view tests/automated/symbol-tests.el @ 5146:88bd4f3ef8e4

make lrecord UID's have a separate UID space for each object, resurrect debug SOE code in extents.c -------------------- ChangeLog entries follow: -------------------- src/ChangeLog addition: 2010-03-15 Ben Wing <ben@xemacs.org> * alloc.c: * alloc.c (c_readonly): * alloc.c (deadbeef_memory): * alloc.c (make_compiled_function): * alloc.c (make_button_data): * alloc.c (make_motion_data): * alloc.c (make_process_data): * alloc.c (make_timeout_data): * alloc.c (make_magic_data): * alloc.c (make_magic_eval_data): * alloc.c (make_eval_data): * alloc.c (make_misc_user_data): * alloc.c (noseeum_make_marker): * alloc.c (ADDITIONAL_FREE_string): * alloc.c (common_init_alloc_early): * alloc.c (init_alloc_once_early): * bytecode.c (print_compiled_function): * bytecode.c (mark_compiled_function): * casetab.c: * casetab.c (print_case_table): * console.c: * console.c (print_console): * database.c (print_database): * database.c (finalize_database): * device-msw.c (sync_printer_with_devmode): * device-msw.c (print_devmode): * device-msw.c (finalize_devmode): * device.c: * device.c (print_device): * elhash.c: * elhash.c (print_hash_table): * eval.c (print_multiple_value): * eval.c (mark_multiple_value): * events.c (deinitialize_event): * events.c (print_event): * events.c (event_equal): * extents.c: * extents.c (soe_dump): * extents.c (soe_insert): * extents.c (soe_delete): * extents.c (soe_move): * extents.c (extent_fragment_update): * extents.c (print_extent_1): * extents.c (print_extent): * extents.c (vars_of_extents): * frame.c: * frame.c (print_frame): * free-hook.c: * free-hook.c (check_free): * glyphs.c: * glyphs.c (print_image_instance): * glyphs.c (print_glyph): * gui.c: * gui.c (copy_gui_item): * hash.c: * hash.c (NULL_ENTRY): * hash.c (KEYS_DIFFER_P): * keymap.c (print_keymap): * keymap.c (MARKED_SLOT): * lisp.h: * lrecord.h: * lrecord.h (LISP_OBJECT_UID): * lrecord.h (set_lheader_implementation): * lrecord.h (struct old_lcrecord_header): * lstream.c (print_lstream): * lstream.c (finalize_lstream): * marker.c (print_marker): * marker.c (marker_equal): * mc-alloc.c (visit_all_used_page_headers): * mule-charset.c: * mule-charset.c (print_charset): * objects.c (print_color_instance): * objects.c (print_font_instance): * objects.c (finalize_font_instance): * opaque.c (print_opaque): * opaque.c (print_opaque_ptr): * opaque.c (equal_opaque_ptr): * print.c (internal_object_printer): * print.c (enum printing_badness): * rangetab.c (print_range_table): * rangetab.c (range_table_equal): * specifier.c (print_specifier): * specifier.c (finalize_specifier): * symbols.c: * symbols.c (print_symbol_value_magic): * tooltalk.c: * tooltalk.c (print_tooltalk_message): * tooltalk.c (print_tooltalk_pattern): * window.c (print_window): * window.c (debug_print_window): (1) Make lrecord UID's have a separate UID space for each object. Otherwise, with 20-bit UID's, we rapidly wrap around, especially when common objects like conses and strings increment the UID value for every object created. (Originally I tried making two UID spaces, one for objects that always print readably and hence don't display the UID, and one for other objects. But certain objects like markers for which a UID is displayed are still generated rapidly enough that UID overflow is a serious issue.) This also has the advantage of making UID values smaller, hence easier to remember -- their main purpose is to make it easier to keep track of different objects of the same type when debugging code. Make sure we dump lrecord UID's so that we don't have problems with pdumped and non-dumped objects having the same UID. (2) Display UID's consistently whenever an object (a) doesn't consistently print readably (objects like cons and string, which always print readably, can't display a UID), and (b) doesn't otherwise have a unique property that makes objects of a particular type distinguishable. (E.g. buffers didn't and still don't print an ID, but the buffer name uniquely identifies the buffer.) Some types, such as event, extent, compiled-function, didn't always (or didn't ever) display an ID; others (such as marker, extent, lstream, opaque, opaque-ptr, any object using internal_object_printer()) used to display the actual machine pointer instead. (3) Rename NORMAL_LISP_OBJECT_UID to LISP_OBJECT_UID; make it work over all Lisp objects and take a Lisp object, not a struct pointer. (4) Some misc cleanups in alloc.c, elhash.c. (5) Change code in events.c that "deinitializes" an event so that it doesn't increment the event UID counter in the process. Also use deadbeef_memory() to overwrite memory instead of doing the same with custom code. In the process, make deadbeef_memory() in alloc.c always available, and delete extraneous copy in mc-alloc.c. Also capitalize all uses of 0xDEADBEEF. Similarly in elhash.c call deadbeef_memory(). (6) Resurrect "debug SOE" code in extents.c. Make it conditional on DEBUG_XEMACS and on a `debug-soe' variable, rather than on SOE_DEBUG. Make it output to stderr, not stdout. (7) Delete some custom print methods that were identical to external_object_printer().
author Ben Wing <ben@xemacs.org>
date Mon, 15 Mar 2010 16:35:38 -0500
parents 0f66906b6e37
children 308d34e9f07d
line wrap: on
line source

