view man/xemacs/reading.texi @ 5146:88bd4f3ef8e4

make lrecord UID's have a separate UID space for each object, resurrect debug SOE code in extents.c -------------------- ChangeLog entries follow: -------------------- src/ChangeLog addition: 2010-03-15 Ben Wing <ben@xemacs.org> * alloc.c: * alloc.c (c_readonly): * alloc.c (deadbeef_memory): * alloc.c (make_compiled_function): * alloc.c (make_button_data): * alloc.c (make_motion_data): * alloc.c (make_process_data): * alloc.c (make_timeout_data): * alloc.c (make_magic_data): * alloc.c (make_magic_eval_data): * alloc.c (make_eval_data): * alloc.c (make_misc_user_data): * alloc.c (noseeum_make_marker): * alloc.c (ADDITIONAL_FREE_string): * alloc.c (common_init_alloc_early): * alloc.c (init_alloc_once_early): * bytecode.c (print_compiled_function): * bytecode.c (mark_compiled_function): * casetab.c: * casetab.c (print_case_table): * console.c: * console.c (print_console): * database.c (print_database): * database.c (finalize_database): * device-msw.c (sync_printer_with_devmode): * device-msw.c (print_devmode): * device-msw.c (finalize_devmode): * device.c: * device.c (print_device): * elhash.c: * elhash.c (print_hash_table): * eval.c (print_multiple_value): * eval.c (mark_multiple_value): * events.c (deinitialize_event): * events.c (print_event): * events.c (event_equal): * extents.c: * extents.c (soe_dump): * extents.c (soe_insert): * extents.c (soe_delete): * extents.c (soe_move): * extents.c (extent_fragment_update): * extents.c (print_extent_1): * extents.c (print_extent): * extents.c (vars_of_extents): * frame.c: * frame.c (print_frame): * free-hook.c: * free-hook.c (check_free): * glyphs.c: * glyphs.c (print_image_instance): * glyphs.c (print_glyph): * gui.c: * gui.c (copy_gui_item): * hash.c: * hash.c (NULL_ENTRY): * hash.c (KEYS_DIFFER_P): * keymap.c (print_keymap): * keymap.c (MARKED_SLOT): * lisp.h: * lrecord.h: * lrecord.h (LISP_OBJECT_UID): * lrecord.h (set_lheader_implementation): * lrecord.h (struct old_lcrecord_header): * lstream.c (print_lstream): * lstream.c (finalize_lstream): * marker.c (print_marker): * marker.c (marker_equal): * mc-alloc.c (visit_all_used_page_headers): * mule-charset.c: * mule-charset.c (print_charset): * objects.c (print_color_instance): * objects.c (print_font_instance): * objects.c (finalize_font_instance): * opaque.c (print_opaque): * opaque.c (print_opaque_ptr): * opaque.c (equal_opaque_ptr): * print.c (internal_object_printer): * print.c (enum printing_badness): * rangetab.c (print_range_table): * rangetab.c (range_table_equal): * specifier.c (print_specifier): * specifier.c (finalize_specifier): * symbols.c: * symbols.c (print_symbol_value_magic): * tooltalk.c: * tooltalk.c (print_tooltalk_message): * tooltalk.c (print_tooltalk_pattern): * window.c (print_window): * window.c (debug_print_window): (1) Make lrecord UID's have a separate UID space for each object. Otherwise, with 20-bit UID's, we rapidly wrap around, especially when common objects like conses and strings increment the UID value for every object created. (Originally I tried making two UID spaces, one for objects that always print readably and hence don't display the UID, and one for other objects. But certain objects like markers for which a UID is displayed are still generated rapidly enough that UID overflow is a serious issue.) This also has the advantage of making UID values smaller, hence easier to remember -- their main purpose is to make it easier to keep track of different objects of the same type when debugging code. Make sure we dump lrecord UID's so that we don't have problems with pdumped and non-dumped objects having the same UID. (2) Display UID's consistently whenever an object (a) doesn't consistently print readably (objects like cons and string, which always print readably, can't display a UID), and (b) doesn't otherwise have a unique property that makes objects of a particular type distinguishable. (E.g. buffers didn't and still don't print an ID, but the buffer name uniquely identifies the buffer.) Some types, such as event, extent, compiled-function, didn't always (or didn't ever) display an ID; others (such as marker, extent, lstream, opaque, opaque-ptr, any object using internal_object_printer()) used to display the actual machine pointer instead. (3) Rename NORMAL_LISP_OBJECT_UID to LISP_OBJECT_UID; make it work over all Lisp objects and take a Lisp object, not a struct pointer. (4) Some misc cleanups in alloc.c, elhash.c. (5) Change code in events.c that "deinitializes" an event so that it doesn't increment the event UID counter in the process. Also use deadbeef_memory() to overwrite memory instead of doing the same with custom code. In the process, make deadbeef_memory() in alloc.c always available, and delete extraneous copy in mc-alloc.c. Also capitalize all uses of 0xDEADBEEF. Similarly in elhash.c call deadbeef_memory(). (6) Resurrect "debug SOE" code in extents.c. Make it conditional on DEBUG_XEMACS and on a `debug-soe' variable, rather than on SOE_DEBUG. Make it output to stderr, not stdout. (7) Delete some custom print methods that were identical to external_object_printer().
author Ben Wing <ben@xemacs.org>
date Mon, 15 Mar 2010 16:35:38 -0500
parents 712931b4b71d
children
line wrap: on
line source


@node Reading Mail, Calendar/Diary, Sending Mail, Top
@chapter Reading Mail
@cindex mail
@cindex message

XEmacs provides several mail-reading packages.  Each one comes with
its own manual, which is included in each package.

The recommended mail-reading package for new users is VM.  VM works
with standard Unix-mail-format folders and was designed as a replacement
for the older Rmail.

XEmacs also provides a sophisticated and comfortable front-end to the
MH mail-processing system, called @samp{MH-E}.  Unlike in other
mail programs, folders in MH are stored as file-system directories,
with each message occupying one (numbered) file.  This facilitates
working with mail using shell commands, and many other features of
MH are also designed to integrate well with the shell and with
shell scripts.  Keep in mind, however, that in order to use MH-E
you must have the MH mail-processing system installed on your
computer.

The @dfn{Everything including the kitchen sink} package @samp{Gnus} is
also available as an XEmacs package.  Gnus also handles Usenet articles
as well as mail.

@samp{MEW} (Messaging in the Emacs World) is another mail-reading
package available for XEmacs.

Finally, XEmacs provides the Rmail package.  Rmail is (currently)
the only mail reading package distributed with FSF GNU Emacs, and is
powerful in its own right.  However, it stores mail folders in a
special format called @samp{Babyl}, that is incompatible with all
other frequently-used mail programs.  A utility program is provided
for converting Babyl folders to standard Unix-mail format; however,
unless you already have mail in Babyl-format folders, you should
consider using Gnus, VM, or MH-E instead.