view src/number-mp.c @ 5146:88bd4f3ef8e4

make lrecord UID's have a separate UID space for each object, resurrect debug SOE code in extents.c -------------------- ChangeLog entries follow: -------------------- src/ChangeLog addition: 2010-03-15 Ben Wing <ben@xemacs.org> * alloc.c: * alloc.c (c_readonly): * alloc.c (deadbeef_memory): * alloc.c (make_compiled_function): * alloc.c (make_button_data): * alloc.c (make_motion_data): * alloc.c (make_process_data): * alloc.c (make_timeout_data): * alloc.c (make_magic_data): * alloc.c (make_magic_eval_data): * alloc.c (make_eval_data): * alloc.c (make_misc_user_data): * alloc.c (noseeum_make_marker): * alloc.c (ADDITIONAL_FREE_string): * alloc.c (common_init_alloc_early): * alloc.c (init_alloc_once_early): * bytecode.c (print_compiled_function): * bytecode.c (mark_compiled_function): * casetab.c: * casetab.c (print_case_table): * console.c: * console.c (print_console): * database.c (print_database): * database.c (finalize_database): * device-msw.c (sync_printer_with_devmode): * device-msw.c (print_devmode): * device-msw.c (finalize_devmode): * device.c: * device.c (print_device): * elhash.c: * elhash.c (print_hash_table): * eval.c (print_multiple_value): * eval.c (mark_multiple_value): * events.c (deinitialize_event): * events.c (print_event): * events.c (event_equal): * extents.c: * extents.c (soe_dump): * extents.c (soe_insert): * extents.c (soe_delete): * extents.c (soe_move): * extents.c (extent_fragment_update): * extents.c (print_extent_1): * extents.c (print_extent): * extents.c (vars_of_extents): * frame.c: * frame.c (print_frame): * free-hook.c: * free-hook.c (check_free): * glyphs.c: * glyphs.c (print_image_instance): * glyphs.c (print_glyph): * gui.c: * gui.c (copy_gui_item): * hash.c: * hash.c (NULL_ENTRY): * hash.c (KEYS_DIFFER_P): * keymap.c (print_keymap): * keymap.c (MARKED_SLOT): * lisp.h: * lrecord.h: * lrecord.h (LISP_OBJECT_UID): * lrecord.h (set_lheader_implementation): * lrecord.h (struct old_lcrecord_header): * lstream.c (print_lstream): * lstream.c (finalize_lstream): * marker.c (print_marker): * marker.c (marker_equal): * mc-alloc.c (visit_all_used_page_headers): * mule-charset.c: * mule-charset.c (print_charset): * objects.c (print_color_instance): * objects.c (print_font_instance): * objects.c (finalize_font_instance): * opaque.c (print_opaque): * opaque.c (print_opaque_ptr): * opaque.c (equal_opaque_ptr): * print.c (internal_object_printer): * print.c (enum printing_badness): * rangetab.c (print_range_table): * rangetab.c (range_table_equal): * specifier.c (print_specifier): * specifier.c (finalize_specifier): * symbols.c: * symbols.c (print_symbol_value_magic): * tooltalk.c: * tooltalk.c (print_tooltalk_message): * tooltalk.c (print_tooltalk_pattern): * window.c (print_window): * window.c (debug_print_window): (1) Make lrecord UID's have a separate UID space for each object. Otherwise, with 20-bit UID's, we rapidly wrap around, especially when common objects like conses and strings increment the UID value for every object created. (Originally I tried making two UID spaces, one for objects that always print readably and hence don't display the UID, and one for other objects. But certain objects like markers for which a UID is displayed are still generated rapidly enough that UID overflow is a serious issue.) This also has the advantage of making UID values smaller, hence easier to remember -- their main purpose is to make it easier to keep track of different objects of the same type when debugging code. Make sure we dump lrecord UID's so that we don't have problems with pdumped and non-dumped objects having the same UID. (2) Display UID's consistently whenever an object (a) doesn't consistently print readably (objects like cons and string, which always print readably, can't display a UID), and (b) doesn't otherwise have a unique property that makes objects of a particular type distinguishable. (E.g. buffers didn't and still don't print an ID, but the buffer name uniquely identifies the buffer.) Some types, such as event, extent, compiled-function, didn't always (or didn't ever) display an ID; others (such as marker, extent, lstream, opaque, opaque-ptr, any object using internal_object_printer()) used to display the actual machine pointer instead. (3) Rename NORMAL_LISP_OBJECT_UID to LISP_OBJECT_UID; make it work over all Lisp objects and take a Lisp object, not a struct pointer. (4) Some misc cleanups in alloc.c, elhash.c. (5) Change code in events.c that "deinitializes" an event so that it doesn't increment the event UID counter in the process. Also use deadbeef_memory() to overwrite memory instead of doing the same with custom code. In the process, make deadbeef_memory() in alloc.c always available, and delete extraneous copy in mc-alloc.c. Also capitalize all uses of 0xDEADBEEF. Similarly in elhash.c call deadbeef_memory(). (6) Resurrect "debug SOE" code in extents.c. Make it conditional on DEBUG_XEMACS and on a `debug-soe' variable, rather than on SOE_DEBUG. Make it output to stderr, not stdout. (7) Delete some custom print methods that were identical to external_object_printer().
author Ben Wing <ben@xemacs.org>
date Mon, 15 Mar 2010 16:35:38 -0500
parents 16112448d484
children ba07c880114a
line wrap: on
line source

