multiple values when comparing with Qnil, but pass any
multiple values back for the last arg.
* eval.c (Fand):
Ditto.
* eval.c (Fif):
Ignore multiple values when examining the result of the
condition.
* eval.c (Fcond):
Ignore multiple values when comparing what the clauses give, but
pass them back if a clause gave non-nil.
* eval.c (Fprog2):
Never pass back multiple values.
* eval.c (FletX, Flet):
Ignore multiple when evaluating what exactly symbols should be
bound to.
* eval.c (Fwhile):
Ignore multiple values when evaluating the test.
* eval.c (Fsetq, Fdefvar, Fdefconst):
Ignore multiple values.
* eval.c (Fthrow):
Declare this as a special form; ignore multiple values for TAG,
preserve them for VALUE.
* eval.c (throw_or_bomb_out):
Make this available to other files, now Fthrow is a special form.
* eval.c (Feval):
Ignore multiple values when calling a compiled function, a
non-special-form subr, or a lambda expression.
* eval.c (Ffuncall):
If we attempt to call #'throw (now a special form) as a function,
don't error, call #'obsolete-throw instead.
* eval.c (make_multiple_value, multiple_value_aset)
(multiple_value_aref, print_multiple_value, mark_multiple_value)
(size_multiple_value):
Implement the multiple_value type. Add a long comment describing
our implementation.
* eval.c (bind_multiple_value_limits):
New function, used by the bytecode and by #'multiple-value-call,
#'multiple-value-list-internal.
* eval.c (multiple_value_call):
New function, used by the bytecode and #'multiple-value-call.
* eval.c (Fmultiple_value_call):
New special form.
* eval.c (multiple_value_list_internal):
New function, used by the byte code and
#'multiple-value-list-internal.
* eval.c (Fmultiple_value_list_internal, Fmultiple_value_prog1):
New special forms.
* eval.c (Fvalues, Fvalues_list):
New Lisp functions.
* eval.c (values2):
New function, for C code returning multiple values.
* eval.c (syms_of_eval):
Make our new Lisp functions and symbols available.
* eval.c (multiple-values-limit):
Make this available to Lisp.
* event-msw.c (dde_eval_string):
* event-stream.c (execute_help_form):
* glade.c (connector):
* glyphs-widget.c (glyph_instantiator_to_glyph):
* glyphs.c (evaluate_xpm_color_symbols):
* gui-x.c (wv_set_evalable_slot, button_item_to_widget_value):
* gui.c (gui_item_value, gui_item_display_flush_left):
* lread.c (check_if_suppressed):
* menubar-gtk.c (menu_convert, menu_descriptor_to_widget_1):
* menubar-msw.c (populate_menu_add_item):
* print.c (Fwith_output_to_temp_buffer):
* symbols.c (Fsetq_default):
Ignore multiple values when calling Feval.
* symeval.h:
Add the header declarations necessary for the multiple-values
implementation.
* inline.c:
#include symeval.h, now that it has some inline functions.
* lisp.h:
Update Fthrow's declaration. Make throw_or_bomb_out available to
all files.
* lrecord.h (enum lrecord_type):
Add the multiple_value type here.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Sun, 16 Aug 2009 20:55:49 +0100 |
parents | 317f30471f4e |
children | f00192e1cd49 308d34e9f07d |
line wrap: on
line source
;;; regexp-opt.el --- generate efficient regexps to match strings ;; Copyright (C) 1994,95,96,97,98,99,2000 Free Software Foundation, Inc. ;; Author: Simon Marshall <simon@gnu.org> ;; Maintainer: FSF ;; Keywords: strings, regexps, extensions ;; This file is part of XEmacs. ;; XEmacs is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; XEmacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with XEmacs; see the file COPYING. If not, write to the ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA. ;;; Synched up with: GNU Emacs 21.3 + paren-in-char-set fix from CVS ;;; revision 1.25. Some implementation differences in ;;; regexp-opt-group and regexp-opt-charset but the APIs ;;; are compatible and should return compatible (if not ;;; exactly the same) regexps. ;;; Commentary: ;; The "opt" in "regexp-opt" stands for "optim\\(?:al\\|i\\(?:se\\|ze\\)\\)". ;; ;; This package generates a regexp from a given list of strings (which matches ;; one of those strings) so that the regexp generated by: ;; ;; (regexp-opt strings) ;; ;; is equivalent to, but more efficient than, the regexp generated by: ;; ;; (mapconcat 'regexp-quote strings "\\|") ;; ;; For example: ;; ;; (let ((strings '("cond" "if" "when" "unless" "while" ;; "let" "let*" "progn" "prog1" "prog2" ;; "save-restriction" "save-excursion" "save-window-excursion" ;; "save-current-buffer" "save-match-data" ;; "catch" "throw" "unwind-protect" "condition-case"))) ;; (concat "(" (regexp-opt strings t) "\\>")) ;; => "(\\(c\\(?:atch\\|ond\\(?:ition-case\\)?