view tests/automated/hash-table-tests.el @ 5146:88bd4f3ef8e4

make lrecord UID's have a separate UID space for each object, resurrect debug SOE code in extents.c -------------------- ChangeLog entries follow: -------------------- src/ChangeLog addition: 2010-03-15 Ben Wing <ben@xemacs.org> * alloc.c: * alloc.c (c_readonly): * alloc.c (deadbeef_memory): * alloc.c (make_compiled_function): * alloc.c (make_button_data): * alloc.c (make_motion_data): * alloc.c (make_process_data): * alloc.c (make_timeout_data): * alloc.c (make_magic_data): * alloc.c (make_magic_eval_data): * alloc.c (make_eval_data): * alloc.c (make_misc_user_data): * alloc.c (noseeum_make_marker): * alloc.c (ADDITIONAL_FREE_string): * alloc.c (common_init_alloc_early): * alloc.c (init_alloc_once_early): * bytecode.c (print_compiled_function): * bytecode.c (mark_compiled_function): * casetab.c: * casetab.c (print_case_table): * console.c: * console.c (print_console): * database.c (print_database): * database.c (finalize_database): * device-msw.c (sync_printer_with_devmode): * device-msw.c (print_devmode): * device-msw.c (finalize_devmode): * device.c: * device.c (print_device): * elhash.c: * elhash.c (print_hash_table): * eval.c (print_multiple_value): * eval.c (mark_multiple_value): * events.c (deinitialize_event): * events.c (print_event): * events.c (event_equal): * extents.c: * extents.c (soe_dump): * extents.c (soe_insert): * extents.c (soe_delete): * extents.c (soe_move): * extents.c (extent_fragment_update): * extents.c (print_extent_1): * extents.c (print_extent): * extents.c (vars_of_extents): * frame.c: * frame.c (print_frame): * free-hook.c: * free-hook.c (check_free): * glyphs.c: * glyphs.c (print_image_instance): * glyphs.c (print_glyph): * gui.c: * gui.c (copy_gui_item): * hash.c: * hash.c (NULL_ENTRY): * hash.c (KEYS_DIFFER_P): * keymap.c (print_keymap): * keymap.c (MARKED_SLOT): * lisp.h: * lrecord.h: * lrecord.h (LISP_OBJECT_UID): * lrecord.h (set_lheader_implementation): * lrecord.h (struct old_lcrecord_header): * lstream.c (print_lstream): * lstream.c (finalize_lstream): * marker.c (print_marker): * marker.c (marker_equal): * mc-alloc.c (visit_all_used_page_headers): * mule-charset.c: * mule-charset.c (print_charset): * objects.c (print_color_instance): * objects.c (print_font_instance): * objects.c (finalize_font_instance): * opaque.c (print_opaque): * opaque.c (print_opaque_ptr): * opaque.c (equal_opaque_ptr): * print.c (internal_object_printer): * print.c (enum printing_badness): * rangetab.c (print_range_table): * rangetab.c (range_table_equal): * specifier.c (print_specifier): * specifier.c (finalize_specifier): * symbols.c: * symbols.c (print_symbol_value_magic): * tooltalk.c: * tooltalk.c (print_tooltalk_message): * tooltalk.c (print_tooltalk_pattern): * window.c (print_window): * window.c (debug_print_window): (1) Make lrecord UID's have a separate UID space for each object. Otherwise, with 20-bit UID's, we rapidly wrap around, especially when common objects like conses and strings increment the UID value for every object created. (Originally I tried making two UID spaces, one for objects that always print readably and hence don't display the UID, and one for other objects. But certain objects like markers for which a UID is displayed are still generated rapidly enough that UID overflow is a serious issue.) This also has the advantage of making UID values smaller, hence easier to remember -- their main purpose is to make it easier to keep track of different objects of the same type when debugging code. Make sure we dump lrecord UID's so that we don't have problems with pdumped and non-dumped objects having the same UID. (2) Display UID's consistently whenever an object (a) doesn't consistently print readably (objects like cons and string, which always print readably, can't display a UID), and (b) doesn't otherwise have a unique property that makes objects of a particular type distinguishable. (E.g. buffers didn't and still don't print an ID, but the buffer name uniquely identifies the buffer.) Some types, such as event, extent, compiled-function, didn't always (or didn't ever) display an ID; others (such as marker, extent, lstream, opaque, opaque-ptr, any object using internal_object_printer()) used to display the actual machine pointer instead. (3) Rename NORMAL_LISP_OBJECT_UID to LISP_OBJECT_UID; make it work over all Lisp objects and take a Lisp object, not a struct pointer. (4) Some misc cleanups in alloc.c, elhash.c. (5) Change code in events.c that "deinitializes" an event so that it doesn't increment the event UID counter in the process. Also use deadbeef_memory() to overwrite memory instead of doing the same with custom code. In the process, make deadbeef_memory() in alloc.c always available, and delete extraneous copy in mc-alloc.c. Also capitalize all uses of 0xDEADBEEF. Similarly in elhash.c call deadbeef_memory(). (6) Resurrect "debug SOE" code in extents.c. Make it conditional on DEBUG_XEMACS and on a `debug-soe' variable, rather than on SOE_DEBUG. Make it output to stderr, not stdout. (7) Delete some custom print methods that were identical to external_object_printer().
author Ben Wing <ben@xemacs.org>
date Mon, 15 Mar 2010 16:35:38 -0500
parents 0f66906b6e37
children 71ee43b8a74d
line wrap: on
line source