/* Numeric types for XEmacs using the MP library.
   Copyright (C) 2004 Jerry James.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 51 Franklin St - Fifth Floor,
Boston, MA 02111-1301, USA.  */

/* Synched up with: Not in FSF. */

#include <config.h>
#include <limits.h>
#include <math.h>
#include "lisp.h"

static MINT *bignum_bytesize, *bignum_long_sign_bit, *bignum_one, *bignum_two;
MINT *bignum_zero, *intern_bignum;
MINT *bignum_min_int, *bignum_max_int, *bignum_max_uint;
MINT *bignum_min_long, *bignum_max_long, *bignum_max_ulong;
short div_rem;

char *
bignum_to_string (bignum b, int base)
{
  REGISTER unsigned int i;
  unsigned int bufsize = 128U, index = 0U;
  int sign;
  char *buffer = xnew_array (char, 128), *retval;
  MINT *quo = MP_ITOM (0);
  short rem;

  /* FIXME: signal something if base is < 2 or doesn't fit into a short. */

  /* Save the sign for later */
  sign = MP_MCMP (b, bignum_zero);

  if (sign == 0)
    {
      XREALLOC_ARRAY (buffer, char, 2);
      buffer[0] = '0';
      buffer[1] = '\0';
      return buffer;
    }
  /* Copy abs(b) into quo for destructive modification */
  else if (sign < 0)
    MP_MSUB (bignum_zero, b, quo);
  else
    MP_MOVE (b, quo);

  quo = MP_ITOM (0);

  /* Loop over the digits of b (in BASE) and place each one into buffer */
  for (i = 0U; MP_MCMP(quo, bignum_zero) > 0; i++)
    {
      MP_SDIV (quo, base, quo, &rem);
      if (index == bufsize)
	{
	  bufsize <<= 1;
	  XREALLOC_ARRAY (buffer, char, bufsize);
	}
      buffer[index++] = rem < 10 ? rem + '0' : rem - 10 + 'a';
    }
  MP_MFREE (quo);

  /* Reverse the digits, maybe add a minus sign, and add a null terminator */
  bufsize = index + (sign < 0 ? 1 : 0) + 1;
  retval = xnew_array (char, bufsize);
  if (sign < 0)
    {
      retval[0] = '-';
      i = 1;
    }
  else
    i = 0;
  for (; i < bufsize - 1; i++)
    retval[i] = buffer[--index];
  retval[bufsize - 1] = '\0';
  xfree (buffer);
  return retval;
}