;; Copyright (C) 1999 Free Software Foundation, Inc.

;; Author: Hrvoje Niksic <hniksic@xemacs.org>
;; Maintainer: Hrvoje Niksic <hniksic@xemacs.org>
;; Created: 1999
;; Keywords: tests

;; This file is part of XEmacs.

;; XEmacs is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; XEmacs is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with XEmacs; see the file COPYING.  If not, write to the Free
;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
;; 02111-1307, USA.

;;; Synched up with: Not in FSF.

;;; Commentary:

;; Test symbols operations.
;; See test-harness.el for instructions on how to run these tests.

(eval-when-compile
  (condition-case nil
      (require 'test-harness)
    (file-error
     (push "." load-path)
     (when (and (boundp 'load-file-name) (stringp load-file-name))
       (push (file-name-directory load-file-name) load-path))
     (require 'test-harness))))


(defun ts-fresh-symbol-name (name)
  "Return a variant of NAME (a string) that is not interned."
  (when (intern-soft name)
    (let ((count 1)
	  (orig name))
      (while (progn
	       (setq name (format "%s-%d" orig count))
	       (intern-soft name))
	(incf count))))
  name)

;;-----------------------------------------------------
;; Creating, reading, and printing symbols
;;-----------------------------------------------------

(dolist (name '("foo" "bar" ""
		"something with space in it"
		"a string with \0 in the middle."
		"100" "10.0" "#<>[]]]];'\\';"
		"!@#$%^^&*(()__"))
  (let ((interned (intern name))
	(uninterned (make-symbol name)))
    (Assert (symbolp interned))
    (Assert (symbolp uninterned))
    (Assert (equal (symbol-name interned) name))
    (Assert (equal (symbol-name uninterned) name))
    (Assert (not (eq interned uninterned)))
    (Assert (not (equal interned uninterned)))))

(flet ((check-weak-list-unique (weak-list &optional reversep)
	 "Check that elements of WEAK-LIST are referenced only there."
	 (let ((len (length (weak-list-list weak-list))))
	   (if (string-match "Using the new GC algorithms."
			     Installation-string)
	       (Implementation-Incomplete-Expect-Failure
		(Assert (not (zerop len)))
		(garbage-collect)
		(Assert (eq (length (weak-list-list weak-list))
			    (if (not reversep) 0 len))))
	     (Assert (not (zerop len)))
	     (garbage-collect)
	     (Assert (eq (length (weak-list-list weak-list))
			 (if (not reversep) 0 len)))))))
  (let ((weak-list (make-weak-list))
	(gc-cons-threshold most-positive-fixnum))
    ;; Symbols created with `make-symbol' and `gensym' should be fresh
    ;; and not referenced anywhere else.  We check that no other
    ;; references are available using a weak list.
    (eval
     ;; This statement must not be run byte-compiled, or the values
     ;; remain referenced on the bytecode interpreter stack.
     '(set-weak-list-list weak-list (list (make-symbol "foo") (gensym "foo"))))
    (check-weak-list-unique weak-list)

    ;; Equivalent test for `intern' and `gentemp'.
    (eval
     '(set-weak-list-list weak-list
			  (list (intern (ts-fresh-symbol-name "foo"))
				(gentemp (ts-fresh-symbol-name "bar")))))
    (check-weak-list-unique weak-list 'not)))

(Assert (not (intern-soft (make-symbol "foo"))))
(Assert (not (intern-soft (gensym "foo"))))
(Assert (intern-soft (intern (ts-fresh-symbol-name "foo"))))
(Assert (intern-soft (gentemp (ts-fresh-symbol-name "bar"))))

