Mercurial > hg > xemacs-beta
view src/text.h @ 867:804517e16990
[xemacs-hg @ 2002-06-05 09:54:39 by ben]
Textual renaming: text/char names
abbrev.c, alloc.c, buffer.c, buffer.h, bytecode.c, callint.c, casefiddle.c, casetab.c, charset.h, chartab.c, chartab.h, cmds.c, console-gtk.h, console-msw.c, console-msw.h, console-stream.c, console-tty.c, console-x.c, console-x.h, console.h, data.c, device-msw.c, device-x.c, dialog-msw.c, dired-msw.c, dired.c, doc.c, doprnt.c, editfns.c, eldap.c, emodules.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, event-unixoid.c, events.c, events.h, file-coding.c, file-coding.h, fileio.c, filelock.c, fns.c, font-lock.c, frame-gtk.c, frame-msw.c, frame-x.c, frame.c, glyphs-eimage.c, glyphs-msw.c, glyphs-x.c, glyphs.c, glyphs.h, gpmevent.c, gui-x.c, gui-x.h, gui.c, gui.h, hpplay.c, indent.c, insdel.c, insdel.h, intl-win32.c, keymap.c, line-number.c, line-number.h, lisp-disunion.h, lisp-union.h, lisp.h, lread.c, lrecord.h, lstream.c, lstream.h, md5.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, mule-ccl.c, mule-charset.c, mule-coding.c, mule-wnnfns.c, ndir.h, nt.c, objects-gtk.c, objects-gtk.h, objects-msw.c, objects-tty.c, objects-x.c, objects.c, objects.h, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, procimpl.h, realpath.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-tty.c, redisplay-x.c, redisplay.c, redisplay.h, regex.c, search.c, select-common.h, select-gtk.c, select-x.c, sound.h, symbols.c, syntax.c, syntax.h, sysdep.c, sysdep.h, sysdir.h, sysfile.h, sysproc.h, syspwd.h, systime.h, syswindows.h, termcap.c, tests.c, text.c, text.h, toolbar-common.c, tooltalk.c, ui-gtk.c, unexnt.c, unicode.c, win32.c: Text/char naming rationalization.
[a] distinguish between "charptr" when it refers to operations on
the pointer itself and when it refers to operations on text; and
[b] use consistent naming for everything referring to internal
format, i.e.
Itext == text in internal format
Ibyte == a byte in such text
Ichar == a char as represented in internal character format
thus e.g.
set_charptr_emchar -> set_itext_ichar
The pre and post tags on either side of this change are:
pre-internal-format-textual-renaming
post-internal-format-textual-renaming
See the Internals Manual for details of exactly how this was done,
how to handle the change in your workspace, etc.
author | ben |
---|---|
date | Wed, 05 Jun 2002 09:58:45 +0000 |
parents | e7ee5f8bde58 |
children | e10cdc51a200 |
line wrap: on
line source
/* Header file for text manipulation primitives and macros. Copyright (C) 1985-1995 Free Software Foundation, Inc. Copyright (C) 1995 Sun Microsystems, Inc. Copyright (C) 2000, 2001, 2002 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. */ /* Authorship: Mostly written by Ben Wing, starting around 1995. Current TO_IN/EXTERNAL_FORMAT macros written by Martin Buchholz, designed by Ben Wing based on earlier macros by Ben Wing. Separated out June 18, 2000 from buffer.h into text.h. */ #ifndef INCLUDED_text_h_ #define INCLUDED_text_h_ #include <wchar.h> /* ---------------------------------------------------------------------- */ /* Super-basic character properties */ /* ---------------------------------------------------------------------- */ /* These properties define the specifics of how our current encoding fits in the basic model used for the encoding. Because this model is the same as is used for UTF-8, all these properties could be defined for it, too. This would instantly make the rest of this file work with UTF-8 (with the exception of a few called functions that would need to be redefined). (UTF-2000 implementers, take note!) */ /* If you want more than this, you need to include charset.h */ #ifndef MULE #define rep_bytes_by_first_byte(fb) 1 #define byte_ascii_p(byte) 1 #define MAX_ICHAR_LEN 1 #else /* MULE */ /* These are carefully designed to work if BYTE is signed or unsigned. */ /* Note that SPC and DEL are considered ASCII, not control. */ #define byte_ascii_p(byte) (((byte) & ~0x7f) == 0) #define byte_c0_p(byte) (((byte) & ~0x1f) == 0) #define byte_c1_p(byte) (((byte) & ~0x1f) == 0x80) /* Does BYTE represent the first byte of a character? */ #ifdef ERROR_CHECK_TEXT DECLARE_INLINE_HEADER ( int ibyte_first_byte_p_1 (int byte, const char *file, int line) ) { assert_at_line (byte >= 0 && byte < 256, file, line); return byte < 0xA0; } #define ibyte_first_byte_p(byte) \ ibyte_first_byte_p_1 (byte, __FILE__, __LINE__) #else #define ibyte_first_byte_p(byte) ((byte) < 0xA0) #endif #ifdef ERROR_CHECK_TEXT /* Does BYTE represent the first byte of a multi-byte character? */ DECLARE_INLINE_HEADER ( int ibyte_leading_byte_p_1 (int byte, const char *file, int line) ) { assert_at_line (byte >= 0 && byte < 256, file, line); return byte_c1_p (byte); } #define ibyte_leading_byte_p(byte) \ ibyte_leading_byte_p_1 (byte, __FILE__, __LINE__) #else #define ibyte_leading_byte_p(byte) byte_c1_p (byte) #endif /* Table of number of bytes in the string representation of a character indexed by the first byte of that representation. This value can be derived in other ways -- e.g. something like XCHARSET_REP_BYTES (charset_by_leading_byte (first_byte)) but it's faster this way. */ extern const Bytecount rep_bytes_by_first_byte[0xA0]; /* Number of bytes in the string representation of a character. */ #ifdef ERROR_CHECK_TEXT DECLARE_INLINE_HEADER ( Bytecount rep_bytes_by_first_byte_1 (int fb, const char *file, int line) ) { assert_at_line (fb >= 0 && fb < 0xA0, file, line); return rep_bytes_by_first_byte[fb]; } #define rep_bytes_by_first_byte(fb) \ rep_bytes_by_first_byte_1 (fb, __FILE__, __LINE__) #else /* ERROR_CHECK_TEXT */ #define rep_bytes_by_first_byte(fb) (rep_bytes_by_first_byte[fb]) #endif /* ERROR_CHECK_TEXT */ /* Is this character represented by more than one byte in a string in the default format? */ #define ichar_multibyte_p(c) ((c) >= 0x80) #define ichar_ascii_p(c) (!ichar_multibyte_p (c)) /* Maximum number of bytes per Emacs character when represented as text, in any format. */ #define MAX_ICHAR_LEN 4 #endif /* not MULE */ /* ---------------- Handling non-default formats ----------------- */ /* We support, at least to some extent, formats other than the default variable-width format, for speed; all of these alternative formats are fixed-width. Currently we only handle these non-default formats in buffers, because access to their text is strictly controlled and thus the details of the format mostly compartmentalized. The only really tricky part is the search code -- the regex, Boyer-Moore, and simple-search algorithms in search.c and regex.c. All other code that knows directly about the buffer representation is the basic code to modify or retrieve the buffer text. Supporting fixed-width formats in Lisp strings is harder, but possible -- FSF currently does this, for example. In this case, however, probably only 8-bit-fixed is reasonable for Lisp strings -- getting non-ASCII-compatible fixed-width formats to work is much, much harder because a lot of code assumes that strings are ASCII-compatible (i.e. ASCII + other characters represented exclusively using high-bit bytes) and a lot of code mixes Lisp strings and non-Lisp strings freely. The different possible fixed-width formats are 8-bit fixed, 16-bit fixed, and 32-bit fixed. The latter can represent all possible characters, but at a substantial memory penalty. The other two can represent only a subset of the possible characters. How these subsets are defined can be simple or very tricky. Currently we support only the default format and the 8-bit fixed format, and in the latter, we only allow these to be the first 256 characters in an Ichar (ASCII and Latin 1). One reasonable approach for 8-bit fixed is to allow the upper half to represent any 1-byte charset, which is specified on a per-buffer basis. This should work fairly well in practice since most documents are in only one foreign language (possibly with some English mixed in). I think FSF does something like this; or at least, they have something called nonascii-translation-table and use it when converting from 8-bit-fixed text ("unibyte text") to default text ("multibyte text"). With 16-bit fixed, you could do something like assign chunks of the 64K worth of characters to charsets as they're encountered in documents. This should work well with most Asian documents. If/when we switch to using Unicode internally, we might have formats more like this: -- UTF-8 or some extension as the default format. Perl uses an extension that handles 64-bit chars and requires as much as 13 bytes per char, vs. the standard of 31-bit chars and 6 bytes max. UTF-8 has the same basic properties as our own variable-width format (see text.c, Internal String Encoding) and so most code would not need to be changed. -- UTF-16 as a "pseudo-fixed" format (i.e. 16-bit fixed plus surrogates for representing characters not in the BMP, aka >= 65536). The vast majority of documents will have no surrogates in them so byte/char conversion will be very fast. -- an 8-bit fixed format, like currently. -- possibly, UCS-4 as a 32-bit fixed format. The fixed-width formats essentially treat the buffer as an array of 8-bit, 16-bit or 32-bit integers. This means that how they are stored in memory (in particular, big-endian or little-endian) depends on the native format of the machine's processor. It also means we have to worry a bit about alignment (basically, we just need to keep the gap an integral size of the character size, and get things aligned properly when converting the buffer between formats). */ typedef enum internal_format { FORMAT_DEFAULT, FORMAT_8_BIT_FIXED, FORMAT_16_BIT_FIXED, /* not implemented */ FORMAT_32_BIT_FIXED /* not implemented */ } Internal_Format; #ifdef MULE /* "OBJECT" below will usually be a buffer, string, or nil. This needs to be passed in because the interpretation of 8-bit-fixed and 16-bit-fixed values may depend on the buffer, e.g. depending on what language the text in the buffer is in. */ /* True if Ichar CH can be represented in 8-bit-fixed format. */ #define ichar_8_bit_fixed_p(ch, object) (((ch) & ~0xff) == 0) /* Convert Ichar CH to an 8-bit int, as will be stored in the buffer. */ #define ichar_to_raw_8_bit_fixed(ch, object) ((Ibyte) (ch)) /* Convert the other way. */ #define raw_8_bit_fixed_to_ichar(ch, object) ((Ichar) (ch)) #define ichar_16_bit_fixed_p(ch, object) (((ch) & ~0xffff) == 0) /* Convert Ichar CH to a 16-bit int, as will be stored in the buffer. */ #define ichar_to_raw_16_bit_fixed(ch, object) ((UINT_16_BIT) (ch)) /* Convert the other way. */ #define raw_16_bit_fixed_to_ichar(ch, object) ((Ichar) (ch)) /* Convert Ichar CH to a 32-bit int, as will be stored in the buffer. */ #define ichar_to_raw_32_bit_fixed(ch, object) ((UINT_32_BIT) (ch)) /* Convert the other way. */ #define raw_32_bit_fixed_to_ichar(ch, object) ((Ichar) (ch)) /* Return the "raw value" of a character as stored in the buffer. In the default format, this is just the same as the character. In fixed-width formats, this is the actual value in the buffer, which will be limited to the range as established by the format. This is used when searching for a character in a buffer -- it's faster to convert the character to the raw value and look for that, than repeatedly convert each raw value in the buffer into a character. */ DECLARE_INLINE_HEADER ( Raw_Ichar ichar_to_raw (Ichar ch, Internal_Format fmt, Lisp_Object object) ) { switch (fmt) { case FORMAT_DEFAULT: return (Raw_Ichar) ch; case FORMAT_16_BIT_FIXED: text_checking_assert (ichar_16_bit_fixed_p (ch, object)); return (Raw_Ichar) ichar_to_raw_16_bit_fixed (ch, object); case FORMAT_32_BIT_FIXED: return (Raw_Ichar) ichar_to_raw_32_bit_fixed (ch, object); default: text_checking_assert (fmt == FORMAT_8_BIT_FIXED); text_checking_assert (ichar_8_bit_fixed_p (ch, object)); return (Raw_Ichar) ichar_to_raw_8_bit_fixed (ch, object); } } /* Return whether CH is representable in the given format in the given object. */ DECLARE_INLINE_HEADER ( int ichar_fits_in_format (Ichar ch, Internal_Format fmt, Lisp_Object object) ) { switch (fmt) { case FORMAT_DEFAULT: return 1; case FORMAT_16_BIT_FIXED: return ichar_16_bit_fixed_p (ch, object); case FORMAT_32_BIT_FIXED: return 1; default: text_checking_assert (fmt == FORMAT_8_BIT_FIXED); return ichar_8_bit_fixed_p (ch, object); } } /* Assuming the formats are the same, return whether the two objects represent text in exactly the same way. */ DECLARE_INLINE_HEADER ( int objects_have_same_internal_representation (Lisp_Object srcobj, Lisp_Object dstobj) ) { /* &&#### implement this properly when we allow per-object format differences */ return 1; } #else #define ichar_to_raw(ch, fmt, object) ((Raw_Ichar) (ch)) #define ichar_fits_in_format(ch, fmt, object) 1 #define objects_have_same_internal_representation(srcobj, dstobj) 1 #endif /* MULE */ int dfc_coding_system_is_unicode (Lisp_Object coding_system); DECLARE_INLINE_HEADER ( Bytecount dfc_external_data_len (const void *ptr, Lisp_Object codesys) ) { if (dfc_coding_system_is_unicode (codesys)) return sizeof (wchar_t) * wcslen ((wchar_t *) ptr); else return strlen ((char *) ptr); } /************************************************************************/ /* */ /* working with raw internal-format data */ /* */ /************************************************************************/ /* Use the following functions/macros on contiguous text in any of the internal formats. Those that take a format arg work on all internal formats; the others work only on the default (variable-width under Mule) format. If the text you're operating on is known to come from a buffer, use the buffer-level functions in buffer.h, which automatically know the correct format and handle the gap. Some terminology: "itext" appearing in the macros means "internal-format text" -- type `Ibyte *'. Operations on such pointers themselves, rather than on the text being pointed to, have "itext" instead of "itext" in the macro name. "ichar" in the macro names means an Ichar -- the representation of a character as a single integer rather than a series of bytes, as part of "itext". Many of the macros below are for converting between the two representations of characters. Note also that we try to consistently distinguish between an "Ichar" and a Lisp character. Stuff working with Lisp characters often just says "char", so we consistently use "Ichar" when that's what we're working with. */ /* The three golden rules of macros: 1) Anything that's an lvalue can be evaluated more than once. 2) Macros where anything else can be evaluated more than once should have the word "unsafe" in their name (exceptions may be made for large sets of macros that evaluate arguments of certain types more than once, e.g. struct buffer * arguments, when clearly indicated in the macro documentation). These macros are generally meant to be called only by other macros that have already stored the calling values in temporary variables. 3) Nothing else can be evaluated more than once. Use inline functions, if necessary, to prevent multiple evaluation. NOTE: The functions and macros below are given full prototypes in their docs, even when the implementation is a macro. In such cases, passing an argument of a type other than expected will produce undefined results. Also, given that macros can do things functions can't (in particular, directly modify arguments as if they were passed by reference), the declaration syntax has been extended to include the call-by-reference syntax from C++, where an & after a type indicates that the argument is an lvalue and is passed by reference, i.e. the function can modify its value. (This is equivalent in C to passing a pointer to the argument, but without the need to explicitly worry about pointers.) When to capitalize macros: -- Capitalize macros doing stuff obviously impossible with (C) functions, e.g. directly modifying arguments as if they were passed by reference. -- Capitalize macros that evaluate *any* argument more than once regardless of whether that's "allowed" (e.g. buffer arguments). -- Capitalize macros that directly access a field in a Lisp_Object or its equivalent underlying structure. In such cases, access through the Lisp_Object precedes the macro with an X, and access through the underlying structure doesn't. -- Capitalize certain other basic macros relating to Lisp_Objects; e.g. FRAMEP, CHECK_FRAME, etc. -- Try to avoid capitalizing any other macros. */ /* ---------------------------------------------------------------------- */ /* Working with itext's (pointers to internally-formatted text) */ /* ---------------------------------------------------------------------- */ /* Given an itext, does it point to the beginning of a character? */ #ifdef MULE # define valid_ibyteptr_p(ptr) ibyte_first_byte_p (* (ptr)) #else # define valid_ibyteptr_p(ptr) 1 #endif /* If error-checking is enabled, assert that the given itext points to the beginning of a character. Otherwise, do nothing. */ #define assert_valid_ibyteptr(ptr) text_checking_assert (valid_ibyteptr_p (ptr)) /* Given a itext (assumed to point at the beginning of a character), modify that pointer so it points to the beginning of the next character. Note that INC_IBYTEPTR() and DEC_IBYTEPTR() have to be written in completely separate ways. INC_IBYTEPTR() cannot use the DEC_IBYTEPTR() trick of looking for a valid first byte because it might run off the end of the string. DEC_IBYTEPTR() can't use the INC_IBYTEPTR() method because it doesn't have easy access to the first byte of the character it's moving over. */ #define INC_IBYTEPTR(ptr) do { \ assert_valid_ibyteptr (ptr); \ (ptr) += rep_bytes_by_first_byte (* (ptr)); \ } while (0) #define INC_IBYTEPTR_FMT(ptr, fmt) \ do { \ Internal_Format __icf_fmt = (fmt); \ switch (__icf_fmt) \ { \ case FORMAT_DEFAULT: \ INC_IBYTEPTR (ptr); \ break; \ case FORMAT_16_BIT_FIXED: \ text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_16_BIT)); \ (ptr) += 2; \ break; \ case FORMAT_32_BIT_FIXED: \ text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_32_BIT)); \ (ptr) += 4; \ break; \ default: \ text_checking_assert (fmt == FORMAT_8_BIT_FIXED); \ (ptr)++; \ break; \ } \ } while (0) /* Given a itext (assumed to point at the beginning of a character or at the very end of the text), modify that pointer so it points to the beginning of the previous character. */ #ifdef ERROR_CHECK_TEXT /* We use a separate definition to avoid warnings about unused dc_ptr1 */ #define DEC_IBYTEPTR(ptr) do { \ const Ibyte *dc_ptr1 = (ptr); \ do { \ (ptr)--; \ } while (!valid_ibyteptr_p (ptr)); \ text_checking_assert (dc_ptr1 - (ptr) == rep_bytes_by_first_byte (*(ptr))); \ } while (0) #else #define DEC_IBYTEPTR(ptr) do { \ do { \ (ptr)--; \ } while (!valid_ibyteptr_p (ptr)); \ } while (0) #endif /* ERROR_CHECK_TEXT */ #define DEC_IBYTEPTR_FMT(ptr, fmt) \ do { \ Internal_Format __icf_fmt = (fmt); \ switch (__icf_fmt) \ { \ case FORMAT_DEFAULT: \ DEC_IBYTEPTR (ptr); \ break; \ case FORMAT_16_BIT_FIXED: \ text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_16_BIT)); \ (ptr) -= 2; \ break; \ case FORMAT_32_BIT_FIXED: \ text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_32_BIT)); \ (ptr) -= 4; \ break; \ default: \ text_checking_assert (fmt == FORMAT_8_BIT_FIXED); \ (ptr)--; \ break; \ } \ } while (0) #ifdef MULE /* Make sure that PTR is pointing to the beginning of a character. If not, back up until this is the case. Note that there are not too many places where it is legitimate to do this sort of thing. It's an error if you're passed an "invalid" char * pointer. NOTE: PTR *must* be pointing to a valid part of the string (i.e. not the very end, unless the string is zero-terminated or something) in order for this function to not cause crashes. */ /* Note that this reads the byte at *PTR! */ #define VALIDATE_IBYTEPTR_BACKWARD(ptr) do { \ while (!valid_ibyteptr_p (ptr)) ptr--; \ } while (0) /* Make sure that PTR is pointing to the beginning of a character. If not, move forward until this is the case. Note that there are not too many places where it is legitimate to do this sort of thing. It's an error if you're passed an "invalid" char * pointer. */ /* This needs to be trickier than VALIDATE_IBYTEPTR_BACKWARD() to avoid the possibility of running off the end of the string. */ #define VALIDATE_IBYTEPTR_FORWARD(ptr) do { \ Ibyte *vcf_ptr = (ptr); \ VALIDATE_IBYTEPTR_BACKWARD (vcf_ptr); \ if (vcf_ptr != (ptr)) \ { \ (ptr) = vcf_ptr; \ INC_IBYTEPTR (ptr); \ } \ } while (0) #else /* not MULE */ #define VALIDATE_IBYTEPTR_BACKWARD(ptr) #define VALIDATE_IBYTEPTR_FORWARD(ptr) #endif /* not MULE */ #ifdef MULE /* Given a Ibyte string at PTR of size N, possibly with a partial character at the end, return the size of the longest substring of complete characters. Does not assume that the byte at *(PTR + N) is readable. Note that there are not too many places where it is legitimate to do this sort of thing. It's an error if you're passed an "invalid" offset. */ DECLARE_INLINE_HEADER ( Bytecount validate_ibyte_string_backward (const Ibyte *ptr, Bytecount n) ) { const Ibyte *ptr2; if (n == 0) return n; ptr2 = ptr + n - 1; VALIDATE_IBYTEPTR_BACKWARD (ptr2); if (ptr2 + rep_bytes_by_first_byte (*ptr2) != ptr + n) return ptr2 - ptr; return n; } #else #define validate_ibyte_string_backward(ptr, n) (n) #endif /* MULE */ /* -------------------------------------------------------------- */ /* Working with the length (in bytes and characters) of a */ /* section of internally-formatted text */ /* -------------------------------------------------------------- */ #ifdef MULE Charcount bytecount_to_charcount_fun (const Ibyte *ptr, Bytecount len); Bytecount charcount_to_bytecount_fun (const Ibyte *ptr, Charcount len); /* Given a pointer to a text string and a length in bytes, return the equivalent length in characters. */ DECLARE_INLINE_HEADER ( Charcount bytecount_to_charcount (const Ibyte *ptr, Bytecount len) ) { if (len < 20) /* Just a random guess, but it should be more or less correct. If number of bytes is small, just do a simple loop, which should be more efficient. */ { Charcount count = 0; const Ibyte *end = ptr + len; while (ptr < end) { INC_IBYTEPTR (ptr); count++; } /* Bomb out if the specified substring ends in the middle of a character. Note that we might have already gotten a core dump above from an invalid reference, but at least we will get no farther than here. This also catches len < 0. */ text_checking_assert (ptr == end); return count; } else return bytecount_to_charcount_fun (ptr, len); } /* Given a pointer to a text string and a length in characters, return the equivalent length in bytes. */ DECLARE_INLINE_HEADER ( Bytecount charcount_to_bytecount (const Ibyte *ptr, Charcount len) ) { text_checking_assert (len >= 0); if (len < 20) /* See above */ { const Ibyte *newptr = ptr; while (len > 0) { INC_IBYTEPTR (newptr); len--; } return newptr - ptr; } else return charcount_to_bytecount_fun (ptr, len); } /* Given a pointer to a text string in the specified format and a length in bytes, return the equivalent length in characters. */ DECLARE_INLINE_HEADER ( Charcount bytecount_to_charcount_fmt (const Ibyte *ptr, Bytecount len, Internal_Format fmt) ) { switch (fmt) { case FORMAT_DEFAULT: return bytecount_to_charcount (ptr, len); case FORMAT_16_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_16_BIT)); return (Charcount) (len << 1); case FORMAT_32_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_32_BIT)); return (Charcount) (len << 2); default: text_checking_assert (fmt == FORMAT_8_BIT_FIXED); return (Charcount) len; } } /* Given a pointer to a text string in the specified format and a length in characters, return the equivalent length in bytes. */ DECLARE_INLINE_HEADER ( Bytecount charcount_to_bytecount_fmt (const Ibyte *ptr, Charcount len, Internal_Format fmt) ) { switch (fmt) { case FORMAT_DEFAULT: return charcount_to_bytecount (ptr, len); case FORMAT_16_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_16_BIT)); text_checking_assert (!