#define BIGNUM_TO_TYPE(type,accumtype) do {	\
  MP_MULT (b, quo, quo);			\
  for (i = 0U; i < sizeof(type); i++)		\
    {						\
      MP_SDIV (quo, 256, quo, &rem);		\
      retval |= ((accumtype) rem) << (8 * i);	\
    }						\
  MP_MFREE (quo);				\
} while (0)

int
bignum_to_int (bignum b)
{
  short rem, sign;
  unsigned int retval = 0;
  REGISTER unsigned int i;
  MINT *quo;

  sign = MP_MCMP (b, bignum_zero) < 0 ? -1 : 1;
  quo = MP_ITOM (sign);
  BIGNUM_TO_TYPE (int, unsigned int);
  return ((int) retval) * sign;
}

unsigned int
bignum_to_uint (bignum b)
{
  short rem;
  unsigned int retval = 0U;
  REGISTER unsigned int i;
  MINT *quo;

  quo = MP_ITOM (MP_MCMP (b, bignum_zero) < 0 ? -1 : 1);
  BIGNUM_TO_TYPE (unsigned int, unsigned int);
  return retval;
}

long
bignum_to_long (bignum b)
{
  short rem, sign;
  unsigned long retval = 0L;
  REGISTER unsigned int i;
  MINT *quo;

  sign = MP_MCMP (b, bignum_zero) < 0 ? -1 : 1;
  quo = MP_ITOM (sign);
  BIGNUM_TO_TYPE (long, unsigned long);
  return ((long) retval) * sign;
}

unsigned long
bignum_to_ulong (bignum b)
{
  short rem;
  unsigned long retval = 0UL;
  REGISTER unsigned int i;
  MINT *quo;

  quo = MP_ITOM (MP_MCMP (b, bignum_zero) < 0 ? -1 : 1);
  BIGNUM_TO_TYPE (unsigned long, unsigned long);
  return retval;
}

double
bignum_to_double (bignum b)
{
  short rem, sign;
  double retval = 0.0, factor = 1.0;
  REGISTER unsigned int i;
  MINT *quo;

  sign = MP_MCMP (b, bignum_zero) < 0 ? -1 : 1;
  quo = MP_ITOM (sign);
  MP_MULT (b, quo, quo);
  for (i = 0U; MP_MCMP (quo, bignum_zero) > 0; i++)
    {
      MP_SDIV (quo, 256, quo, &rem);
      retval += rem * factor;
      factor *= 256.0;
    }
  MP_MFREE (quo);
  return retval * sign;
}

static short
char_to_number (char c)
{
  if (c >= '0' && c <= '9')
    return c - '0';
  if (c >= 'a' && c <= 'z')
    return c - 'a' + 10;
  if (c >= 'A' && c <= 'Z')
    return c - 'A' + 10;
  return -1;
}

int
bignum_set_string (bignum b, const char *s, int base)
{
  MINT *mbase;
  short digit;
  int neg = 0;

  if (base == 0)
    {
      if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
	{
	  base = 16;
	  s += 2;
	}
      else if (*s == '0')
	{
	  base = 8;
	  s++;
	}
      else
	base = 10;
    }

  /* FIXME: signal something if base is < 2 or doesn't fit into a short. */

  if (*s == '-')
    {
      s++;
      neg = 1;
    }

  mbase = MP_ITOM ((short) base);
  MP_MOVE (bignum_zero, b);

  for (digit = char_to_number (*s); digit >= 0 && digit < base;
       digit = char_to_number (*++s))
    {
      MINT *temp;

      MP_MULT (b, mbase, b);
      temp = MP_ITOM (digit);
      MP_MADD (b, temp, b);
      MP_MFREE (temp);
    }

  if (neg)
    MP_MSUB (bignum_zero, b, b);

  return (digit >= 0) ? -1 : 0;
}

void
bignum_set_long (MINT *b, long l)
{
  /* Negative l is hard, not least because -LONG_MIN == LONG_MIN.  We pretend
     that l is unsigned, then subtract off the amount equal to the sign bit. */
  bignum_set_ulong (b, (unsigned long) l);
  if (l < 0L)
    MP_MSUB (b, bignum_long_sign_bit, b);
}

void
bignum_set_ulong (bignum b, unsigned long l)
{
  REGISTER unsigned int i;
  MINT *multiplier = MP_ITOM (1);

  MP_MOVE (bignum_zero, b);
  for (i = 0UL; l > 0UL; l >>= 8, i++)
    {
      MINT *temp = MP_ITOM ((short) (l & 255));
      MP_MULT (multiplier, temp, temp);
      MP_MADD (b, temp, b);
      MP_MULT (multiplier, bignum_bytesize, multiplier);
      MP_MFREE (temp);
    }
  MP_MFREE (multiplier);
}

void
bignum_set_double (bignum b, double d)
{
  REGISTER unsigned int i;
  int negative = (d < 0) ? 1 : 0;
  MINT *multiplier = MP_ITOM (1);