\\)\\|if\\|let\\*?\\|prog[12n]\\|save-\\(?:current-buffer\\|excursion\\|match-data\\|restriction\\|window-excursion\\)\\|throw\\|un\\(?:less\\|wind-protect\\)\\|wh\\(?:en\\|ile\\)\\)\\>" ;; ;; Searching using the above example `regexp-opt' regexp takes approximately ;; two-thirds of the time taken using the equivalent `mapconcat' regexp. ;; Since this package was written to produce efficient regexps, not regexps ;; efficiently, it is probably not a good idea to in-line too many calls in ;; your code, unless you use the following trick with `eval-when-compile': ;; ;; (defvar definition-regexp ;; (eval-when-compile ;; (concat "^(" ;; (regexp-opt '("defun" "defsubst" "defmacro" "defalias" ;; "defvar" "defconst") t) ;; "\\>"))) ;; ;; The `byte-compile' code will be as if you had defined the variable thus: ;; ;; (defvar definition-regexp ;; "^(\\(def\\(alias\\|const\\|macro\\|subst\\|un\\|var\\)\\)\\>") ;; ;; Note that if you use this trick for all instances of `regexp-opt' and ;; `regexp-opt-depth' in your code, regexp-opt.el would only have to be loaded ;; at compile time. But note also that using this trick means that should ;; regexp-opt.el be changed, perhaps to fix a bug or to add a feature to ;; improve the efficiency of `regexp-opt' regexps, you would have to recompile ;; your code for such changes to have effect in your code. ;; Originally written for font-lock.el, from an idea from Stig's hl319.el, with ;; thanks for ideas also to Michael Ernst, Bob Glickstein, Dan Nicolaescu and ;; Stefan Monnier. ;; No doubt `regexp-opt' doesn't always produce optimal regexps, so code, ideas ;; or any other information to improve things are welcome. ;; ;; One possible improvement would be to compile '("aa" "ab" "ba" "bb") ;; into "[ab][ab]" rather than "a[ab]\\|b[ab]". I'm not sure it's worth ;; it but if someone knows how to do it without going through too many ;; contortions, I'm all ears. ;;; Code: ;;;###autoload (defun regexp-opt (strings &optional paren) "Return a regexp to match a string in STRINGS. Each string should be unique in STRINGS and should not contain any regexps, quoted or not. If optional PAREN is non-nil, ensure that the returned regexp is enclosed by at least one regexp grouping construct. The returned regexp is typically more efficient than the equivalent regexp: (let ((open (if PAREN \"\\\\(\" \"\")) (close (if PAREN \"\\\\)\" \"\"))) (concat open (mapconcat 'regexp-quote STRINGS \"\\\\|\") close)) If PAREN is `words', then the resulting regexp is additionally surrounded by \\=\\< and \\>." (save-match-data ;; Recurse on the sorted list. (let* ((max-lisp-eval-depth (* 1024 1024)) (completion-ignore-case nil) (words (eq paren 'words)) (open (cond ((stringp paren) paren) (paren "\\("))) (sorted-strings (sort (copy-sequence strings) 'string-lessp)) (re (regexp-opt-group sorted-strings open))) (if words (concat "\\<" re "\\>") re)))) (defconst regexp-opt-not-groupie*-re (let* ((harmless-ch "[^\\\\[]") (esc-pair-not-lp "\\\\[^(]") (class-harmless-ch "[^][]") (class-lb-harmless "[^]:]") (class-lb-colon-maybe-charclass ":\\([a-z]+:]\\)?") (class-lb (concat "\\[\\(" class-lb-harmless "\\|" class-lb-colon-maybe-charclass "\\)")) (class (concat "\\[^?]?" "\\(" class-harmless-ch "\\|" class-lb "\\)*" "\\[?]")) ; special handling for bare [ at end of re (shy-lp "\\\\(\\?:")) (concat "\\(" harmless-ch "\\|" esc-pair-not-lp "\\|" class "\\|" shy-lp "\\)*")) "Matches any part of a regular expression EXCEPT for non-shy \"\\\\(\"s") ;;;###autoload (defun regexp-opt-depth (regexp) "Return the depth of REGEXP. This means the number of regexp grouping constructs (parenthesised expressions) in REGEXP." (save-match-data ;; Hack to signal an error if REGEXP does not have balanced parentheses. (string-match regexp "") ;; Count the number of open parentheses in REGEXP. (let ((count 0) start) (while (progn (string-match regexp-opt-not-groupie*-re regexp start) (setq start ( + (match-end 0) 2)) ; +2 for "\\(" after match-end. (<= start (length regexp))) (setq count (1+ count))) count))) ;;; Workhorse functions. (eval-when-compile (require 'cl)) (defun regexp-opt-group (strings &optional paren lax) "Return a regexp to match a string in STRINGS. If PAREN non-nil, output regexp parentheses around returned regexp. If LAX non-nil, don't output parentheses if it doesn't require them. Merges keywords to avoid backtracking in Emacs' regexp matcher. The basic idea is to find the shortest common prefix or suffix, remove it and recurse. If there is no prefix, we divide the list into two so that \(at least) one half will have at least a one-character common prefix. Also we delay the addition of grouping parenthesis as long as possible until we're sure we need them, and try to remove one-character sequences so we can use character sets rather than grouping parenthesis." (let* ((open-group (cond ((stringp paren) paren) (paren "\\(?:") (t ""))) (close-group (if paren "\\)" "")) (open-charset (if lax "" open-group)) (close-charset (if lax "" close-group))) (cond ;; ;; If there are no strings, just return the empty string. ((= (length strings) 0) "") ;; ;; If there is only one string, just return it. ((= (length strings) 1) (if (= (length (car strings)) 1) (concat open-charset (regexp-quote (car strings)) close-charset) (concat open-group (regexp-quote (car strings)) close-group))) ;; ;; If there is an empty string, remove it and recurse on the rest. ((= (length (car strings)) 0) (concat open-charset (regexp-opt-group (cdr strings) t t) "?" close-charset)) ;; ;; If all are one-character strings, just return a character set. ((= (length strings) (apply '+ (mapcar 'length strings))) (concat open-charset (regexp-opt-charset strings) close-charset)) ;; ;; We have a list of different length strings. (t (let ((prefix (try-completion "" (mapcar 'list strings))) (letters (let ((completion-regexp-list '("^.$"))) (all-completions "" (mapcar 'list strings))))) (cond ;; ;; If there is a common prefix, remove it and recurse on the suffixes. ((> (length prefix) 0) (let* ((length (length prefix)) (suffixes (mapcar (lambda (s) (substring s length)) strings))) (concat open-group (regexp-quote prefix) (regexp-opt-group suffixes t t) close-group))) ;; ;; If there are several one-character strings, remove them and recurse ;; on the rest (first so the final regexp finds the longest match). ((> (length letters) 1) (let ((rest (let ((completion-regexp-list '("^..+$"))) (all-completions "" (mapcar 'list strings))))) (concat open-group (regexp-opt-group rest) "\\|" (regexp-opt-charset letters) close-group))) ;; ;; Otherwise, divide the list into those that start with a particular ;; letter and those that do not, and recurse on them. (t (let* ((char (substring (car strings) 0 1)) (half1 (all-completions char (mapcar 'list strings))) (half2 (nthcdr (length half1) strings))) (concat open-group (regexp-opt-group half1) "\\|" (regexp-opt-group half2) close-group))))))))) (defun regexp-opt-charset (chars) ;; ;; Return a regexp to match a character in CHARS. ;; ;; The basic idea is to find character ranges. Also we take care in the ;; position of character set meta characters in the character set regexp. ;; (let* ((charwidth 256) ; Yeah, right. ;; XEmacs: use bit-vectors instead of bool-vectors (charmap (make-bit-vector charwidth 0)) (charset "") (bracket "") (dash "") (caret "")) ;; ;; Make a character map but extract character set meta characters. (dolist (char (mapcar 'string-to-char chars)) (case char (?\] (setq bracket "]")) (?^ (setq caret "^")) (?- (setq dash "-")) (otherwise ;; XEmacs: 1 (aset charmap char 1)))) ;; ;; Make a character set from the map using ranges where applicable. (dotimes (char charwidth) (let ((start char)) (while (and (< char charwidth) ;; XEmacs: (not (zerop ...)) (not (zerop (aref charmap char)))) (incf char)) (cond ((> char (+ start 3)) (setq charset (format "%s%c-%c" charset start (1- char)))) ((> char start) (setq charset (format "%s%c" charset (setq char start))))))) ;; ;; Make sure a caret is not first and a dash is first or last. (if (and (string-equal charset "") (string-equal bracket "")) (concat "[" dash caret "]") (concat "[" bracket charset caret dash "]")))) (provide 'regexp-opt) ;;; regexp-opt.el ends here