;; Reading a symbol should intern it automatically, unless the symbol
;; is marked specially.
(dolist (string (mapcar #'ts-fresh-symbol-name '("foo" "bar" "\\\0\\\1")))
  (setq symbol (read string)
	string (read (concat "\"" string "\"")))
  (Assert (intern-soft string))
  (Assert (intern-soft symbol))
  (Assert (eq (intern-soft string) (intern-soft symbol))))

(let ((fresh (read (concat "#:" (ts-fresh-symbol-name "foo")))))
  (Assert (not (intern-soft fresh))))

;; Check #N=OBJECT and #N# read syntax.
(let* ((list (read "(#1=#:foo #1# #2=#:bar #2# #1# #2#)"))
       (foo  (nth 0 list))
       (foo2 (nth 1 list))
       (bar  (nth 2 list))
       (bar2 (nth 3 list))
       (foo3 (nth 4 list))
       (bar3 (nth 5 list)))
  (Assert (symbolp foo))
  (Assert (not (intern-soft foo)))
  (Assert (equal (symbol-name foo) "foo"))
  (Assert (symbolp bar))
  (Assert (not (intern-soft bar)))
  (Assert (equal (symbol-name bar) "bar"))

  (Assert (eq foo foo2))
  (Assert (eq foo2 foo3))
  (Assert (eq bar bar2))
  (Assert (eq bar2 bar3)))

;; Check #N=OBJECT and #N# print syntax.
(let* ((foo (make-symbol "foo"))
       (bar (make-symbol "bar"))
       (list (list foo foo bar bar foo bar)))
  (let* ((print-gensym nil)
	 (printed-list (prin1-to-string list)))
    (Assert (equal printed-list "(foo foo bar bar foo bar)")))
  (let* ((print-gensym t)
	 (printed-list (prin1-to-string list)))
    (Assert (equal printed-list "(#1=#:foo #1# #2=#:bar #2# #1# #2#)"))))

;;-----------------------------------------------------
;; Read-only symbols
;;-----------------------------------------------------

(Check-Error setting-constant
  (set nil nil))
(Check-Error setting-constant
  (set t nil))

;;-----------------------------------------------------
;; Variable indirections
;;-----------------------------------------------------

(let ((foo 0)
      (bar 1))
  (defvaralias 'foo 'bar)
  (Assert (eq foo bar))
  (Assert (eq foo 1))
  (Assert (eq (variable-alias 'foo) 'bar))
  (defvaralias 'bar 'foo)
  (Check-Error cyclic-variable-indirection
    (symbol-value 'foo))
  (Check-Error cyclic-variable-indirection
    (symbol-value 'bar))
  (defvaralias 'foo nil)
  (Assert (eq foo 0))
  (defvaralias 'bar nil)
  (Assert (eq bar 1)))

;;-----------------------------------------------------
;; Keywords
;;-----------------------------------------------------

;;; Reading keywords

;; In Elisp, a keyword is by definition a symbol beginning with `:'
;; that is interned in the global obarray.

;; In Elisp, a keyword is interned as any other symbol.
(Assert (eq (read ":foo") (intern ":foo")))

;; A keyword is self-quoting and evaluates to itself.
(Assert (eq (eval (intern ":foo")) :foo))

;; Keywords are recognized as such only if interned in the global
;; obarray, and `keywordp' is aware of that.
(Assert (keywordp :foo))
(Assert (not (keywordp (intern ":foo" [0]))))

;; Keywords used to be initialized at read-time, which resulted in
;; (symbol-value (intern ":some-new-keyword")) signaling an error.
;; Now we handle keywords at the time when the symbol is interned, so
;; that (intern ":something) and (read ":something) will be
;; equivalent.  These tests check various operations on symbols that
;; are guaranteed to be freshly interned.

;; Interning a fresh keyword string should produce a regular
;; keyword.
(let* ((fresh-keyword-name (ts-fresh-symbol-name ":foo"))
       (fresh-keyword (intern fresh-keyword-name)))
  (Assert (eq (symbol-value fresh-keyword) fresh-keyword))
  (Assert (keywordp fresh-keyword)))

;; Likewise, reading a fresh keyword string should produce a regular
;; keyword.
(let* ((fresh-keyword-name (ts-fresh-symbol-name ":foo"))
       (fresh-keyword (read fresh-keyword-name)))
  (Assert (eq (symbol-value fresh-keyword) fresh-keyword))
  (Assert (keywordp fresh-keyword)))

;;; Assigning to keywords

;; You shouldn't be able to set its value to something bogus.
(Check-Error setting-constant
  (set :foo 5))

;; But, for backward compatibility, setting to the same value is OK.
(Assert
  (eq (set :foo :foo) :foo))