(len & 1)); return (Bytecount) (len >> 1); case FORMAT_32_BIT_FIXED: text_checking_assert (!(len & 3)); text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_32_BIT)); return (Bytecount) (len >> 2); default: text_checking_assert (fmt == FORMAT_8_BIT_FIXED); return (Bytecount) len; } } #else #define bytecount_to_charcount(ptr, len) ((Charcount) (len)) #define bytecount_to_charcount_fmt(ptr, len, fmt) ((Charcount) (len)) #define charcount_to_bytecount(ptr, len) ((Bytecount) (len)) #define charcount_to_bytecount_fmt(ptr, len, fmt) ((Bytecount) (len)) #endif /* MULE */ /* Return the length of the first character at PTR. Equivalent to charcount_to_bytecount (ptr, 1). [Since charcount_to_bytecount() is Written as inline, a smart compiler should really optimize charcount_to_bytecount (ptr, 1) to the same as the following, with no error checking. But since this idiom occurs so often, we'll be helpful and define a special macro for it.] */ #define itext_ichar_len(ptr) rep_bytes_by_first_byte (*(ptr)) /* Return the length of the first character at PTR, which is in the specified internal format. Equivalent to charcount_to_bytecount_fmt (ptr, 1, fmt). */ DECLARE_INLINE_HEADER ( Bytecount itext_ichar_len_fmt (const Ibyte *ptr, Internal_Format fmt) ) { switch (fmt) { case FORMAT_DEFAULT: return itext_ichar_len (ptr); case FORMAT_16_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_16_BIT)); return 2; case FORMAT_32_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_32_BIT)); return 4; default: text_checking_assert (fmt == FORMAT_8_BIT_FIXED); return 1; } } /* Return a pointer to the beginning of the character offset N (in characters) from PTR. */ DECLARE_INLINE_HEADER ( const Ibyte * itext_n_addr (const Ibyte *ptr, Charcount offset) ) { return ptr + charcount_to_bytecount (ptr, offset); } /* Given a itext and an offset into the text pointed to by the itext, modify the offset so it points to the beginning of the next character. */ #define INC_BYTECOUNT(ptr, pos) do { \ assert_valid_ibyteptr (ptr); \ (pos += rep_bytes_by_first_byte (* ((ptr) + (pos)))); \ } while (0) /* -------------------------------------------------------------------- */ /* Retrieving or changing the character pointed to by a itext */ /* -------------------------------------------------------------------- */ #define simple_itext_ichar(ptr) ((Ichar) (ptr)[0]) #define simple_set_itext_ichar(ptr, x) \ ((ptr)[0] = (Ibyte) (x), (Bytecount) 1) #define simple_itext_copy_ichar(src, dst) \ ((dst)[0] = *(src), (Bytecount) 1) #ifdef MULE Ichar non_ascii_itext_ichar (const Ibyte *ptr); Bytecount non_ascii_set_itext_ichar (Ibyte *ptr, Ichar c); Bytecount non_ascii_itext_copy_ichar (const Ibyte *src, Ibyte *dst); /* Retrieve the character pointed to by PTR as an Ichar. */ DECLARE_INLINE_HEADER ( Ichar itext_ichar (const Ibyte *ptr) ) { return byte_ascii_p (*ptr) ? simple_itext_ichar (ptr) : non_ascii_itext_ichar (ptr); } /* Retrieve the character pointed to by PTR (a pointer to text in the format FMT, coming from OBJECT [a buffer, string?, or nil]) as an Ichar. Note: For these and other *_fmt() functions, if you pass in a constant FMT, the switch will be optimized out of existence. Therefore, there is no need to create separate versions for the various formats for "efficiency reasons". In fact, we don't really need itext_ichar() and such written separately, but they are used often so it's simpler that way. */ DECLARE_INLINE_HEADER ( Ichar itext_ichar_fmt (const Ibyte *ptr, Internal_Format fmt, Lisp_Object object) ) { switch (fmt) { case FORMAT_DEFAULT: return itext_ichar (ptr); case FORMAT_16_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_16_BIT)); return raw_16_bit_fixed_to_ichar (* (UINT_16_BIT *) ptr, object); case FORMAT_32_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_32_BIT)); return raw_32_bit_fixed_to_ichar (* (UINT_32_BIT *) ptr, object); default: text_checking_assert (fmt == FORMAT_8_BIT_FIXED); return raw_8_bit_fixed_to_ichar (*ptr, object); } } /* Return the character at PTR (which is in format FMT), suitable for comparison with an ASCII character. This guarantees that if the character at PTR is ASCII (range 0 - 127), that character will be returned; otherwise, some character outside of the ASCII range will be returned, but not necessarily the character actually at PTR. This will be faster than itext_ichar_fmt() for some formats -- in particular, FORMAT_DEFAULT. */ DECLARE_INLINE_HEADER ( Ichar itext_ichar_ascii_fmt (const Ibyte *ptr, Internal_Format fmt, Lisp_Object object) ) { switch (fmt) { case FORMAT_DEFAULT: return (Ichar) *ptr; case FORMAT_16_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_16_BIT)); return raw_16_bit_fixed_to_ichar (* (UINT_16_BIT *) ptr, object); case FORMAT_32_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_32_BIT)); return raw_32_bit_fixed_to_ichar (* (UINT_32_BIT *) ptr, object); default: text_checking_assert (fmt == FORMAT_8_BIT_FIXED); return raw_8_bit_fixed_to_ichar (*ptr, object); } } /* Return the "raw value" of the character at PTR, in format FMT. This is useful when searching for a character; convert the character using ichar_to_raw(). */ DECLARE_INLINE_HEADER ( Raw_Ichar itext_ichar_raw_fmt (const Ibyte *ptr, Internal_Format fmt) ) { switch (fmt) { case FORMAT_DEFAULT: return (Raw_Ichar) itext_ichar (ptr); case FORMAT_16_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_16_BIT)); return (Raw_Ichar) (* (UINT_16_BIT *) ptr); case FORMAT_32_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_32_BIT)); return (Raw_Ichar) (* (UINT_32_BIT *) ptr); default: text_checking_assert (fmt == FORMAT_8_BIT_FIXED); return (Raw_Ichar) (*ptr); } } /* Store the character CH (an Ichar) as internally-formatted text starting at PTR. Return the number of bytes stored. */ DECLARE_INLINE_HEADER ( Bytecount set_itext_ichar (Ibyte *ptr, Ichar x) ) { return !ichar_multibyte_p (x) ? simple_set_itext_ichar (ptr, x) : non_ascii_set_itext_ichar (ptr, x); } /* Store the character CH (an Ichar) as internally-formatted text of format FMT starting at PTR, which comes from OBJECT. Return the number of bytes stored. */ DECLARE_INLINE_HEADER ( Bytecount set_itext_ichar_fmt (Ibyte *ptr, Ichar x, Internal_Format fmt, Lisp_Object object) ) { switch (fmt) { case FORMAT_DEFAULT: return set_itext_ichar (ptr, x); case FORMAT_16_BIT_FIXED: text_checking_assert (ichar_16_bit_fixed_p (x, object)); text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_16_BIT)); * (UINT_16_BIT *) ptr = ichar_to_raw_16_bit_fixed (x, object); return 2; case FORMAT_32_BIT_FIXED: text_checking_assert (ptr == ALIGN_PTR (ptr, UINT_32_BIT)); * (UINT_32_BIT *) ptr = ichar_to_raw_32_bit_fixed (x, object); return 4; default: text_checking_assert (fmt == FORMAT_8_BIT_FIXED); text_checking_assert (ichar_8_bit_fixed_p (x, object)); *ptr = ichar_to_raw_8_bit_fixed (x, object); return 1; } } /* Retrieve the character pointed to by SRC and store it as internally-formatted text in DST. */ DECLARE_INLINE_HEADER ( Bytecount itext_copy_ichar (const Ibyte *src, Ibyte *dst) ) { return byte_ascii_p (*src) ? simple_itext_copy_ichar (src, dst) : non_ascii_itext_copy_ichar (src, dst); } #else /* not MULE */ # define itext_ichar(ptr) simple_itext_ichar (ptr) # define itext_ichar_fmt(ptr, fmt, object) itext_ichar (ptr) # define itext_ichar_ascii_fmt(ptr, fmt, object) itext_ichar (ptr) # define itext_ichar_raw_fmt(ptr, fmt) itext_ichar (ptr) # define set_itext_ichar(ptr, x) simple_set_itext_ichar (ptr, x) # define set_itext_ichar_fmt(ptr, x, fmt, obj) set_itext_ichar (ptr, x) # define itext_copy_ichar(src, dst) simple_itext_copy_ichar (src, dst) #endif /* not MULE */ /* Retrieve the character at offset N (in characters) from PTR, as an Ichar. */ #define itext_ichar_n(ptr, offset) \ itext_ichar (itext_n_addr (ptr, offset)) /* ---------------------------- */ /* Working with Ichars */ /* ---------------------------- */ /* NOTE: There are other functions/macros for working with Ichars in charset.h, for retrieving the charset of an Ichar, the length of an Ichar when converted to text, etc. */ #ifdef MULE int non_ascii_valid_ichar_p (Ichar ch); /* Return whether the given Ichar is valid. */ DECLARE_INLINE_HEADER ( int valid_ichar_p (Ichar ch) ) { return (! (ch & ~0xFF)) || non_ascii_valid_ichar_p (ch); } #else /* not MULE */ #define valid_ichar_p(ch) (! (ch & ~0xFF)) #endif /* not MULE */ DECLARE_INLINE_HEADER ( Lisp_Object make_char (Ichar val) ) { type_checking_assert (valid_ichar_p (val)); return make_char_1 (val); } #define CHAR_INTP(x) (INTP (x) && valid_ichar_p (XINT (x))) #define CHAR_OR_CHAR_INTP(x) (CHARP (x) || CHAR_INTP (x)) DECLARE_INLINE_HEADER ( Ichar XCHAR_OR_CHAR_INT (Lisp_Object obj) ) { return CHARP (obj) ? XCHAR (obj) : XINT (obj); } /* Signal an error if CH is not a valid character or integer Lisp_Object. If CH is an integer Lisp_Object, convert it to a character Lisp_Object, but merely by repackaging, without performing tests for char validity. */ #define CHECK_CHAR_COERCE_INT(x) do { \ if (CHARP (x)) \ ; \ else if (CHAR_INTP (x)) \ x = make_char (XINT (x)); \ else \ x = wrong_type_argument (Qcharacterp, x); \ } while (0) /************************************************************************/ /* */ /* working with Lisp strings */ /* */ /************************************************************************/ #define string_char_length(s) \ string_index_byte_to_char (s, XSTRING_LENGTH (s)) #define string_byte(s, i) (XSTRING_DATA (s)[i] + 0) /* In case we ever allow strings to be in a different format ... */ #define set_string_byte(s, i, c) (XSTRING_DATA (s)[i] = (c)) #define ASSERT_VALID_CHAR_STRING_INDEX_UNSAFE(s, x) do { \ text_checking_assert ((x) >= 0 && x <= string_char_length (s)); \ } while (0) #define ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE(s, x) do { \ text_checking_assert ((x) >= 0 && x <= XSTRING_LENGTH (s)); \ text_checking_assert (valid_ibyteptr_p (string_byte_addr (s, x))); \ } while (0) /* Convert offset I in string S to a pointer to text there. */ #define string_byte_addr(s, i) (&(XSTRING_DATA (s)[i])) /* Convert pointer to text in string S into the byte offset to that text. */ #define string_addr_to_byte(s, ptr) ((Bytecount) ((ptr) - XSTRING_DATA (s))) /* Return the Ichar at *CHARACTER* offset I. */ #define string_ichar(s, i) itext_ichar (string_char_addr (s, i)) #ifdef ERROR_CHECK_TEXT #define SLEDGEHAMMER_CHECK_ASCII_BEGIN #endif #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN void sledgehammer_check_ascii_begin (Lisp_Object str); #else #define sledgehammer_check_ascii_begin(str) #endif /* Make an alloca'd copy of a Lisp string */ #define LISP_STRING_TO_ALLOCA(s, lval) \ do { \ Ibyte **_lta_ = (Ibyte **) &(lval); \ Lisp_Object _lta_2 = (s); \ *_lta_ = alloca_array (Ibyte, 1 + XSTRING_LENGTH (_lta_2)); \ memcpy (*_lta_, XSTRING_DATA (_lta_2), 1 + XSTRING_LENGTH (_lta_2)); \ } while (0) /* Make an alloca'd copy of a Ibyte * */ #define IBYTE_STRING_TO_ALLOCA(p, lval) \ do { \ Ibyte **_bsta_ = (Ibyte **) &(lval); \ const Ibyte *_bsta_2 = (p); \ Bytecount _bsta_3 = qxestrlen (_bsta_2); \ *_bsta_ = alloca_array (Ibyte, 1 + _bsta_3); \ memcpy (*_bsta_, _bsta_2, 1 + _bsta_3); \ } while (0) #define alloca_ibytes(num) alloca_array (Ibyte, num) #define alloca_extbytes(num) alloca_array (Extbyte, num) void resize_string (Lisp_Object s, Bytecount pos, Bytecount delta); /* Convert a byte index into a string into a char index. */ DECLARE_INLINE_HEADER ( Charcount string_index_byte_to_char (Lisp_Object s, Bytecount idx) ) { Charcount retval; ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, idx); #ifdef MULE if (idx <= (Bytecount) XSTRING_ASCII_BEGIN (s)) retval = (Charcount) idx; else retval = (XSTRING_ASCII_BEGIN (s) + bytecount_to_charcount (XSTRING_DATA (s) + XSTRING_ASCII_BEGIN (s), idx - XSTRING_ASCII_BEGIN (s))); # ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN assert (retval == bytecount_to_charcount (XSTRING_DATA (s), idx)); # endif #else retval = (Charcount) idx; #endif /* Don't call ASSERT_VALID_CHAR_STRING_INDEX_UNSAFE() here because it will call string_index_byte_to_char(). */ return retval; } /* Convert a char index into a string into a byte index. */ DECLARE_INLINE_HEADER ( Bytecount string_index_char_to_byte (Lisp_Object s, Charcount idx) ) { Bytecount retval; ASSERT_VALID_CHAR_STRING_INDEX_UNSAFE (s, idx); #ifdef MULE if (idx <= (Charcount) XSTRING_ASCII_BEGIN (s)) retval = (Bytecount) idx; else retval = (XSTRING_ASCII_BEGIN (s) + charcount_to_bytecount (XSTRING_DATA (s) + XSTRING_ASCII_BEGIN (s), idx - XSTRING_ASCII_BEGIN (s))); # ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN assert (retval == charcount_to_bytecount (XSTRING_DATA (s), idx)); # endif #else retval = (Bytecount) idx; #endif ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, retval); return retval; } /* Convert a substring length (starting at byte offset OFF) from bytes to chars. */ DECLARE_INLINE_HEADER ( Charcount string_offset_byte_to_char_len (Lisp_Object s, Bytecount off, Bytecount len) ) { Charcount retval; ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, off); ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, off + len); #ifdef MULE if (off + len <= (Bytecount) XSTRING_ASCII_BEGIN (s)) retval = (Charcount) len; else if (off < (Bytecount) XSTRING_ASCII_BEGIN (s)) retval = XSTRING_ASCII_BEGIN (s) - (Charcount) off + bytecount_to_charcount (XSTRING_DATA (s) + XSTRING_ASCII_BEGIN (s), len - (XSTRING_ASCII_BEGIN (s) - off)); else retval = bytecount_to_charcount (XSTRING_DATA (s) + off, len); # ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN assert (retval == bytecount_to_charcount (XSTRING_DATA (s) + off, len)); # endif #else retval = (Charcount) len; #endif return retval; } /* Convert a substring length (starting at byte offset OFF) from chars to bytes. */ DECLARE_INLINE_HEADER ( Bytecount string_offset_char_to_byte_len (Lisp_Object s, Bytecount off, Charcount len) ) { Bytecount retval; ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, off); #ifdef MULE /* casts to avoid errors from combining Bytecount/Charcount and warnings from signed/unsigned comparisons */ if (off + (Bytecount) len <= (Bytecount) XSTRING_ASCII_BEGIN (s)) retval = (Bytecount) len; else if (off < (Bytecount) XSTRING_ASCII_BEGIN (s)) retval = XSTRING_ASCII_BEGIN (s) - off + charcount_to_bytecount (XSTRING_DATA (s) + XSTRING_ASCII_BEGIN (s), len - (XSTRING_ASCII_BEGIN (s) - (Charcount) off)); else retval = charcount_to_bytecount (XSTRING_DATA (s) + off, len); # ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN assert (retval == charcount_to_bytecount (XSTRING_DATA (s) + off, len)); # endif #else retval = (Bytecount) len; #endif ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, off + retval); return retval; } DECLARE_INLINE_HEADER ( const Ibyte * string_char_addr (Lisp_Object s, Charcount idx) ) { return XSTRING_DATA (s) + string_index_char_to_byte (s, idx); } /* WARNING: If you modify an existing string, you must call bump_string_modiff() afterwards. */ #ifdef MULE void set_string_char (Lisp_Object s, Charcount i, Ichar c); #else #define set_string_char(s, i, c) set_string_byte (s, i, c) #endif /* not MULE */ /* Return index to character before the one at IDX. */ DECLARE_INLINE_HEADER ( Bytecount prev_string_index (Lisp_Object s, Bytecount idx) ) { const Ibyte *ptr = string_byte_addr (s, idx); DEC_IBYTEPTR (ptr); return string_addr_to_byte (s, ptr); } /* Return index to character after the one at IDX. */ DECLARE_INLINE_HEADER ( Bytecount next_string_index (Lisp_Object s, Bytecount idx) ) { const Ibyte *ptr = string_byte_addr (s, idx); INC_IBYTEPTR (ptr); return string_addr_to_byte (s, ptr); } /************************************************************************/ /* */ /* working with Eistrings */ /* */ /************************************************************************/ /* #### NOTE: This is a work in progress. Neither the API nor especially the implementation is finished. NOTE: An Eistring is a structure that makes it easy to work with internally-formatted strings of data. It provides operations similar in feel to the standard strcpy(), strcat(), strlen(), etc., but (a) it is Mule-correct (b) it does dynamic allocation so you never have to worry about size restrictions (c) it comes in an ALLOCA() variety (all allocation is stack-local, so there is no need to explicitly clean up) as well as a malloc() variety (d) it knows its own length, so it does not suffer from standard null byte brain-damage -- but it null-terminates the data anyway, so it can be passed to standard routines (e) it provides a much more powerful set of operations and knows about all the standard places where string data might reside: Lisp_Objects, other Eistrings, Ibyte * data with or without an explicit length, ASCII strings, Ichars, etc. (f) it provides easy operations to convert to/from externally-formatted data, and is easier to use than the standard TO_INTERNAL_FORMAT and TO_EXTERNAL_FORMAT macros. (An Eistring can store both the internal and external version of its data, but the external version is only initialized or changed when you call eito_external().) The idea is to make it as easy to write Mule-correct string manipulation code as it is to write normal string manipulation code. We also make the API sufficiently general that it can handle multiple internal data formats (e.g. some fixed-width optimizing formats and a default variable width format) and allows for *ANY* data format we might choose in the future for the default format, including UCS2. (In other words, we can't assume that the internal format is ASCII-compatible and we can't assume it doesn't have embedded null bytes. We do assume, however, that any chosen format will have the concept of null-termination.) All of this is hidden from the user. #### It is really too bad that we don't have a real object-oriented language, or at least a language with polymorphism! ********************************************** * Declaration * ********************************************** To declare an Eistring, either put one of the following in the local variable section: DECLARE_EISTRING (name); Declare a new Eistring. This is a standard local variable declaration and can go anywhere in the variable declaration section. NAME itself is declared as an Eistring *, and its storage declared on the stack. DECLARE_EISTRING_MALLOC (name); Declare a new Eistring, which uses malloc()ed instead of ALLOCA()ed data. This is a standard local variable declaration and can go anywhere in the variable declaration section. Once you initialize the Eistring, you will have to free it using eifree() to avoid memory leaks. You will need to use this form if you are passing an Eistring to any function that modifies it (otherwise, the modified data may be in stack space and get overwritten when the function returns). or use Eistring ei; void eiinit (Eistring *ei); void eiinit_malloc (Eistring *einame); If you need to put an Eistring elsewhere than in a local variable declaration (e.g. in a structure), declare it as shown and then call one of the init macros. Also note: void eifree (Eistring *ei); If you declared an Eistring to use malloc() to hold its data, or converted it to the heap using eito_malloc(), then this releases any data in it and afterwards resets the Eistring using eiinit_malloc(). Otherwise, it just resets the Eistring using eiinit(). ********************************************** * Conventions * ********************************************** - The names of the functions have been chosen, where possible, to match the names of str*() functions in the standard C API. - ********************************************** * Initialization * ********************************************** void eireset (Eistring *eistr); Initialize the Eistring to the empty string. void eicpy_* (Eistring *eistr, ...); Initialize the Eistring from somewhere: void eicpy_ei (Eistring *eistr, Eistring *eistr2); ... from another Eistring. void eicpy_lstr (Eistring *eistr, Lisp_Object lisp_string); ... from a Lisp_Object string. void eicpy_ch (Eistring *eistr, Ichar ch); ... from an Ichar (this can be a conventional C character). void eicpy_lstr_off (Eistring *eistr, Lisp_Object lisp_string, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen); ... from a section of a Lisp_Object string. void eicpy_lbuf (Eistring *eistr, Lisp_Object lisp_buf, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen); ... from a section of a Lisp_Object buffer. void eicpy_raw (Eistring *eistr, const Ibyte *data, Bytecount len); ... from raw internal-format data in the default internal format. void eicpy_rawz (Eistring *eistr, const Ibyte *data); ... from raw internal-format data in the default internal format that is "null-terminated" (the meaning of this depends on the nature of the default internal format). void eicpy_raw_fmt (Eistring *eistr, const Ibyte *data, Bytecount len, Internal_Format intfmt, Lisp_Object object); ... from raw internal-format data in the specified format. void eicpy_rawz_fmt (Eistring *eistr, const Ibyte *data, Internal_Format intfmt, Lisp_Object object); ... from raw internal-format data in the specified format that is "null-terminated" (the meaning of this depends on the nature of the specific format). void eicpy_c (Eistring *eistr, const Char_ASCII *c_string); ... from an ASCII null-terminated string. Non-ASCII characters in the string are *ILLEGAL* (read abort() with error-checking defined). void eicpy_c_len (Eistring *eistr, const Char_ASCII *c_string, len); ... from an ASCII string, with length specified. Non-ASCII characters in the string are *ILLEGAL* (read abort() with error-checking defined). void eicpy_ext (Eistring *eistr, const Extbyte *extdata, Lisp_Object coding_system); ... from external null-terminated data, with coding system specified. void eicpy_ext_len (Eistring *eistr, const Extbyte *extdata, Bytecount extlen, Lisp_Object coding_system); ... from external data, with length and coding system specified. void eicpy_lstream (Eistring *eistr, Lisp_Object lstream); ... from an lstream; reads data till eof. Data must be in default internal format; otherwise, interpose a decoding lstream. ********************************************** * Getting the data out of the Eistring * ********************************************** Ibyte *eidata (Eistring *eistr); Return a pointer to the raw data in an Eistring. This is NOT a copy. Lisp_Object eimake_string (Eistring *eistr); Make a Lisp string out of the Eistring. Lisp_Object eimake_string_off (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen); Make a Lisp string out of a section of the Eistring. void eicpyout_alloca (Eistring *eistr, LVALUE: Ibyte *ptr_out, LVALUE: Bytecount len_out); Make an ALLOCA() copy of the data in the Eistring, using the default internal format. Due to the nature of ALLOCA(), this must be a macro, with all lvalues passed in as parameters. (More specifically, not all compilers correctly handle using ALLOCA() as the argument to a function call -- GCC on x86 didn't used to, for example.) A pointer to the ALLOCA()ed data is stored in PTR_OUT, and the length of the data (not including the terminating zero) is stored in LEN_OUT. void eicpyout_alloca_fmt (Eistring *eistr, LVALUE: Ibyte *ptr_out, LVALUE: Bytecount len_out, Internal_Format intfmt, Lisp_Object object); Like eicpyout_alloca(), but converts to the