;; Copyright (C) 1998 Free Software Foundation, Inc.

;; Author: Martin Buchholz <martin@xemacs.org>
;; Maintainer: Martin Buchholz <martin@xemacs.org>
;; Created: 1998
;; Keywords: tests, database

;; This file is part of XEmacs.

;; XEmacs is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; XEmacs is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with XEmacs; see the file COPYING.  If not, write to the Free
;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
;; 02111-1307, USA.

;;; Synched up with: Not in FSF.

;;; Commentary:

;;; Test hash tables implementation
;;; See test-harness.el

(condition-case err
    (require 'test-harness)
  (file-error
   (when (and (boundp 'load-file-name) (stringp load-file-name))
     (push (file-name-directory load-file-name) load-path)
     (require 'test-harness))))

;; Test all combinations of make-hash-table keywords
(dolist (test '(eq eql equal))
  (dolist (size '(0 1 100))
    (dolist (rehash-size '(1.1 9.9))
      (dolist (rehash-threshold '(0.2 .9))
	(dolist (weakness '(nil key value key-or-value key-and-value))
	  (dolist (data '(() (1 2) (1 2 3 4)))
	    (let ((ht (make-hash-table
		       :test test
		       :size size
		       :rehash-size rehash-size
		       :rehash-threshold rehash-threshold
		       :weakness weakness)))
	      (Assert (equal ht (car (let ((print-readably t))
				       (read-from-string (prin1-to-string ht))))))
	      (Assert (eq test (hash-table-test ht)))
	      (Assert (<= size (hash-table-size ht)))
	      (Assert (eql rehash-size (hash-table-rehash-size ht)))
	      (Assert (eql rehash-threshold (hash-table-rehash-threshold ht)))
	      (Assert (eq weakness (hash-table-weakness ht))))))))))

(loop for (fun weakness) in '((make-hashtable nil)
			      (make-weak-hashtable key-and-value)
			      (make-key-weak-hashtable key)
			      (make-value-weak-hashtable value))
  do (Assert (eq weakness (hash-table-weakness (funcall fun 10)))))

(loop for (type weakness) in '((non-weak nil)
			       (weak key-and-value)
			       (key-weak key)
			       (value-weak value))
  do (Assert (equal (make-hash-table :type type)
		    (make-hash-table :weakness weakness))))

(Assert (not (equal (make-hash-table :weakness nil)
		    (make-hash-table :weakness t))))

(let ((ht (make-hash-table :size 20 :rehash-threshold .75 :test 'eq))
      (size 80))
  (Assert (hashtablep ht))
  (Assert (hash-table-p ht))
  (Assert (eq 'eq (hash-table-test ht)))
  (Assert (eq 'non-weak (hash-table-type ht)))
  (Assert (eq 'non-weak (hashtable-type ht)))
  (Assert (eq 'nil (hash-table-weakness ht)))
  (dotimes (j size)
    (puthash j (- j) ht)
    (Assert (eq (gethash j ht) (- j)))
    (Assert (= (hash-table-count ht) (1+ j)))
    (Assert (= (hashtable-fullness ht) (hash-table-count ht)))
    (puthash j j ht)
    (Assert (eq (gethash j ht 'foo) j))
    (Assert (= (hash-table-count ht) (1+ j)))
    (setf (gethash j ht) (- j))
    (Assert (eq (gethash j ht) (- j)))
    (Assert (= (hash-table-count ht) (1+ j))))

