Mercurial > hg > xemacs-beta
view man/lispref/range-tables.texi @ 4995:8431b52e43b1
Move the various map* functions to C; add #'map-into.
src/ChangeLog addition:
2010-01-31 Aidan Kehoe <kehoea@parhasard.net>
Move #'mapcar*, #'mapcan, #'mapc, #'map, #'mapl, #'mapcon to C;
extend #'mapvector, #'mapconcat, #'mapcar to support more
SEQUENCES; have them all error with circular lists.
* fns.c (Fsubseq): Call CHECK_SEQUENCE here; Flength can return
from the debugger if it errors with a non-sequence, leading to a
crash in Fsubseq if sequence really is *not* a sequence.
(mapcarX): Rename mapcar1 to mapcarX; rework it comprehensively to
take an optional lisp output argument, and a varying number of
sequences.
Special-case a single list argument, as we used to, saving its
elements in the stack space for the results before calling
FUNCTION, so FUNCTION can corrupt the list all it
wants. dead_wrong_type_argument() in the other cases if we
encounter a non-cons where we expected a cons.
(Fmapconcat):
Accept further SEQUENCES after separator here. Special-case
the idiom (mapconcat 'identity SEQUENCE), don't even funcall.
(FmapcarX): Rename this from Fmapcar. Accept optional SEQUENCES.
(Fmapvector): Accept optional SEQUENCES.
(Fmapcan, Fmapc, Fmap): Move these here from cl-extra.el.
(Fmap_into): New function, as specified by Common Lisp.
(maplist): New function, the guts of the implementation of
Fmaplist and Fmapl.
(Fmaplist, Fmapl, Fmapcon): Move these from cl-extra.el.
(syms_of_fns):
Add a few needed symbols here, for the type tests
used by #'map. Add the new subrs, with aliases for #'mapc-internal
and #'mapcar.
* general-slots.h: Declare Qcoerce here, now it's used in both
indent.c and fns.c
* indent.c (syms_of_indent): Qcoerce is gone from here.
* lisp.h: Add ARRAYP(), SEQUENCEP(), and the corresponding CHECK_*
macros. Declare Fbit_vector, Fstring, FmapcarX, now other files
need to use them.
* data.c (Farrayp, Fsequencep): Use ARRAYP and SEQUENCEP, just
added to lisp.h
* buffer.c (Fbuffer_list): Now Fmapcar has been renamed FmapcarX
and takes MANY arguments, update this function to reflect that.
lisp/ChangeLog addition:
2010-01-31 Aidan Kehoe <kehoea@parhasard.net>
* cl.el (mapcar*): Delete; this is now in fns.c.
Use #'mapc, not #'mapc-internal in a couple of places.
* cl-macs.el (mapc, mapcar*, map): Delete these compiler macros
now the corresponding functions are in fns.c; there's no run-time
advantage to the macros.
* cl-extra.el (coerce): Extend the possible conversions here a
little; it's not remotely comprehensive yet, though it does allow
running slightly more Common Lisp code than previously.
(cl-mapcar-many): Delete.
(map, maplist, mapc, mapl, mapcan, mapcon): Move these to fns.c.
* bytecomp.el (byte-compile-maybe-mapc):
Use #'mapc itself, not #'mapc-internal, now the former is in C.
(mapcar*): Use #'byte-compile-maybe-mapc as this function's
byte-compile method, now a #'mapc that can take more than one
sequence is in C.
* obsolete.el (cl-mapc): Move this compatibility alias to this file.
* update-elc.el (do-autoload-commands): Use #'mapc, not
#'mapc-internal here.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Sun, 31 Jan 2010 18:29:48 +0000 |
parents | 6772ce4d982b |
children | 9fae6227ede5 |
line wrap: on
line source
@c -*-texinfo-*- @c This is part of the XEmacs Lisp Reference Manual. @c Copyright (C) 1996 Ben Wing. @c See the file lispref.texi for copying conditions. @setfilename ../../info/range-tables.info @node Range Tables, Databases, Hash Tables, top @chapter Range Tables @cindex Range Tables A range table is a table that efficiently associates values with ranges of fixnums. Note that range tables have a read syntax, like this: @example #s(range-table type start-closed-end-open data ((-3 2) foo (5 20) bar)) @end example This maps integers in the range [-3, 2) to @code{foo} and integers in the range [5, 20) to @code{bar}. By default, range tables have a @var{type} of @code{start-closed-end-open}. (@strong{NOTE}: This is a change from 21.4 and earlier, where there was no @var{type} and range tables were always closed on both ends.) This makes them work like text properties. @defun range-table-p object Return non-@code{nil} if @var{object} is a range table. @end defun @menu * Introduction to Range Tables:: Range tables efficiently map ranges of integers to values. * Working With Range Tables:: Range table functions. @end menu @node Introduction to Range Tables @section Introduction to Range Tables @defun make-range-table &optional type Make a new, empty range table. @var{type} is a symbol indicating how ranges are assumed to function at their ends. It can be one of @example SYMBOL RANGE-START RANGE-END ------ ----------- --------- `start-closed-end-open' (the default) closed open `start-closed-end-closed' closed closed `start-open-end-open' open open `start-open-end-closed' open closed @end example A @dfn{closed} endpoint of a range means that the number at that end is included in the range. For an @dfn{open} endpoint, the number would not be included. For example, a closed-open range from 5 to 20 would be indicated as @samp{[5, 20)} where a bracket indicates a closed end and a parenthesis an open end, and would mean `all the numbers between 5 and 20', including 5 but not 20. This seems a little strange at first but is in fact extremely common in the outside world as well as in computers and makes things work sensibly. For example, if I say "there are seven days between today and next week today", I'm including today but not next week today; if I included both, there would be eight days. Similarly, there are 15 (= 20 - 5) elements in the range @samp{[5, 20)}, but 16 in the range @samp{[5, 20]}. @end defun @defun copy-range-table range-table This function returns a new range table which contains the same values for the same ranges as @var{range-table}. The values will not themselves be copied. @end defun @node Working With Range Tables @section Working With Range Tables @defun get-range-table pos range-table &optional default This function finds value for position @var{pos} in @var{range-table}. If there is no corresponding value, return @var{default} (defaults to @code{nil}). @strong{NOTE}: If you are working with ranges that are closed at the start and open at the end (the default), and you put a value for a range with @var{start} equal to @var{end}, @code{get-range-table} will @strong{not} return that value! You would need to set @var{end} one greater than @var{start}. @end defun @defun put-range-table start end value range-table This function sets the value for range (@var{start}, @var{end}) to be @var{value} in @var{range-table}. @strong{NOTE}: Unless you are working with ranges that are closed at both ends, nothing will happen if @var{start} equals @var{end}. @end defun @defun remove-range-table start end range-table This function removes the value for range (@var{start}, @var{end}) in @var{range-table}. @end defun @defun clear-range-table range-table This function flushes @var{range-table}. @end defun @defun map-range-table function range-table This function maps @var{function} over entries in @var{range-table}, calling it with three args, the beginning and end of the range and the corresponding value. @end defun