specified internal format. (No formats other than FORMAT_DEFAULT are currently implemented, and you get an assertion failure if you try.) Ibyte *eicpyout_malloc (Eistring *eistr, Bytecount *intlen_out); Make a malloc() copy of the data in the Eistring, using the default internal format. This is a real function. No lvalues passed in. Returns the new data, and stores the length (not including the terminating zero) using INTLEN_OUT, unless it's a NULL pointer. Ibyte *eicpyout_malloc_fmt (Eistring *eistr, Internal_Format intfmt, Bytecount *intlen_out, Lisp_Object object); Like eicpyout_malloc(), but converts to the specified internal format. (No formats other than FORMAT_DEFAULT are currently implemented, and you get an assertion failure if you try.) ********************************************** * Moving to the heap * ********************************************** void eito_malloc (Eistring *eistr); Move this Eistring to the heap. Its data will be stored in a malloc()ed block rather than the stack. Subsequent changes to this Eistring will realloc() the block as necessary. Use this when you want the Eistring to remain in scope past the end of this function call. You will have to manually free the data in the Eistring using eifree(). void eito_alloca (Eistring *eistr); Move this Eistring back to the stack, if it was moved to the heap with eito_malloc(). This will automatically free any heap-allocated data. ********************************************** * Retrieving the length * ********************************************** Bytecount eilen (Eistring *eistr); Return the length of the internal data, in bytes. See also eiextlen(), below. Charcount eicharlen (Eistring *eistr); Return the length of the internal data, in characters. ********************************************** * Working with positions * ********************************************** Bytecount eicharpos_to_bytepos (Eistring *eistr, Charcount charpos); Convert a char offset to a byte offset. Charcount eibytepos_to_charpos (Eistring *eistr, Bytecount bytepos); Convert a byte offset to a char offset. Bytecount eiincpos (Eistring *eistr, Bytecount bytepos); Increment the given position by one character. Bytecount eiincpos_n (Eistring *eistr, Bytecount bytepos, Charcount n); Increment the given position by N characters. Bytecount eidecpos (Eistring *eistr, Bytecount bytepos); Decrement the given position by one character. Bytecount eidecpos_n (Eistring *eistr, Bytecount bytepos, Charcount n); Deccrement the given position by N characters. ********************************************** * Getting the character at a position * ********************************************** Ichar eigetch (Eistring *eistr, Bytecount bytepos); Return the character at a particular byte offset. Ichar eigetch_char (Eistring *eistr, Charcount charpos); Return the character at a particular character offset. ********************************************** * Setting the character at a position * ********************************************** Ichar eisetch (Eistring *eistr, Bytecount bytepos, Ichar chr); Set the character at a particular byte offset. Ichar eisetch_char (Eistring *eistr, Charcount charpos, Ichar chr); Set the character at a particular character offset. ********************************************** * Concatenation * ********************************************** void eicat_* (Eistring *eistr, ...); Concatenate onto the end of the Eistring, with data coming from the same places as above: void eicat_ei (Eistring *eistr, Eistring *eistr2); ... from another Eistring. void eicat_c (Eistring *eistr, Char_ASCII *c_string); ... from an ASCII null-terminated string. Non-ASCII characters in the string are *ILLEGAL* (read abort() with error-checking defined). void eicat_raw (ei, const Ibyte *data, Bytecount len); ... from raw internal-format data in the default internal format. void eicat_rawz (ei, const Ibyte *data); ... from raw internal-format data in the default internal format that is "null-terminated" (the meaning of this depends on the nature of the default internal format). void eicat_lstr (ei, Lisp_Object lisp_string); ... from a Lisp_Object string. void eicat_ch (ei, Ichar ch); ... from an Ichar. (All except the first variety are convenience functions. In the general case, create another Eistring from the source.) ********************************************** * Replacement * ********************************************** void eisub_* (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, ...); Replace a section of the Eistring, specifically: void eisub_ei (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, Eistring *eistr2); ... with another Eistring. void eisub_c (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, Char_ASCII *c_string); ... with an ASCII null-terminated string. Non-ASCII characters in the string are *ILLEGAL* (read abort() with error-checking defined). void eisub_ch (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, Ichar ch); ... with an Ichar. void eidel (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen); Delete a section of the Eistring. ********************************************** * Converting to an external format * ********************************************** void eito_external (Eistring *eistr, Lisp_Object coding_system); Convert the Eistring to an external format and store the result in the string. NOTE: Further changes to the Eistring will *NOT* change the external data stored in the string. You will have to call eito_external() again in such a case if you want the external data. Extbyte *eiextdata (Eistring *eistr); Return a pointer to the external data stored in the Eistring as a result of a prior call to eito_external(). Bytecount eiextlen (Eistring *eistr); Return the length in bytes of the external data stored in the Eistring as a result of a prior call to eito_external(). ********************************************** * Searching in the Eistring for a character * ********************************************** Bytecount eichr (Eistring *eistr, Ichar chr); Charcount eichr_char (Eistring *eistr, Ichar chr); Bytecount eichr_off (Eistring *eistr, Ichar chr, Bytecount off, Charcount charoff); Charcount eichr_off_char (Eistring *eistr, Ichar chr, Bytecount off, Charcount charoff); Bytecount eirchr (Eistring *eistr, Ichar chr); Charcount eirchr_char (Eistring *eistr, Ichar chr); Bytecount eirchr_off (Eistring *eistr, Ichar chr, Bytecount off, Charcount charoff); Charcount eirchr_off_char (Eistring *eistr, Ichar chr, Bytecount off, Charcount charoff); ********************************************** * Searching in the Eistring for a string * ********************************************** Bytecount eistr_ei (Eistring *eistr, Eistring *eistr2); Charcount eistr_ei_char (Eistring *eistr, Eistring *eistr2); Bytecount eistr_ei_off (Eistring *eistr, Eistring *eistr2, Bytecount off, Charcount charoff); Charcount eistr_ei_off_char (Eistring *eistr, Eistring *eistr2, Bytecount off, Charcount charoff); Bytecount eirstr_ei (Eistring *eistr, Eistring *eistr2); Charcount eirstr_ei_char (Eistring *eistr, Eistring *eistr2); Bytecount eirstr_ei_off (Eistring *eistr, Eistring *eistr2, Bytecount off, Charcount charoff); Charcount eirstr_ei_off_char (Eistring *eistr, Eistring *eistr2, Bytecount off, Charcount charoff); Bytecount eistr_c (Eistring *eistr, Char_ASCII *c_string); Charcount eistr_c_char (Eistring *eistr, Char_ASCII *c_string); Bytecount eistr_c_off (Eistring *eistr, Char_ASCII *c_string, Bytecount off, Charcount charoff); Charcount eistr_c_off_char (Eistring *eistr, Char_ASCII *c_string, Bytecount off, Charcount charoff); Bytecount eirstr_c (Eistring *eistr, Char_ASCII *c_string); Charcount eirstr_c_char (Eistring *eistr, Char_ASCII *c_string); Bytecount eirstr_c_off (Eistring *eistr, Char_ASCII *c_string, Bytecount off, Charcount charoff); Charcount eirstr_c_off_char (Eistring *eistr, Char_ASCII *c_string, Bytecount off, Charcount charoff); ********************************************** * Comparison * ********************************************** int eicmp_* (Eistring *eistr, ...); int eicmp_off_* (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, ...); int eicasecmp_* (Eistring *eistr, ...); int eicasecmp_off_* (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, ...); int eicasecmp_i18n_* (Eistring *eistr, ...); int eicasecmp_i18n_off_* (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, ...); Compare the Eistring with the other data. Return value same as from strcmp. The `*' is either `ei' for another Eistring (in which case `...' is an Eistring), or `c' for a pure-ASCII string (in which case `...' is a pointer to that string). For anything more complex, first create an Eistring out of the source. Comparison is either simple (`eicmp_...'), ASCII case-folding (`eicasecmp_...'), or multilingual case-folding (`eicasecmp_i18n_...). More specifically, the prototypes are: int eicmp_ei (Eistring *eistr, Eistring *eistr2); int eicmp_off_ei (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, Eistring *eistr2); int eicasecmp_ei (Eistring *eistr, Eistring *eistr2); int eicasecmp_off_ei (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, Eistring *eistr2); int eicasecmp_i18n_ei (Eistring *eistr, Eistring *eistr2); int eicasecmp_i18n_off_ei (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, Eistring *eistr2); int eicmp_c (Eistring *eistr, Char_ASCII *c_string); int eicmp_off_c (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, Char_ASCII *c_string); int eicasecmp_c (Eistring *eistr, Char_ASCII *c_string); int eicasecmp_off_c (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, Char_ASCII *c_string); int eicasecmp_i18n_c (Eistring *eistr, Char_ASCII *c_string); int eicasecmp_i18n_off_c (Eistring *eistr, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, Char_ASCII *c_string); ********************************************** * Case-changing the Eistring * ********************************************** void eilwr (Eistring *eistr); Convert all characters in the Eistring to lowercase. void eiupr (Eistring *eistr); Convert all characters in the Eistring to uppercase. */ /* Principles for writing Eistring functions: (1) Unfortunately, we have to write most of the Eistring functions as macros, because of the use of ALLOCA(). The principle used below to assure no conflict in local variables is to prefix all local variables with "ei" plus a number, which should be unique among macros. In practice, when finding a new number, find the highest so far used, and add 1. (2) We also suffix the Eistring fields with an _ to avoid problems with macro parameters of the same name. (And as the standard signal not to access these fields directly.) (3) We maintain both the length in bytes and chars of the data in the Eistring at all times, for convenient retrieval by outside functions. That means when writing functions that manipulate Eistrings, you too need to keep both lengths up to date for all data that you work with. (4) When writing a new type of operation (e.g. substitution), you will often find yourself working with outside data, and thus have a series of related API's, for different forms that the outside data is in. Generally, you will want to choose a subset of the forms supported by eicpy_*, which has to be totally general because that's the fundamental way to get data into an Eistring, and once the data is into the string, it would be to create a whole series of Ei operations that work on nothing but Eistrings. Although theoretically nice, in practice it's a hassle, so we suggest that you provide convenience functions. In particular, there are two paths you can take. One is minimalist -- it only allows other Eistrings and ASCII data, and Ichars if the particular operation makes sense with a character. The other provides interfaces for the most commonly-used