  MP_MOVE (bignum_zero, b);
  if (negative)
    d = -d;
  for (i = 0UL; d > 0.0; d /= 256, i++)
    {
      MINT *temp = MP_ITOM ((short) fmod (d, 256.0));
      MP_MULT (multiplier, temp, temp);
      MP_MADD (b, temp, b);
      MP_MULT (multiplier, bignum_bytesize, multiplier);
      MP_MFREE (temp);
    }
  MP_MFREE (multiplier);
  if (negative)
    MP_MSUB (bignum_zero, b, b);
}

/* Return nonzero if b1 is exactly divisible by b2 */
int
bignum_divisible_p (bignum b1, bignum b2)
{
  int retval;
  MINT *rem = MP_ITOM (0);
  MP_MDIV (b1, b2, intern_bignum, rem);
  retval = (MP_MCMP (rem, bignum_zero) == 0);
  MP_MFREE (rem);
  return retval;
}

void bignum_ceil (bignum quotient, bignum N, bignum D)
{
  MP_MDIV (N, D, quotient, intern_bignum);
  if (MP_MCMP (intern_bignum, bignum_zero) > 0 &&
      MP_MCMP (quotient, bignum_zero) > 0)
    MP_MADD (quotient, bignum_one, quotient);
}

void bignum_floor (bignum quotient, bignum N, bignum D)
{
  MP_MDIV (N, D, quotient, intern_bignum);
  if (MP_MCMP (intern_bignum, bignum_zero) > 0 &&
      MP_MCMP (quotient, bignum_zero) < 0)
    MP_MSUB (quotient, bignum_one, quotient);
}

/* RESULT = N to the POWth power */
void
bignum_pow (bignum result, bignum n, unsigned long pow)
{
  MP_MOVE (bignum_one, result);
  for ( ; pow > 0UL; pow--)
    MP_MULT (result, n, result);
}

/* lcm(b1,b2) = b1 * b2 / gcd(b1, b2) */
void
bignum_lcm (bignum result, bignum b1, bignum b2)
{
  MP_MULT (b1, b2, result);
  MP_GCD (b1, b2, intern_bignum);
  MP_MDIV (result, intern_bignum, result, intern_bignum);
}

/* FIXME: We can't handle negative args, so right now we just make them
   positive before doing anything else.  How should we really handle negative
   args? */
#define bignum_bit_op(result, b1, b2, op)				\
  REGISTER unsigned int i;						\
  MINT *multiplier = MP_ITOM (1), *n1 = MP_ITOM (0), *n2 = MP_ITOM (0);	\
									\
  if (MP_MCMP (bignum_zero, b1) > 0)					\
    MP_MSUB (bignum_zero, b1, n1);					\
  else									\
    MP_MOVE (b1, n1);							\
  if (MP_MCMP (bignum_zero, b2) > 0)					\
    MP_MSUB (bignum_zero, b2, n2);					\
  else									\
    MP_MOVE (b2, n2);							\
									\
  MP_MOVE (bignum_zero, result);					\
									\
  for (i = 0UL; MP_MCMP (bignum_zero, n1) < 0 &&			\
	 MP_MCMP (bignum_zero, n2) < 0; i++)				\
    {									\
      short byte1, byte2;						\
      MINT *temp;							\
									\
      MP_SDIV (n1, 256, n1, &byte1);					\
      MP_SDIV (n2, 256, n2, &byte2);					\
      temp = MP_ITOM (byte1 op byte2);					\
      MP_MULT (multiplier, temp, temp);					\
      MP_MADD (result, temp, result);					\
      MP_MULT (multiplier, bignum_bytesize, multiplier);		\
      MP_MFREE (temp);							\
    }									\
  MP_MFREE (n2);							\
  MP_MFREE (n1);							\
  MP_MFREE (multiplier)

void
bignum_and (bignum result, bignum b1, bignum b2)
{
  bignum_bit_op (result, b1, b2, &);
}

void
bignum_ior (bignum result, bignum b1, bignum b2)
{
  bignum_bit_op (result, b1, b2, |);
}

void
bignum_xor (bignum result, bignum b1, bignum b2)
{
  bignum_bit_op (result, b1, b2, ^);
}