  (clrhash ht)
  (Assert (= 0 (hash-table-count ht)))

  (dotimes (j size)
    (puthash j (- j) ht)
    (Assert (eq (gethash j ht) (- j)))
    (Assert (= (hash-table-count ht) (1+ j))))

  (let ((k-sum 0) (v-sum 0))
    (maphash #'(lambda (k v) (incf k-sum k) (incf v-sum v)) ht)
    (Assert (= k-sum (/ (* size (- size 1)) 2)))
    (Assert (= v-sum (- k-sum))))

  (let ((count size))
    (dotimes (j size)
      (remhash j ht)
      (Assert (eq (gethash j ht) nil))
      (Assert (eq (gethash j ht 'foo) 'foo))
      (Assert (= (hash-table-count ht) (decf count))))))

(let ((ht (make-hash-table :size 30 :rehash-threshold .25 :test 'equal))
      (size 70))
  (Assert (hashtablep ht))
  (Assert (hash-table-p ht))
  (Assert (>= (hash-table-size ht) (/ 30 .25)))
  (Assert (eql .25 (hash-table-rehash-threshold ht)))
  (Assert (eq 'equal (hash-table-test ht)))
  (Assert (eq (hash-table-test ht) (hashtable-test-function ht)))
  (Assert (eq 'non-weak (hash-table-type ht)))
  (dotimes (j size)
    (puthash (int-to-string j) (- j) ht)
    (Assert (eq (gethash (int-to-string j) ht) (- j)))
    (Assert (= (hash-table-count ht) (1+ j)))
    (puthash (int-to-string j) j ht)
    (Assert (eq (gethash (int-to-string j) ht 'foo) j))
    (Assert (= (hash-table-count ht) (1+ j))))

  (clrhash ht)
  (Assert (= 0 (hash-table-count ht)))
  (Assert (equal ht (copy-hash-table ht)))

  (dotimes (j size)
    (setf (gethash (int-to-string j) ht) (- j))
    (Assert (eq (gethash (int-to-string j) ht) (- j)))
    (Assert (= (hash-table-count ht) (1+ j))))

  (let ((count size))
    (dotimes (j size)
      (remhash (int-to-string j) ht)
      (Assert (eq (gethash (int-to-string j) ht) nil))
      (Assert (eq (gethash (int-to-string j) ht 'foo) 'foo))
      (Assert (= (hash-table-count ht) (decf count))))))

(let ((iterations 5) (one 1.0) (two 2.0))
  (flet ((check-copy
	  (ht)
	  (let ((copy-of-ht (copy-hash-table ht)))
	    (Assert (equal ht copy-of-ht))
	    (Assert (not (eq ht copy-of-ht)))
	    (Assert (eq  (hash-table-count ht) (hash-table-count copy-of-ht)))
	    (Assert (eq  (hash-table-type  ht) (hash-table-type  copy-of-ht)))
	    (Assert (eq  (hash-table-size  ht) (hash-table-size  copy-of-ht)))
	    (Assert (eql (hash-table-rehash-size ht) (hash-table-rehash-size copy-of-ht)))
	    (Assert (eql (hash-table-rehash-threshold ht) (hash-table-rehash-threshold copy-of-ht))))))

  (let ((ht (make-hash-table :size 100 :rehash-threshold .6 :test 'eq)))
    (dotimes (j iterations)
      (puthash (+ one 0.0) t ht)
      (puthash (+ two 0.0) t ht)
      (puthash (cons 1 2) t ht)
      (puthash (cons 3 4) t ht))
    (Assert (eq (hashtable-test-function ht) 'eq))
    (Assert (eq (hash-table-test ht) 'eq))
    (Assert (= (* iterations 4) (hash-table-count ht)))
    (Assert (eq nil (gethash 1.0 ht)))
    (Assert (eq nil (gethash '(1 . 2) ht)))
    (check-copy ht)
    )

  (let ((ht (make-hash-table :size 100 :rehash-threshold .6 :test 'eql)))
    (dotimes (j iterations)
      (puthash (+ one 0.0) t ht)
      (puthash (+ two 0.0) t ht)
      (puthash (cons 1 2) t ht)
      (puthash (cons 3 4) t ht))
    (Assert (eq (hashtable-test-function ht) 'eql))
    (Assert (eq (hash-table-test ht) 'eql))
    (Assert (= (+ 2 (* 2 iterations)) (hash-table-count ht)))
    (Assert (eq t (gethash 1.0 ht)))
    (Assert (eq nil (gethash '(1 . 2) ht)))
    (check-copy ht)
    )