forms -- Eistring, ASCII data, Lisp string, raw internal-format string with length, raw internal-format string without, and possibly Ichar. (In the function names, these are designated `ei', `c', `lstr', `raw', `rawz', and `ch', respectively.) (5) When coding a new type of operation, such as was discussed in previous section, the correct approach is to declare an worker function that does the work of everything, and is called by the other "container" macros that handle the different outside data forms. The data coming into the worker function, which typically ends in `_1', is in the form of three parameters: DATA, LEN, CHARLEN. (See point [3] about having two lengths and keeping them in sync.) (6) Handling argument evaluation in macros: We take great care never to evaluate any argument more than once in any macro, except the initial Eistring parameter. This can and will be evaluated multiple times, but it should pretty much always just be a simple variable. This means, for example, that if an Eistring is the second (not first) argument of a macro, it doesn't fall under the "initial Eistring" exemption, so it needs protection against multi-evaluation. (Take the address of the Eistring structure, store in a temporary variable, and use temporary variable for all access to the Eistring. Essentially, we want it to appear as if these Eistring macros are functions -- we would like to declare them as functions but they use ALLOCA(), so we can't (and we can't make them inline functions either -- ALLOCA() is explicitly disallowed in inline functions.) (7) Note that our rules regarding multiple evaluation are *more* strict than the rules listed above under the heading "working with raw internal-format data". */ /* ----- Declaration ----- */ typedef struct { /* Data for the Eistring, stored in the default internal format. Always includes terminating null. */ Ibyte *data_; /* Total number of bytes allocated in DATA (including null). */ Bytecount max_size_allocated_; Bytecount bytelen_; Charcount charlen_; int mallocp_; Extbyte *extdata_; Bytecount extlen_; } Eistring; extern Eistring the_eistring_zero_init, the_eistring_malloc_zero_init; #define DECLARE_EISTRING(name) \ Eistring __ ## name ## __storage__ = the_eistring_zero_init; \ Eistring *name = & __ ## name ## __storage__ #define DECLARE_EISTRING_MALLOC(name) \ Eistring __ ## name ## __storage__ = the_eistring_malloc_zero_init; \ Eistring *name = & __ ## name ## __storage__ #define eiinit(ei) \ do { \ *(ei) = the_eistring_zero_init; \ } while (0) #define eiinit_malloc(ei) \ do { \ *(ei) = the_eistring_malloc_zero_init; \ } while (0) /* ----- Utility ----- */ /* Make sure both LEN and CHARLEN are specified, in case one is given as -1. PTR evaluated at most once, others multiply. */ #define eifixup_bytechar(ptr, len, charlen) \ do { \ if ((len) == -1) \ (len) = charcount_to_bytecount (ptr, charlen); \ else if ((charlen) == -1) \ (charlen) = bytecount_to_charcount (ptr, len); \ } while (0) /* Make sure LEN is specified, in case it's is given as -1. PTR evaluated at most once, others multiply. */ #define eifixup_byte(ptr, len, charlen) \ do { \ if ((len) == -1) \ (len) = charcount_to_bytecount (ptr, charlen); \ } while (0) /* Make sure CHARLEN is specified, in case it's is given as -1. PTR evaluated at most once, others multiply. */ #define eifixup_char(ptr, len, charlen) \ do { \ if ((charlen) == -1) \ (charlen) = bytecount_to_charcount (ptr, len); \ } while (0) /* Make sure we can hold NEWBYTELEN bytes (which is NEWCHARLEN chars) plus a zero terminator. Preserve existing data as much as possible, including existing zero terminator. Put a new zero terminator where it should go if NEWZ if non-zero. All args but EI are evalled only once. */ #define EI_ALLOC(ei, newbytelen, newcharlen, newz) \ do { \ int ei1oldeibytelen = (ei)->bytelen_; \ \ (ei)->charlen_ = (newcharlen); \ (ei)->bytelen_ = (newbytelen); \ \ if (ei1oldeibytelen != (ei)->bytelen_) \ { \ int ei1newsize = (ei)->max_size_allocated_; \ while (ei1newsize < (ei)->bytelen_ + 1) \ { \ ei1newsize = (int) (ei1newsize * 1.5); \ if (ei1newsize < 32) \ ei1newsize = 32; \ } \ if (ei1newsize != (ei)->max_size_allocated_) \ { \ if ((ei)->mallocp_) \ /* xrealloc always preserves existing data as much as possible */ \ (ei)->data_ = (Ibyte *) xrealloc ((ei)->data_, ei1newsize); \ else \ { \ /* We don't have realloc, so ALLOCA() more space and copy the \ data into it. */ \ Ibyte *ei1oldeidata = (ei)->data_; \ (ei)->data_ = (Ibyte *) ALLOCA (ei1newsize); \ if (ei1oldeidata) \ memcpy ((ei)->data_, ei1oldeidata, ei1oldeibytelen + 1); \ } \ (ei)->max_size_allocated_ = ei1newsize; \ } \ if (newz) \ (ei)->data_[(ei)->bytelen_] = '\0'; \ } \ } while (0) #define EI_ALLOC_AND_COPY(ei, data, bytelen, charlen) \ do { \ EI_ALLOC (ei, bytelen, charlen, 1); \ memcpy ((ei)->data_, data, (ei)->bytelen_); \ } while (0) #ifdef ERROR_CHECK_TEXT #define EI_ASSERT_ASCII(ptr, len) \ do { \ int ei5; \ const Char_ASCII *ei5ptr = (ptr); \ int ei5len = (len); \ \ for (ei5 = 0; ei5 < ei5len; ei5++) \ assert (ei5ptr[ei5] >= 0x00 && ei5ptr[ei5] < 0x7F); \ } while (0) #define EI_ASSERT_ASCIIZ(ptr) \ do { \ const Char_ASCII *ei5p1 = (ptr); \ EI_ASSERT_ASCII (ei5p1, strlen (ei5p1)); \ } while (0) #else #define EI_ASSERT_ASCII(ptr, len) #define EI_ASSERT_ASCIIZ(ptr) #endif /* ----- Initialization ----- */ #define eicpy_ei(ei, eicpy) \ do { \ const Eistring *ei2 = (eicpy); \ EI_ALLOC_AND_COPY (ei, ei2->data_, ei2->bytelen_, ei2->charlen_); \ } while (0) #define eicpy_lstr(ei, lisp_string) \ do { \ Lisp_Object ei3 = (lisp_string); \ EI_ALLOC_AND_COPY (ei, XSTRING_DATA (ei3), XSTRING_LENGTH (ei3), \ string_char_length (ei3)); \ } while (0) #define eicpy_lstr_off(ei, lisp_string, off, charoff, len, charlen) \ do { \ Lisp_Object ei23lstr = (lisp_string); \ int ei23off = (off); \ int ei23charoff = (charoff); \ int ei23len = (len); \ int ei23charlen = (charlen); \ const Ibyte *ei23data = XSTRING_DATA (ei23lstr); \ \ int ei23oldbytelen = (ei)->bytelen_; \ \ eifixup_byte (ei23data, ei23off, ei23charoff); \ eifixup_bytechar (ei23data + ei23off, ei23len, ei23charlen); \ \ EI_ALLOC_AND_COPY (ei, ei23data + ei23off, ei23len, ei23charlen); \ } while (0) #define eicpy_raw_fmt(ei, ptr, len, fmt, object) \ do { \ const Ibyte *ei12ptr = (ptr); \ Internal_Format ei12fmt = (fmt); \ int ei12len = (len); \ assert (ei12fmt == FORMAT_DEFAULT); \ EI_ALLOC_AND_COPY (ei, ei12ptr, ei12len, \ bytecount_to_charcount (ei12ptr, ei12len)); \ } while (0) #define eicpy_raw(ei, ptr, len) \ eicpy_raw_fmt (ei, ptr, len, FORMAT_DEFAULT, Qnil) #define eicpy_rawz_fmt(ei, ptr, fmt, object) \ do { \ const Ibyte *ei12p1ptr = (ptr); \ Internal_Format ei12p1fmt = (fmt); \ assert (ei12p1fmt == FORMAT_DEFAULT); \ eicpy_raw_fmt (ei, ei12p1ptr, qxestrlen (ei12p1ptr), fmt, object); \ } while (0) #define eicpy_rawz(ei, ptr) eicpy_rawz_fmt (ei, ptr, FORMAT_DEFAULT, Qnil) #define eicpy_ch(ei, ch) \ do { \ Ibyte ei12p2[MAX_ICHAR_LEN]; \ Bytecount ei12p2len = set_itext_ichar (ei12p2, ch); \ EI_ALLOC_AND_COPY (ei, ei12p2, ei12p2len, 1); \ } while (0) #define eicpy_c(ei, c_string) \ do { \ const Char_ASCII *ei4 = (c_string); \ \ EI_ASSERT_ASCIIZ (ei4); \ eicpy_ext (ei, ei4, Qbinary); \ } while (0) #define eicpy_c_len(ei, c_string, c_len) \ do { \ const Char_ASCII *ei6 = (c_string); \ int ei6len = (c_len); \ \ EI_ASSERT_ASCII (ei6, ei6len); \ eicpy_ext_len (ei, ei6, ei6len, Qbinary); \ } while (0) #define eicpy_ext_len(ei, extdata, extlen, coding_system) \ do { \ const Extbyte *ei7 = (extdata); \ int ei7len = (extlen); \ \ TO_INTERNAL_FORMAT (DATA, (ei7, ei7len), \ ALLOCA, ((ei)->data_, (ei)->bytelen_), \ coding_system); \ (ei)->max_size_allocated_ = (ei)->bytelen_ + 1; \ (ei)->charlen_ = bytecount_to_charcount ((ei)->data_, (ei)->bytelen_); \ } while (0) #define eicpy_ext(ei, extdata, coding_system) \ do { \ const Extbyte *ei8 = (extdata); \ \ eicpy_ext_len (ei, ei8, dfc_external_data_len (ei8, coding_system), \ coding_system); \ } while (0) #define eicpy_lbuf(eistr, lisp_buf, off, charoff, len, charlen) \ NOT YET IMPLEMENTED #define eicpy_lstream(eistr, lstream) \ NOT YET IMPLEMENTED #define eireset(eistr) eicpy_rawz (eistr, (Ibyte *) "") /* ----- Getting the data out of the Eistring ----- */ #define eidata(ei) ((ei)->data_) #define eimake_string(ei) make_string (eidata (ei), eilen (ei)) #define eimake_string_off(eistr, off, charoff, len, charlen) \ do { \ Lisp_Object ei24lstr; \ int ei24off = (off); \ int ei24charoff = (charoff); \ int ei24len = (len); \ int ei24charlen = (charlen); \ \ eifixup_byte ((eistr)->data_, ei24off, ei24charoff); \ eifixup_byte ((eistr)->data_ + ei24off, ei24len, ei24charlen); \ \ return make_string ((eistr)->data_ + ei24off, ei24len); \ } while (0) #define eicpyout_alloca(eistr, ptrout, lenout) \ eicpyout_alloca_fmt (eistr, ptrout, lenout, FORMAT_DEFAULT, Qnil) #define eicpyout_malloc(eistr, lenout) \ eicpyout_malloc_fmt (eistr, lenout, FORMAT_DEFAULT, Qnil) Ibyte *eicpyout_malloc_fmt (Eistring *eistr, Bytecount *len_out, Internal_Format fmt, Lisp_Object object); #define eicpyout_alloca_fmt(eistr, ptrout, lenout, fmt, object) \ do { \ Internal_Format ei23fmt = (fmt); \ Ibyte *ei23ptrout = &(ptrout); \ Bytecount *ei23lenout = &(lenout); \ \ assert (ei23fmt == FORMAT_DEFAULT); \ \ *ei23lenout = (eistr)->bytelen_; \ *ei23ptrout = alloca_array (Ibyte, (eistr)->bytelen_ + 1); \ memcpy (*ei23ptrout, (eistr)->data_, (eistr)->bytelen_ + 1); \ } while (0) /* ----- Moving to the heap ----- */ #define eifree(ei) \ do { \ if ((ei)->mallocp_) \ { \ if ((ei)->data_) \ xfree ((ei)->data_); \ if ((ei)->extdata_) \ xfree ((ei)->extdata_); \ eiinit_malloc (ei); \ } \ else \ eiinit (ei); \ } while (0) int eifind_large_enough_buffer (int oldbufsize, int needed_size); void eito_malloc_1 (Eistring *ei); #define eito_malloc(ei) eito_malloc_1 (ei) #define eito_alloca(ei) \ do { \ if (!(ei)->mallocp_) \ return; \ (ei)->mallocp_ = 0; \ if ((ei)->data_) \ { \ Ibyte *ei13newdata; \ \ (ei)->max_size_allocated_ = \ eifind_large_enough_buffer (0, (ei)->bytelen_ + 1); \ ei13newdata = (Ibyte *) ALLOCA ((ei)->max_size_allocated_); \ memcpy (ei13newdata, (ei)->data_, (ei)->bytelen_ + 1); \ xfree ((ei)->data_); \ (ei)->data_ = ei13newdata; \ } \ \ if ((ei)->extdata_) \ { \ Extbyte *ei13newdata = (Extbyte *) ALLOCA ((ei)->extlen_ + 2); \ \ memcpy (ei13newdata, (ei)->extdata_, (ei)->extlen_); \ /* Double null-terminate in case of Unicode data */ \ ei13newdata[(ei)->extlen_] = '\0'; \ ei13newdata[(ei)->extlen_ + 1] = '\0'; \ xfree ((ei)->extdata_); \ (ei)->extdata_ = ei13newdata; \ } \ } while (0) /* ----- Retrieving the length ----- */ #define eilen(ei) ((ei)->bytelen_) #define eicharlen(ei) ((ei)->charlen_) /* ----- Working with positions ----- */ #define eicharpos_to_bytepos(ei, charpos) \ charcount_to_bytecount ((ei)->data_, charpos) #define eibytepos_to_charpos(ei, bytepos) \ bytecount_to_charcount ((ei)->data_, bytepos) DECLARE_INLINE_HEADER (Bytecount eiincpos_1 (Eistring *eistr, Bytecount bytepos, Charcount n)) { Ibyte *pos = eistr->data_ + bytepos; Charcount i; text_checking_assert (bytepos >= 0 && bytepos <= eistr->bytelen_); text_checking_assert (n >= 0 && n <= eistr->charlen_); /* We could check N more correctly now, but that would require a call to bytecount_to_charcount(), which would be needlessly expensive (it would convert O(N) algorithms into O(N^2) algorithms with ERROR_CHECK_TEXT, which would be bad). If N is bad, we are guaranteed to catch it either inside INC_IBYTEPTR() or in the check below. */ for (i = 0; i < n; i++) INC_IBYTEPTR (pos); text_checking_assert (pos - eistr->data_ <= eistr->bytelen_); return pos - eistr->data_; } #define eiincpos (ei, bytepos) eiincpos_1 (ei, bytepos, 1) #define eiincpos_n (ei, bytepos, n) eiincpos_1 (ei, bytepos, n) DECLARE_INLINE_HEADER (Bytecount eidecpos_1 (Eistring *eistr, Bytecount bytepos, Charcount n)) { Ibyte *pos = eistr->data_ + bytepos; int i; text_checking_assert (bytepos >= 0 && bytepos <= eistr->bytelen_); text_checking_assert (n >= 0 && n <= eistr->charlen_); /* We could check N more correctly now, but ... see above. */ for (i = 0; i < n; i++) DEC_IBYTEPTR (pos); text_checking_assert (pos - eistr->data_ <= eistr->bytelen_); return pos - eistr->data_; } #define eidecpos (ei, bytepos) eidecpos_1 (ei, bytepos, 1) #define eidecpos_n (ei, bytepos, n) eidecpos_1 (ei, bytepos, n) /* ----- Getting the character at a position ----- */ #define eigetch(ei, bytepos) \ itext_ichar ((ei)->data_ + (bytepos)) #define eigetch_char(ei, charpos) itext_ichar_n ((ei)->data_, charpos) /* ----- Setting the character at a position ----- */ #define eisetch(ei, bytepos, chr) \ eisub_ch (ei, bytepos, -1, -1, 1, chr) #define eisetch_char(ei, charpos, chr) \ eisub_ch (ei, -1, charpos, -1, 1, chr) /* ----- Concatenation ----- */ #define eicat_1(ei, data, bytelen, charlen) \ do { \ int ei14oldeibytelen = (ei)->bytelen_; \ int ei14bytelen = (bytelen); \ EI_ALLOC (ei, (ei)->bytelen_ + ei14bytelen, \ (ei)->charlen_ + (charlen), 1); \ memcpy ((ei)->data_ + ei14oldeibytelen, (data), \ ei14bytelen); \ } while (0) #define eicat_ei(ei, ei2) \ do { \ const Eistring *ei9 = (ei2); \ eicat_1 (ei, ei9->data_, ei9->bytelen_, ei9->charlen_); \ } while (0) #define eicat_c(ei, c_string) \ do { \ const Char_ASCII *ei15 = (c_string); \ int ei15len = strlen (ei15); \ \ EI_ASSERT_ASCII (ei15, ei15len); \ eicat_1 (ei, ei15, ei15len, \ bytecount_to_charcount ((Ibyte *) ei15, ei15len)); \ } while (0) #define eicat_raw(ei, data, len) \ do { \ int ei16len = (len); \ const Ibyte *ei16data = (data); \ eicat_1 (ei, ei16data, ei16len, \ bytecount_to_charcount (ei16data, ei16len)); \ } while (0) #define eicat_rawz(ei, ptr) \ do { \ const Ibyte *ei16p5ptr = (ptr); \ eicat_raw (ei, ei16p5ptr, qxestrlen (ei16p5ptr)); \ } while (0) #define eicat_lstr(ei, lisp_string) \ do { \ Lisp_Object ei17 = (lisp_string); \ eicat_1 (ei, XSTRING_DATA (ei17), XSTRING_LENGTH (ei17), \ string_char_length (ei17)); \ } while (0) #define eicat_ch(ei, ch) \ do { \ Ibyte ei22ch[MAX_ICHAR_LEN]; \ Bytecount ei22len = set_itext_ichar (ei22ch, ch); \ eicat_1 (ei, ei22ch, ei22len, 1); \ } while (0) /* ----- Replacement ----- */ /* Replace the section of an Eistring at (OFF, LEN) with the data at SRC of length LEN. All positions have corresponding character values, and either can be -1 -- it will be computed from the other. */ #define eisub_1(ei, off, charoff, len, charlen, src, srclen, srccharlen) \ do { \ int ei18off = (off); \ int ei18charoff = (charoff); \ int ei18len = (len); \ int ei18charlen = (charlen); \ Ibyte *ei18src = (Ibyte *) (src); \ int ei18srclen = (srclen); \ int ei18srccharlen = (srccharlen); \ \ int ei18oldeibytelen = (ei)->bytelen_; \ \ eifixup_bytechar ((ei)->data_, ei18off, ei18charoff); \ eifixup_bytechar ((ei)->data_ + ei18off, ei18len, ei18charlen); \ eifixup_bytechar (ei18src, ei18srclen, ei18srccharlen); \ \ EI_ALLOC (ei, (ei)->bytelen_ + ei18srclen - ei18len, \ (ei)->charlen_ + ei18srccharlen - ei18charlen, 0); \ if (ei18len != ei18srclen) \ memmove ((ei)->data_ + ei18off + ei18srclen, \ (ei)->data_ + ei18off + ei18len, \ /* include zero terminator. */ \ ei18oldeibytelen - (ei18off + ei18len) + 1); \ if (ei18srclen > 0) \ memcpy ((ei)->data_ + ei18off, ei18src, ei18srclen); \ } while (0) #define eisub_ei(ei, off, charoff, len, charlen, ei2) \ do { \ const Eistring *ei19 = (ei2); \ eisub_1 (ei, off, charoff, len, charlen, ei19->data_, ei19->bytelen_, \ ei19->charlen_); \ } while (0) #define eisub_c(ei, off, charoff, len, charlen, c_string) \ do { \ const Char_ASCII *ei20 = (c_string); \ int ei20len = strlen (ei20); \ EI_ASSERT_ASCII (ei20, ei20len); \ eisub_1 (ei, off, charoff, len, charlen, ei20, ei20len, -1); \ } while (0) #define eisub_ch(ei, off, charoff, len, charlen, ch) \ do { \ Ibyte ei21ch[MAX_ICHAR_LEN]; \ Bytecount ei21len = set_itext_ichar (ei21ch, ch); \ eisub_1 (ei, off, charoff, len, charlen, ei21ch, ei21len, 1); \ } while (0) #define eidel(ei, off, charoff, len, charlen) \ eisub_1(ei, off, charoff, len, charlen, NULL, 0, 0) /* ----- Converting to an external format ----- */ #define eito_external(ei, coding_system) \ do { \ if ((ei)->mallocp_) \ { \ if ((ei)->extdata_) \ { \ xfree ((ei)->extdata_); \ (ei)->extdata_ = 0; \ } \ TO_EXTERNAL_FORMAT (DATA, ((ei)->data_, (ei)->bytelen_), \ MALLOC, ((ei)->extdata_, (ei)->extlen_), \ coding_system); \ } \ else \ TO_EXTERNAL_FORMAT (DATA, ((ei)->data_, (ei)->bytelen_), \ ALLOCA, ((ei)->extdata_, (ei)->extlen_), \ coding_system); \ } while (0) #define eiextdata(ei) ((ei)->extdata_) #define eiextlen(ei) ((ei)->extlen_) /* ----- Searching in the Eistring for a character ----- */ #define eichr(eistr, chr) \ NOT YET IMPLEMENTED #define eichr_char(eistr, chr) \ NOT YET IMPLEMENTED #define eichr_off(eistr, chr, off, charoff) \ NOT YET IMPLEMENTED #define eichr_off_char(eistr, chr, off, charoff) \ NOT YET IMPLEMENTED #define eirchr(eistr, chr) \ NOT YET IMPLEMENTED #define eirchr_char(eistr, chr) \ NOT YET IMPLEMENTED #define eirchr_off(eistr, chr, off, charoff) \ NOT YET IMPLEMENTED #define eirchr_off_char(eistr, chr, off, charoff) \ NOT YET IMPLEMENTED /* ----- Searching in the Eistring for a string ----- */ #define eistr_ei(eistr, eistr2) \ NOT YET IMPLEMENTED #define eistr_ei_char(eistr, eistr2) \ NOT YET IMPLEMENTED #define eistr_ei_off(eistr, eistr2, off, charoff) \ NOT YET IMPLEMENTED #define eistr_ei_off_char(eistr, eistr2, off, charoff) \ NOT YET IMPLEMENTED #define eirstr_ei(eistr, eistr2) \ NOT YET IMPLEMENTED #define eirstr_ei_char(eistr, eistr2) \ NOT YET IMPLEMENTED #define eirstr_ei_off(eistr, eistr2, off, charoff) \ NOT YET IMPLEMENTED #define eirstr_ei_off_char(eistr, eistr2, off, charoff) \ NOT YET IMPLEMENTED #define eistr_c(eistr, c_string) \ NOT YET IMPLEMENTED #define eistr_c_char(eistr, c_string) \ NOT YET IMPLEMENTED #define eistr_c_off(eistr, c_string, off, charoff) \ NOT YET IMPLEMENTED #define eistr_c_off_char(eistr, c_string, off, charoff) \ NOT YET IMPLEMENTED #define eirstr_c(eistr, c_string) \ NOT YET IMPLEMENTED #define eirstr_c_char(eistr, c_string) \ NOT YET IMPLEMENTED #define eirstr_c_off(eistr, c_string, off, charoff) \ NOT YET IMPLEMENTED #define eirstr_c_off_char(eistr, c_string, off, charoff) \ NOT YET IMPLEMENTED /* ----- Comparison ----- */ int eicmp_1 (Eistring *ei, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, const Ibyte *data, const Eistring *ei2, int is_c, int fold_case); #define eicmp_ei(eistr, eistr2) \ eicmp_1 (eistr, 0, -1, -1, -1, 0, eistr2, 0, 0) #define eicmp_off_ei(eistr, off, charoff, len, charlen, eistr2) \ eicmp_1 (eistr, off, charoff, len, charlen, 0, eistr2, 0, 0) #define eicasecmp_ei(eistr, eistr2) \ eicmp_1 (eistr, 0, -1, -1, -1, 0, eistr2, 0, 1) #define eicasecmp_off_ei(eistr, off, charoff, len, charlen, eistr2) \ eicmp_1 (eistr, off, charoff, len, charlen, 0, eistr2, 0, 1) #define eicasecmp_i18n_ei(eistr, eistr2) \ eicmp_1 (eistr, 0, -1, -1, -1, 0, eistr2, 0, 2) #define eicasecmp_i18n_off_ei(eistr, off, charoff, len, charlen, eistr2) \ eicmp_1 (eistr, off, charoff, len, charlen, 0, eistr2, 0, 2) #define eicmp_c(eistr, c_string) \ eicmp_1 (eistr, 0, -1, -1, -1, c_string, 0, 1, 0) #define eicmp_off_c(eistr, off, charoff, len, charlen, c_string) \ eicmp_1 (eistr, off, charoff, len, charlen, c_string, 0, 1, 0) #define eicasecmp_c(eistr, c_string) \ eicmp_1 (eistr, 0, -1, -1, -1, c_string, 0, 1, 1) #define eicasecmp_off_c(eistr, off, charoff, len, charlen, c_string) \ eicmp_1 (eistr, off, charoff, len, charlen, c_string, 0, 1, 1) #define eicasecmp_i18n_c(eistr, c_string) \ eicmp_1 (eistr, 0, -1, -1, -1, c_string, 0, 1, 2) #define eicasecmp_i18n_off_c(eistr, off, charoff, len, charlen, c_string) \ eicmp_1 (eistr, off, charoff, len, charlen, c_string, 0, 1, 2) /* ----- Case-changing the Eistring ----- */ int eistr_casefiddle_1 (Ibyte *olddata, Bytecount len, Ibyte *newdata, int downp); #define EI_CASECHANGE(ei, downp) \ do { \ int ei11new_allocmax = (ei)->charlen_ * MAX_ICHAR_LEN + 1; \ Ibyte *ei11storage = \ (Ibyte *) alloca_array (Ibyte, ei11new_allocmax); \ int ei11newlen = eistr_casefiddle_1 ((ei)->data_, (ei)->bytelen_, \ ei11storage, downp); \ \ if (ei11newlen) \ { \ (ei)->max_size_allocated_ = ei11new_allocmax; \ (ei)->data_ = ei11storage; \ (ei)->bytelen_ = ei11newlen; \ /* charlen is the same. */ \ } \ } while (0) #define eilwr(ei) EI_CASECHANGE (ei, 1) #define eiupr(ei) EI_CASECHANGE (ei, 0) /************************************************************************/ /* */ /* Converting between internal and external format */ /* */ /************************************************************************/ /* All client code should use only the two macros TO_EXTERNAL_FORMAT (source_type, source, sink_type, sink, coding_system) TO_INTERNAL_FORMAT (source_type, source, sink_type, sink, coding_system) Typical use is TO_EXTERNAL_FORMAT (DATA, (ptr, len), LISP_BUFFER, buffer, Qfile_name); NOTE: GC is inhibited during the entire operation of these macros. This is because frequently the data to be converted comes from strings but gets passed in as just DATA, and GC may move around the string data. If we didn't inhibit GC, there'd have to be a lot of messy recoding, alloca-copying of strings and other annoying stuff. The source or sink can be specified in one of these ways: DATA, (ptr, len), // input data is a fixed buffer of size len ALLOCA, (ptr, len), // output data is in a ALLOCA()ed buffer of size len MALLOC, (ptr, len), // output data is in a malloc()ed buffer of size len C_STRING_ALLOCA, ptr, // equivalent to ALLOCA (ptr, len_ignored) on output C_STRING_MALLOC, ptr, // equivalent to MALLOC (ptr, len_ignored) on output C_STRING, ptr, // equivalent to DATA, (ptr, strlen/wcslen (ptr)) // on input (the Unicode version is used when correct) LISP_STRING, string, // input or output is a Lisp_Object of type string LISP_BUFFER, buffer, // output is written to (point) in lisp buffer LISP_LSTREAM, lstream, // input or output is a Lisp_Object of type lstream LISP_OPAQUE, object, // input or output is a Lisp_Object of type opaque When specifying the sink, use lvalues, since the macro will assign to them, except when the sink is an lstream or a lisp buffer. The macros accept the kinds of sources and sinks appropriate for internal and external data representation. See the type_checking_assert macros below for the actual allowed types. Since some sources and sinks use one argument (a Lisp_Object) to specify them, while others take a (pointer, length) pair, we use some C preprocessor trickery to allow pair arguments to be specified by parenthesizing them, as in the examples above. Anything prefixed by dfc_ (`data format conversion') is private. They are only used to implement these macros. [[Using C_STRING* is appropriate for using with external APIs that take null-terminated strings. For internal data, we should try to be '\0'-clean - i.e. allow arbitrary data to contain embedded '\0'. Sometime in the future we might allow output to C_STRING_ALLOCA or C_STRING_MALLOC _only_ with TO_EXTERNAL_FORMAT(), not TO_INTERNAL_FORMAT().]] The above comments are not true. Frequently (most of the time, in fact), external strings come as zero-terminated entities, where the zero-termination is the only way to find out the length. Even in cases where you can get the length, most of the time the system will still use the null to signal the end of the string, and there will still be no way to either send in or receive a string with embedded nulls. In such situations, it's pointless to track the length because null bytes can never be in the string. We have a lot of operations that make it easy to operate on zero-terminated strings, and forcing the user the deal with the length everywhere would only make the code uglier and more