;; Playing games with `intern' shouldn't fool us.
(Check-Error setting-constant
  (set (intern ":foo" obarray) 5))
(Assert
  (eq (set (intern ":foo" obarray) :foo) :foo))

;; But symbols not interned in the global obarray are not real
;; keywords (in elisp):
(Assert (eq (set (intern ":foo" [0]) 5) 5))

;;; Printing keywords

(let ((print-gensym t))
  (Assert (equal (prin1-to-string :foo)                ":foo"))
  (Assert (equal (prin1-to-string (intern ":foo"))     ":foo"))
  (Assert (equal (prin1-to-string (intern ":foo" [0])) "#::foo")))

(let ((print-gensym nil))
  (Assert (equal (prin1-to-string :foo)                ":foo"))
  (Assert (equal (prin1-to-string (intern ":foo"))     ":foo"))
  (Assert (equal (prin1-to-string (intern ":foo" [0])) ":foo")))

;; #### Add many more tests for printing and reading symbols, as well
;; as print-gensym and print-gensym-alist!

;;-----------------------------------------------------
;; Magic symbols
;;-----------------------------------------------------

;; Magic symbols are only half implemented.  However, a subset of the
;; functionality is being used to implement backward compatibility or
;; clearer error messages for new features such as specifiers and
;; glyphs.  These tests try to test that working subset.

(let ((mysym (make-symbol "test-symbol"))
      save)
  (dontusethis-set-symbol-value-handler
   mysym
   'set-value
   (lambda (&rest args)
     (throw 'test-tag args)))
  (Assert (not (boundp mysym)))
  (Assert (equal (catch 'test-tag
		   (set mysym 'foo))
		 `(,mysym (foo) set nil nil)))
  (Assert (not (boundp mysym)))
  (dontusethis-set-symbol-value-handler
   mysym
   'set-value
   (lambda (&rest args) (setq save (nth 1 args))))
  (set mysym 'foo)
  (Assert (equal save '(foo)))
  (Assert (eq (symbol-value mysym) 'foo))
  )

(let ((mysym (make-symbol "test-symbol"))
      save)
  (dontusethis-set-symbol-value-handler
   mysym
   'make-unbound
   (lambda (&rest args)
     (throw 'test-tag args)))
  (Assert (equal (catch 'test-tag
		   (makunbound mysym))
		 `(,mysym nil makunbound nil nil)))
  (dontusethis-set-symbol-value-handler
   mysym
   'make-unbound
   (lambda (&rest args) (setq save (nth 2 args))))
  (Assert (not (boundp mysym)))
  (set mysym 'bar)
  (Assert (null save))
  (Assert (eq (symbol-value mysym) 'bar))
  (makunbound mysym)
  (Assert (not (boundp mysym)))
  (Assert (eq save 'makunbound))
  )

;; pathname-coding-system is no more.
; (when (featurep 'file-coding)
;   (Assert (eq pathname-coding-system file-name-coding-system))
;   (let ((val1 file-name-coding-system)
; 	(val2 pathname-coding-system))
;     (Assert (eq val1 val2))
;     (let ((file-name-coding-system 'no-conversion-dos))
;       (Assert (eq file-name-coding-system 'no-conversion-dos))
;       (Assert (eq pathname-coding-system file-name-coding-system)))
;     (let ((pathname-coding-system 'no-conversion-mac))
;       (Assert (eq file-name-coding-system 'no-conversion-mac))
;       (Assert (eq pathname-coding-system file-name-coding-system)))
;     (Assert (eq file-name-coding-system pathname-coding-system))
;     (Assert (eq val1 file-name-coding-system)))
;   (Assert (eq pathname-coding-system file-name-coding-system)))


;(let ((mysym (make-symbol "test-symbol")))
;  (dontusethis-set-symbol-value-handler
;   mysym
;   'make-local
;   (lambda (&rest args)
;     (throw 'test-tag args)))
;  (Assert (equal (catch 'test-tag
;		   (set mysym 'foo))
;		 `(,mysym (foo) make-local nil nil))))

;; ----------------------------------------------------------------
;; Symbol documentation
;; ----------------------------------------------------------------

;; built-in variable documentation
(Assert (string= (built-in-symbol-file 'internal-doc-file-name)
		 "doc.c"))

;; built-in function documentation
(Assert (string= (built-in-symbol-file 'built-in-symbol-file)
		 "doc.c"))

;; built-in macro documentation
(Assert (string= (built-in-symbol-file 'when)
		 "eval.c"))

;; #### we should handle symbols defined in Lisp, dumped, autoloaded,
;; and required, too.