  (let ((ht (make-hash-table :size 100 :rehash-threshold .6 :test 'equal)))
    (dotimes (j iterations)
      (puthash (+ one 0.0) t ht)
      (puthash (+ two 0.0) t ht)
      (puthash (cons 1 2) t ht)
      (puthash (cons 3 4) t ht))
    (Assert (eq (hashtable-test-function ht) 'equal))
    (Assert (eq (hash-table-test ht) 'equal))
    (Assert (= 4 (hash-table-count ht)))
    (Assert (eq t (gethash 1.0 ht)))
    (Assert (eq t (gethash '(1 . 2) ht)))
    (check-copy ht)
    )

  ))

;; Test that weak hash-tables are properly handled
(loop for (weakness expected-count expected-k-sum expected-v-sum) in
  '((nil 6 38 25)
    (t 3 6 9)
    (key 4 38 9)
    (value 4 6 25))
  do
  (let* ((ht (make-hash-table :weakness weakness))
       (my-obj (cons ht ht)))
  (garbage-collect)
  (puthash my-obj 1 ht)
  (puthash 2 my-obj ht)
  (puthash 4 8 ht)
  (puthash (cons ht ht) 16 ht)
  (puthash 32 (cons ht ht) ht)
  (puthash (cons ht ht) (cons ht ht) ht)
  (let ((k-sum 0) (v-sum 0))
    (maphash #'(lambda (k v)
		 (when (integerp k) (incf k-sum k))
		 (when (integerp v) (incf v-sum v)))
	     ht)
    (Assert (eq 38 k-sum))
    (Assert (eq 25 v-sum)))
  (Assert (eq 6 (hash-table-count ht)))
  (garbage-collect)
  (Assert (eq expected-count (hash-table-count ht)))
  (let ((k-sum 0) (v-sum 0))
    (maphash #'(lambda (k v)
		 (when (integerp k) (incf k-sum k))
		 (when (integerp v) (incf v-sum v)))
	     ht)
    (Assert (eq expected-k-sum k-sum))
    (Assert (eq expected-v-sum v-sum)))))

;;; Test the ability to puthash and remhash the current elt of a maphash
(let ((ht (make-hash-table :test 'eql)))
  (dotimes (j 100) (setf (gethash j ht) (- j)))
  (maphash #'(lambda (k v)
	       (if (oddp k) (remhash k ht) (puthash k (- v) ht)))
	   ht)
  (let ((k-sum 0) (v-sum 0))
    (maphash #'(lambda (k v) (incf k-sum k) (incf v-sum v)) ht)
    (Assert (= (* 50 49) k-sum))
    (Assert (= v-sum k-sum))))

;;; Test reading and printing of hash-table objects
(let ((h1 #s(hashtable  weakness t rehash-size 3.0 rehash-threshold .2 test eq data (1 2 3 4)))
      (h2 #s(hash-table weakness t rehash-size 3.0 rehash-threshold .2 test eq data (1 2 3 4)))
      (h3 (make-hash-table :weakness t :rehash-size 3.0 :rehash-threshold .2 :test 'eq)))
  (Assert (equal h1 h2))
  (Assert (not (equal h1 h3)))
  (puthash 1 2 h3)
  (puthash 3 4 h3)
  (Assert (equal h1 h3)))

;;; Testing equality of hash tables
(Assert (equal (make-hash-table :test 'eql :size 300 :rehash-threshold .9 :rehash-size 3.0)
	       (make-hash-table :test 'eql)))
(Assert (not (equal (make-hash-table :test 'eq)
		    (make-hash-table :test 'equal))))
(let ((h1 (make-hash-table))
      (h2 (make-hash-table)))
  (Assert (equal h1 h2))
  (Assert (not (eq h1 h2)))
  (puthash 1 2 h1)
  (Assert (not (equal h1 h2)))
  (puthash 1 2 h2)
  (Assert (equal h1 h2))
  (puthash 1 3 h2)
  (Assert (not (equal h1 h2)))
  (clrhash h1)
  (Assert (not (equal h1 h2)))
  (clrhash h2)
  (Assert (equal h1 h2))
  )

;;; Test sxhash
(Assert (= (sxhash "foo") (sxhash "foo")))
(Assert (= (sxhash '(1 2 3)) (sxhash '(1 2 3))))
(Assert (/= (sxhash '(1 2 3)) (sxhash '(3 2 1))))