complicated, for no gain. --ben There is no problem using the same lvalue for source and sink. Also, when pointers are required, the code (currently at least) is lax and allows any pointer types, either in the source or the sink. This makes it possible, e.g., to deal with internal format data held in char *'s or external format data held in WCHAR * (i.e. Unicode). Finally, whenever storage allocation is called for, extra space is allocated for a terminating zero, and such a zero is stored in the appropriate place, regardless of whether the source data was specified using a length or was specified as zero-terminated. This allows you to freely pass the resulting data, no matter how obtained, to a routine that expects zero termination (modulo, of course, that any embedded zeros in the resulting text will cause truncation). In fact, currently two embedded zeros are allocated and stored after the data result. This is to allow for the possibility of storing a Unicode value on output, which needs the two zeros. Currently, however, the two zeros are stored regardless of whether the conversion is internal or external and regardless of whether the external coding system is in fact Unicode. This behavior may change in the future, and you cannot rely on this -- the most you can rely on is that sink data in Unicode format will have two terminating nulls, which combine to form one Unicode null character. */ #define TO_EXTERNAL_FORMAT(source_type, source, sink_type, sink, codesys) \ do { \ dfc_conversion_type dfc_simplified_source_type; \ dfc_conversion_type dfc_simplified_sink_type; \ dfc_conversion_data dfc_source; \ dfc_conversion_data dfc_sink; \ Lisp_Object dfc_codesys = (codesys); \ \ type_checking_assert \ ((DFC_TYPE_##source_type == DFC_TYPE_DATA || \ DFC_TYPE_##source_type == DFC_TYPE_C_STRING || \ DFC_TYPE_##source_type == DFC_TYPE_LISP_STRING || \ DFC_TYPE_##source_type == DFC_TYPE_LISP_OPAQUE || \ DFC_TYPE_##source_type == DFC_TYPE_LISP_LSTREAM) \ && \ (DFC_TYPE_##sink_type == DFC_TYPE_ALLOCA || \ DFC_TYPE_##sink_type == DFC_TYPE_MALLOC || \ DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_ALLOCA || \ DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_MALLOC || \ DFC_TYPE_##sink_type == DFC_TYPE_LISP_LSTREAM || \ DFC_TYPE_##sink_type == DFC_TYPE_LISP_OPAQUE)); \ \ DFC_EXT_SOURCE_##source_type##_TO_ARGS (source, dfc_codesys); \ DFC_SINK_##sink_type##_TO_ARGS (sink); \ \ dfc_convert_to_external_format (dfc_simplified_source_type, &dfc_source, \ dfc_codesys, \ dfc_simplified_sink_type, &dfc_sink); \ \ DFC_##sink_type##_USE_CONVERTED_DATA (sink); \ } while (0) #define TO_INTERNAL_FORMAT(source_type, source, sink_type, sink, codesys) \ do { \ dfc_conversion_type dfc_simplified_source_type; \ dfc_conversion_type dfc_simplified_sink_type; \ dfc_conversion_data dfc_source; \ dfc_conversion_data dfc_sink; \ Lisp_Object dfc_codesys = (codesys); \ \ type_checking_assert \ ((DFC_TYPE_##source_type == DFC_TYPE_DATA || \ DFC_TYPE_##source_type == DFC_TYPE_C_STRING || \ DFC_TYPE_##source_type == DFC_TYPE_LISP_OPAQUE || \ DFC_TYPE_##source_type == DFC_TYPE_LISP_LSTREAM) \ && \ (DFC_TYPE_##sink_type == DFC_TYPE_ALLOCA || \ DFC_TYPE_##sink_type == DFC_TYPE_MALLOC || \ DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_ALLOCA || \ DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_MALLOC || \ DFC_TYPE_##sink_type == DFC_TYPE_LISP_STRING || \ DFC_TYPE_##sink_type == DFC_TYPE_LISP_LSTREAM || \ DFC_TYPE_##sink_type == DFC_TYPE_LISP_BUFFER)); \ \ DFC_INT_SOURCE_##source_type##_TO_ARGS (source, dfc_codesys); \ DFC_SINK_##sink_type##_TO_ARGS (sink); \ \ dfc_convert_to_internal_format (dfc_simplified_source_type, &dfc_source, \ dfc_codesys, \ dfc_simplified_sink_type, &dfc_sink); \ \ DFC_##sink_type##_USE_CONVERTED_DATA (sink); \ } while (0) #ifdef __cplusplus /* Error if you try to use a union here: "member `struct {anonymous union}::{anonymous} {anonymous union}::data' with constructor not allowed in union" (Bytecount is a class) */ typedef struct #else typedef union #endif { struct { const void *ptr; Bytecount len; } data; Lisp_Object lisp_object; } dfc_conversion_data; enum dfc_conversion_type { DFC_TYPE_DATA, DFC_TYPE_ALLOCA, DFC_TYPE_MALLOC, DFC_TYPE_C_STRING, DFC_TYPE_C_STRING_ALLOCA, DFC_TYPE_C_STRING_MALLOC, DFC_TYPE_LISP_STRING, DFC_TYPE_LISP_LSTREAM, DFC_TYPE_LISP_OPAQUE, DFC_TYPE_LISP_BUFFER }; typedef enum dfc_conversion_type dfc_conversion_type; /* WARNING: These use a static buffer. This can lead to disaster if these functions are not used *very* carefully. Another reason to only use TO_EXTERNAL_FORMAT() and TO_INTERNAL_FORMAT(). */ void dfc_convert_to_external_format (dfc_conversion_type source_type, dfc_conversion_data *source, Lisp_Object coding_system, dfc_conversion_type sink_type, dfc_conversion_data *sink); void dfc_convert_to_internal_format (dfc_conversion_type source_type, dfc_conversion_data *source, Lisp_Object coding_system, dfc_conversion_type sink_type, dfc_conversion_data *sink); /* CPP Trickery */ #define DFC_CPP_CAR(x,y) (x) #define DFC_CPP_CDR(x,y) (y) /* Convert `source' to args for dfc_convert_to_external_format() */ #define DFC_EXT_SOURCE_DATA_TO_ARGS(val, codesys) do { \ dfc_source.data.ptr = DFC_CPP_CAR val; \ dfc_source.data.len = DFC_CPP_CDR val; \ dfc_simplified_source_type = DFC_TYPE_DATA; \ } while (0) #define DFC_EXT_SOURCE_C_STRING_TO_ARGS(val, codesys) do { \ dfc_source.data.len = \ strlen ((char *) (dfc_source.data.ptr = (val))); \ dfc_simplified_source_type = DFC_TYPE_DATA; \ } while (0) #define DFC_EXT_SOURCE_LISP_STRING_TO_ARGS(val, codesys) do { \ Lisp_Object dfc_slsta = (val); \ type_checking_assert (STRINGP (dfc_slsta)); \ dfc_source.lisp_object = dfc_slsta; \ dfc_simplified_source_type = DFC_TYPE_LISP_STRING; \ } while (0) #define DFC_EXT_SOURCE_LISP_LSTREAM_TO_ARGS(val, codesys) do { \ Lisp_Object dfc_sllta = (val); \ type_checking_assert (LSTREAMP (dfc_sllta)); \ dfc_source.lisp_object = dfc_sllta; \ dfc_simplified_source_type = DFC_TYPE_LISP_LSTREAM; \ } while (0) #define DFC_EXT_SOURCE_LISP_OPAQUE_TO_ARGS(val, codesys) do { \ Lisp_Opaque *dfc_slota = XOPAQUE (val); \ dfc_source.data.ptr = OPAQUE_DATA (dfc_slota); \ dfc_source.data.len = OPAQUE_SIZE (dfc_slota); \ dfc_simplified_source_type = DFC_TYPE_DATA; \ } while (0) /* Convert `source' to args for dfc_convert_to_internal_format() */ #define DFC_INT_SOURCE_DATA_TO_ARGS(val, codesys) \ DFC_EXT_SOURCE_DATA_TO_ARGS (val, codesys) #define DFC_INT_SOURCE_C_STRING_TO_ARGS(val, codesys) do { \ dfc_source.data.len = dfc_external_data_len (dfc_source.data.ptr = (val), \ codesys); \ dfc_simplified_source_type = DFC_TYPE_DATA; \ } while (0) #define DFC_INT_SOURCE_LISP_STRING_TO_ARGS(val, codesys) \ DFC_EXT_SOURCE_LISP_STRING_TO_ARGS (val, codesys) #define DFC_INT_SOURCE_LISP_LSTREAM_TO_ARGS(val, codesys) \ DFC_EXT_SOURCE_LISP_LSTREAM_TO_ARGS (val, codesys) #define DFC_INT_SOURCE_LISP_OPAQUE_TO_ARGS(val, codesys) \ DFC_EXT_SOURCE_LISP_OPAQUE_TO_ARGS (val, codesys) /* Convert `sink' to args for dfc_convert_to_*_format() */ #define DFC_SINK_ALLOCA_TO_ARGS(val) \ dfc_simplified_sink_type = DFC_TYPE_DATA #define DFC_SINK_C_STRING_ALLOCA_TO_ARGS(val) \ dfc_simplified_sink_type = DFC_TYPE_DATA #define DFC_SINK_MALLOC_TO_ARGS(val) \ dfc_simplified_sink_type = DFC_TYPE_DATA #define DFC_SINK_C_STRING_MALLOC_TO_ARGS(val) \ dfc_simplified_sink_type = DFC_TYPE_DATA #define DFC_SINK_LISP_STRING_TO_ARGS(val) \ dfc_simplified_sink_type = DFC_TYPE_DATA #define DFC_SINK_LISP_OPAQUE_TO_ARGS(val) \ dfc_simplified_sink_type = DFC_TYPE_DATA #define DFC_SINK_LISP_LSTREAM_TO_ARGS(val) do { \ Lisp_Object dfc_sllta = (val); \ type_checking_assert (LSTREAMP (dfc_sllta)); \ dfc_sink.lisp_object = dfc_sllta; \ dfc_simplified_sink_type = DFC_TYPE_LISP_LSTREAM; \ } while (0) #define DFC_SINK_LISP_BUFFER_TO_ARGS(val) do { \ struct buffer *dfc_slbta = XBUFFER (val); \ dfc_sink.lisp_object = \ make_lisp_buffer_output_stream \ (dfc_slbta, BUF_PT (dfc_slbta), 0); \ dfc_simplified_sink_type = DFC_TYPE_LISP_LSTREAM; \ } while (0) /* Assign to the `sink' lvalue(s) using the converted data. */ /* + 2 because we double zero-extended to account for Unicode conversion */ typedef union { char c; void *p; } *dfc_aliasing_voidpp; #define DFC_ALLOCA_USE_CONVERTED_DATA(sink) do { \ void * dfc_sink_ret = ALLOCA (dfc_sink.data.len + 2); \ memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 2); \ ((dfc_aliasing_voidpp) &(DFC_CPP_CAR sink))->p = dfc_sink_ret; \ (DFC_CPP_CDR sink) = dfc_sink.data.len; \ } while (0) #define DFC_MALLOC_USE_CONVERTED_DATA(sink) do { \ void * dfc_sink_ret = xmalloc (dfc_sink.data.len + 2); \ memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 2); \ ((dfc_aliasing_voidpp) &(DFC_CPP_CAR sink))->p = dfc_sink_ret; \ (DFC_CPP_CDR sink) = dfc_sink.data.len; \ } while (0) #define DFC_C_STRING_ALLOCA_USE_CONVERTED_DATA(sink) do { \ void * dfc_sink_ret = ALLOCA (dfc_sink.data.len + 2); \ memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 2); \ ((dfc_aliasing_voidpp) &(sink))->p = dfc_sink_ret; \ } while (0) #define DFC_C_STRING_MALLOC_USE_CONVERTED_DATA(sink) do { \ void * dfc_sink_ret = xmalloc (dfc_sink.data.len + 2); \ memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 2); \ ((dfc_aliasing_voidpp) &(sink))->p = dfc_sink_ret; \ } while (0) #define DFC_LISP_STRING_USE_CONVERTED_DATA(sink) \ sink = make_string ((Ibyte *) dfc_sink.data.ptr, dfc_sink.data.len) #define DFC_LISP_OPAQUE_USE_CONVERTED_DATA(sink) \ sink = make_opaque (dfc_sink.data.ptr, dfc_sink.data.len) #define DFC_LISP_LSTREAM_USE_CONVERTED_DATA(sink) /* data already used */ #define DFC_LISP_BUFFER_USE_CONVERTED_DATA(sink) \ Lstream_delete (XLSTREAM (dfc_sink.lisp_object)) /* Convenience macros for extremely common invocations */ #define C_STRING_TO_EXTERNAL(in, out, coding_system) \ TO_EXTERNAL_FORMAT (C_STRING, in, C_STRING_ALLOCA, out, coding_system) #define C_STRING_TO_EXTERNAL_MALLOC(in, out, coding_system) \ TO_EXTERNAL_FORMAT (C_STRING, in, C_STRING_MALLOC, out, coding_system) #define EXTERNAL_TO_C_STRING(in, out, coding_system) \ TO_INTERNAL_FORMAT (C_STRING, in, C_STRING_ALLOCA, out, coding_system) #define EXTERNAL_TO_C_STRING_MALLOC(in, out, coding_system) \ TO_INTERNAL_FORMAT (C_STRING, in, C_STRING_MALLOC, out, coding_system) #define LISP_STRING_TO_EXTERNAL(in, out, coding_system) \ TO_EXTERNAL_FORMAT (LISP_STRING, in, C_STRING_ALLOCA, out, coding_system) #define LISP_STRING_TO_EXTERNAL_MALLOC(in, out, coding_system) \ TO_EXTERNAL_FORMAT (LISP_STRING, in, C_STRING_MALLOC, out, coding_system) /* Standins for various encodings, until we know them better */ #define Qcommand_argument_encoding Qnative #define Qenvironment_variable_encoding Qnative #define Qunix_host_name_encoding Qnative #define Qunix_service_name_encoding Qnative #define Qmswindows_host_name_encoding Qmswindows_multibyte #define Qmswindows_service_name_encoding Qmswindows_multibyte /* Standins for various X encodings, until we know them better */ /* !!#### Need to verify the encoding used in lwlib -- Qnative or Qctext? Almost certainly the former. Use a standin for now. */ #define Qlwlib_encoding Qnative #define Qx_atom_name_encoding Qctext /* font names are often stored in atoms, so it gets sticky if we set this to something different from atom-name encoding */ #define Qx_font_name_encoding Qctext #define Qx_color_name_encoding Qctext /* the following probably must agree with Qcommand_argument_encoding and Qenvironment_variable_encoding */ #define Qx_display_name_encoding Qnative #define Qstrerror_encoding Qnative #define GET_STRERROR(var, num) \ do { \ int __gsnum__ = (num); \ Extbyte * __gserr__ = strerror (__gsnum__); \ \ if (!__gserr__) \ { \ var = alloca_ibytes (99); \ qxesprintf (var, "Unknown error %d", __gsnum__); \ } \ else \ EXTERNAL_TO_C_STRING (__gserr__, var, Qstrerror_encoding); \ } while (0) #endif /* INCLUDED_text_h_ */