Mercurial > hg > xemacs-beta
view src/lisp-disunion.h @ 867:804517e16990
[xemacs-hg @ 2002-06-05 09:54:39 by ben]
Textual renaming: text/char names
abbrev.c, alloc.c, buffer.c, buffer.h, bytecode.c, callint.c, casefiddle.c, casetab.c, charset.h, chartab.c, chartab.h, cmds.c, console-gtk.h, console-msw.c, console-msw.h, console-stream.c, console-tty.c, console-x.c, console-x.h, console.h, data.c, device-msw.c, device-x.c, dialog-msw.c, dired-msw.c, dired.c, doc.c, doprnt.c, editfns.c, eldap.c, emodules.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, event-unixoid.c, events.c, events.h, file-coding.c, file-coding.h, fileio.c, filelock.c, fns.c, font-lock.c, frame-gtk.c, frame-msw.c, frame-x.c, frame.c, glyphs-eimage.c, glyphs-msw.c, glyphs-x.c, glyphs.c, glyphs.h, gpmevent.c, gui-x.c, gui-x.h, gui.c, gui.h, hpplay.c, indent.c, insdel.c, insdel.h, intl-win32.c, keymap.c, line-number.c, line-number.h, lisp-disunion.h, lisp-union.h, lisp.h, lread.c, lrecord.h, lstream.c, lstream.h, md5.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, mule-ccl.c, mule-charset.c, mule-coding.c, mule-wnnfns.c, ndir.h, nt.c, objects-gtk.c, objects-gtk.h, objects-msw.c, objects-tty.c, objects-x.c, objects.c, objects.h, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, procimpl.h, realpath.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-tty.c, redisplay-x.c, redisplay.c, redisplay.h, regex.c, search.c, select-common.h, select-gtk.c, select-x.c, sound.h, symbols.c, syntax.c, syntax.h, sysdep.c, sysdep.h, sysdir.h, sysfile.h, sysproc.h, syspwd.h, systime.h, syswindows.h, termcap.c, tests.c, text.c, text.h, toolbar-common.c, tooltalk.c, ui-gtk.c, unexnt.c, unicode.c, win32.c: Text/char naming rationalization.
[a] distinguish between "charptr" when it refers to operations on
the pointer itself and when it refers to operations on text; and
[b] use consistent naming for everything referring to internal
format, i.e.
Itext == text in internal format
Ibyte == a byte in such text
Ichar == a char as represented in internal character format
thus e.g.
set_charptr_emchar -> set_itext_ichar
The pre and post tags on either side of this change are:
pre-internal-format-textual-renaming
post-internal-format-textual-renaming
See the Internals Manual for details of exactly how this was done,
how to handle the change in your workspace, etc.
author | ben |
---|---|
date | Wed, 05 Jun 2002 09:58:45 +0000 |
parents | 2b6fa2618f76 |
children | 184461bc8de4 |
line wrap: on
line source
/* Fundamental definitions for XEmacs Lisp interpreter -- non-union objects. Copyright (C) 1985, 1986, 1987, 1992, 1993 Free Software Foundation, Inc. Copyright (C) 2001, 2002 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. Split out from lisp.h. */ /* This file has diverged greatly from FSF Emacs. Syncing is no longer desirable or possible */ /* Format of a non-union-type Lisp Object 3 2 1 0 bit 10987654321098765432109876543210 -------------------------------- VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVTT Integers are treated specially, and look like this: 3 2 1 0 bit 10987654321098765432109876543210 -------------------------------- VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVT For integral Lisp types, i.e. integers and characters, the value bits are the Lisp object. Some people call such Lisp_Objects "immediate". The object is obtained by masking off the type bits. Bit 1 is used as a value bit by splitting the Lisp integer type into two subtypes, Lisp_Type_Int_Even and Lisp_Type_Int_Odd. By this trickery we get 31 bits for integers instead of 30. For non-integral types, the value bits of a Lisp_Object contain a pointer to a structure containing the object. The pointer is obtained by masking off the type and mark bits. All pointer-based types are coalesced under a single type called Lisp_Type_Record. The type bits for this type are required by the implementation to be 00, just like the least significant bits of word-aligned struct pointers on 32-bit hardware. This requires that all structs implementing Lisp_Objects have an alignment of at least 4 bytes. Because of this, Lisp_Object pointers don't have to be masked and are full-sized. There are no mark bits in the Lisp_Object itself (there used to be). Integers and characters don't need to be marked. All other types are lrecord-based, which means they get marked by setting the mark bit in the struct lrecord_header. Here is a brief description of the following macros: XTYPE The type bits of a Lisp_Object XPNTRVAL The value bits of a Lisp_Object storing a pointer XCHARVAL The value bits of a Lisp_Object storing a Ichar XREALINT The value bits of a Lisp_Object storing an integer, signed XUINT The value bits of a Lisp_Object storing an integer, unsigned INTP Non-zero if this Lisp_Object is an integer Qzero Lisp Integer 0 EQ Non-zero if two Lisp_Objects are identical, not merely equal. */ typedef EMACS_INT Lisp_Object; #define Lisp_Type_Int_Bit (Lisp_Type_Int_Even & Lisp_Type_Int_Odd) #define VALMASK (((1UL << VALBITS) - 1UL) << GCTYPEBITS) #define XTYPE(x) ((enum Lisp_Type) (((EMACS_UINT)(x)) & ~VALMASK)) #define XPNTRVAL(x) (x) /* This depends on Lisp_Type_Record == 0 */ #define XCHARVAL(x) ((x) >> GCBITS) #define XREALINT(x) ((x) >> INT_GCBITS) #define XUINT(x) ((EMACS_UINT)(x) >> INT_GCBITS) #define wrap_pointer_1(ptr) ((Lisp_Object) (ptr)) DECLARE_INLINE_HEADER ( Lisp_Object make_int_verify (EMACS_INT val) ) { Lisp_Object obj = (Lisp_Object) ((val << INT_GCBITS) | Lisp_Type_Int_Bit); type_checking_assert (XREALINT (obj) == val); return obj; } #define make_int(x) ((Lisp_Object) (((x) << INT_GCBITS) | Lisp_Type_Int_Bit)) #define volatile_make_int(x) make_int (x) #define make_char_1(x) ((Lisp_Object) (((x) << GCBITS) | Lisp_Type_Char)) #define INTP(x) ((EMACS_UINT)(x) & Lisp_Type_Int_Bit) #define INT_PLUS(x,y) ((x)+(y)-Lisp_Type_Int_Bit) #define INT_MINUS(x,y) ((x)-(y)+Lisp_Type_Int_Bit) #define INT_PLUS1(x) INT_PLUS (x, make_int (1)) #define INT_MINUS1(x) INT_MINUS (x, make_int (1)) #define Qzero make_int (0) #define Qnull_pointer ((Lisp_Object) 0) #define EQ(x,y) ((x) == (y)) /* WARNING!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! You can only VOID_TO_LISP something that had previously been LISP_TO_VOID'd. You cannot go the other way, i.e. create a bogus Lisp_Object. If you want to stuff a void * into a Lisp_Object, use make_opaque_ptr(). */ /* Convert between a (void *) and a Lisp_Object, as when the Lisp_Object is passed to a toolkit callback function */ #define VOID_TO_LISP(varg) ((Lisp_Object) (varg)) #define LISP_TO_VOID(larg) ((void *) (larg)) /* Convert a Lisp_Object into something that can't be used as an lvalue. Useful for type-checking. */ #define NON_LVALUE(larg) ((larg) + 0)