/* NOT is not well-defined for bignums ... where do you stop flipping bits?
   We just flip until we see the last one.  This is probably a bad idea. */
void
bignum_not (bignum result, bignum b)
{
  REGISTER unsigned int i;
  MINT *multiplier = MP_ITOM (1), *n = MP_ITOM (0);

  if (MP_MCMP (bignum_zero, b) > 0)
    MP_MSUB (bignum_zero, b, n);
  else
    MP_MOVE (b, n);

  MP_MOVE (bignum_zero, result);

  for (i = 0UL; MP_MCMP (bignum_zero, n) < 0; i++)
    {
      short byte;
      MINT *temp;

      MP_SDIV (n, 256, n, &byte);
      temp = MP_ITOM (~byte);
      MP_MULT (multiplier, temp, temp);
      MP_MADD (result, temp, result);
      MP_MULT (multiplier, bignum_bytesize, multiplier);
      MP_MFREE (temp);
    }
  MP_MFREE (n);
  MP_MFREE (multiplier);
}

void
bignum_setbit (bignum b, unsigned long bit)
{
  bignum_pow (intern_bignum, bignum_two, bit);
  bignum_ior (b, b, intern_bignum);
}

/* This is so evil, even I feel queasy. */
void
bignum_clrbit (bignum b, unsigned long bit)
{
  MINT *num = MP_ITOM (0);

  /* See if the bit is already set, and subtract it off if not */
  MP_MOVE (b, intern_bignum);
  bignum_pow (num, bignum_two, bit);
  bignum_ior (intern_bignum, intern_bignum, num);
  if (MP_MCMP (b, intern_bignum) == 0)
    MP_MSUB (b, num, b);
  MP_MFREE (num);
}

int
bignum_testbit (bignum b, unsigned long bit)
{
  bignum_pow (intern_bignum, bignum_two, bit);
  bignum_and (intern_bignum, b, intern_bignum);
  return MP_MCMP (intern_bignum, bignum_zero);
}

void
bignum_lshift (bignum result, bignum b, unsigned long bits)
{
  bignum_pow (intern_bignum, bignum_two, bits);
  MP_MULT (b, intern_bignum, result);
}

void
bignum_rshift (bignum result, bignum b, unsigned long bits)
{
  bignum_pow (intern_bignum, bignum_two, bits);
  MP_MDIV (b, intern_bignum, result, intern_bignum);
}

void bignum_random_seed(unsigned long seed)
{
  /* FIXME: Implement me */
}

void bignum_random(bignum result, bignum limit)
{
  /* FIXME: Implement me */
  MP_MOVE (bignum_zero, result);
}

void
init_number_mp ()
{
  REGISTER unsigned int i;

  bignum_zero = MP_ITOM (0);
  bignum_one = MP_ITOM (1);
  bignum_two = MP_ITOM (2);

  /* intern_bignum holds throwaway values from macro expansions in
     number-mp.h.  Its value is immaterial. */
  intern_bignum = MP_ITOM (0);

  /* bignum_bytesize holds the number of bits in a byte. */
  bignum_bytesize = MP_ITOM (256);

  /* bignum_long_sign_bit holds an adjustment for negative longs. */
  bignum_long_sign_bit = MP_ITOM (256);
  for (i = 1UL; i < sizeof (long); i++)
    MP_MULT (bignum_bytesize, bignum_long_sign_bit, bignum_long_sign_bit);

  /* The MP interface only supports turning short ints into MINTs, so we have
     to set these the hard way. */

  bignum_min_int = MP_ITOM (0);
  bignum_set_long (bignum_min_int, INT_MIN);

  bignum_max_int = MP_ITOM (0);
  bignum_set_long (bignum_max_int, INT_MAX);

  bignum_max_uint = MP_ITOM (0);
  bignum_set_ulong (bignum_max_uint, UINT_MAX);

  bignum_min_long = MP_ITOM (0);
  bignum_set_long (bignum_min_long, LONG_MIN);

  bignum_max_long = MP_ITOM (0);
  bignum_set_long (bignum_max_long, LONG_MAX);

  bignum_max_ulong = MP_ITOM (0);
  bignum_set_ulong (bignum_max_ulong, ULONG_MAX);
}