Mercurial > hg > xemacs-beta
view src/line-number.c @ 872:79c6ff3eef26
[xemacs-hg @ 2002-06-20 21:18:01 by ben]
font changes etc.; some 21.4 changes
mule/mule-msw-init-late.el: Specify charset->windows-registry conversion.
mule/mule-x-init.el: Delete extra mule font additions here. Put them in faces.c.
cl-macs.el: Document better.
font-lock.el: Move Lisp function regexp to lisp-mode.el.
lisp-mode.el: Various indentation fixes:
Handle flet functions better.
Handle argument lists in defuns and flets.
Handle quoted lists, e.g. property lists -- don't indent like
function calls. Distinguish between lambdas and other lists.
lisp-mode.el: Handle this form.
faces.el, font-menu.el, font.el, gtk-faces.el, msw-faces.el, msw-font-menu.el, x-faces.el, x-init.el: Major overhaul of face-handling code:
-- Fix lots of bogus code in msw-faces.el, msw-font-menu.el,
font-menu.el that was "truenaming" font specs -- i.e. in the
process of frobbing a particular field in a general user-specified
font spec with wildcarded fields, sticking in particular values
for all the remaining wildcarded fields. This bug was rampant
everywhere except in x-faces.el (the oldest and only correctly
written code). This also means that we need to work with font
names at all times and not font instances, because a font instance
is essentially a truenamed font.
-- Total rewrite of extremely junky code in msw-faces.el. Work
with names as well as font instances, and return names; stop
truenaming when canonicalizing and frobbing; fix handling of the
combined style field, i.e. weight/slant (also fixed in font.el).
-- Totally rewrite the frobbing functions in faces.el. This time,
we frob all the instantiators rather than just computing a single
instance value and working backwards. That way, e.g., `bold' will
work for all charsets that have bold available, rather than only
for whatever charset was part of the computed font instance
(another example of the truename virus). Also fix up code to look
at the fallbacks (all of them) when no global value present, so we
don't need to put something in the global value. Intelligently
handle a request to frob a buffer locale, rather than signalling
an error. When frobbing instantiators, try hard to figure out
what device type is associated with them, and frob each according
to its own proper device type. Correctly handle inheritance
vectors given as instantiators. Preserve existing tags when
putting back frobbed instantiators. Extract out general
specifier-frobbing code into specifier.el. Document everything
cleanly. Do lots of other things better, etc.
-- Don't duplicatively set a global specification for the default
font -- it's already in the fallback and we no longer need a
default global specification present. Delete various code in
x-faces.el and msw-faces.el that duplicated the lists of fonts in
faces.c.
-- init-global-faces was not being called at all under MS Windows!
Major bogosity. That caused device-specific values to get stuck
into all the fonts, making it very hard to change them -- setting
global specs caused nothing to happen.
-- Correct weight names in font.el.
-- Lots more font fixups in objects*.c.
Printer.el: Warning fix.
specifier.el: Add more args to map-specifier.
Add various "heuristic" specifier functions to aid in creation of
specifier-munging code such as in faces.el.
subr.el: New functions.
lwlib.c: Fix warning.
config.inc.samp: Clean up, add args to control fastcall (not yet supported! the
changes needed are in another ws of mine), profile support, vc6
support, union-type.
xemacs.dsp, xemacs.mak: Semi-major overhaul.
Fix bug where dump-id was always getting recomputed, forcing a
redump even when nothing changed.
Add support for fastcall. Support edit-and-continue (on by
default) with vc6. Use incremental linking when doing a debug
compilation. Add support for profiling.
Consolidate the various debug flags.
Partial support for "batch-compiling" -- compiling many files on a
single invocation of the compiler. Doesn't seem to help that much
for me, so it's not finished or enabled by default.
Remove HAVE_MSW_C_DIRED, we always do.
Correct some sloppy use of directories.
s/cygwin32.h: Allow pdump to work under Cygwin (mmap is broken, so need to undefine
HAVE_MMAP).
s/win32-common.h, s/windowsnt.h: Support for fastcall. Add WIN32_ANY for identifying all Win32
variants (Cygwin, native, MinGW). Both of these are properly used
in another ws.
alloc.c, balloon-x.c, buffer.c, bytecode.c, callint.c, cm.c, cmdloop.c, cmds.c, console-gtk.c, console-gtk.h, console-msw.c, console-msw.h, console-stream.c, console-stream.h, console-tty.c, console-tty.h, console-x.c, console-x.h, console.c, console.h, device-gtk.c, device-msw.c, device-tty.c, device-x.c, device.c, device.h, devslots.h, dialog-gtk.c, dialog-msw.c, dialog-x.c, dialog.c, dired-msw.c, editfns.c, emacs.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, event-tty.c, event-unixoid.c, events.c, extents.c, extents.h, faces.c, fileio.c, fns.c, frame-gtk.c, frame-msw.c, frame-tty.c, frame-x.c, frame.c, frame.h, glyphs-eimage.c, glyphs-gtk.c, glyphs-msw.c, glyphs-widget.c, glyphs-x.c, glyphs.c, glyphs.h, gui-gtk.c, gui-msw.c, gui-x.c, gui.c, gutter.c, input-method-xlib.c, intl-encap-win32.c, intl-win32.c, keymap.c, lisp.h, macros.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, menubar.h, minibuf.c, mule-charset.c, nt.c, objects-gtk.c, objects-gtk.h, objects-msw.c, objects-msw.h, objects-tty.c, objects-tty.h, objects-x.c, objects-x.h, objects.c, objects.h, postgresql.c, print.c, process.h, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-tty.c, redisplay-x.c, redisplay.c, redisplay.h, scrollbar-gtk.c, scrollbar-msw.c, scrollbar-x.c, scrollbar.c, select-gtk.c, select-msw.c, select-x.c, select.c, signal.c, sound.c, specifier.c, symbols.c, syntax.c, sysdep.c, syssignal.h, syswindows.h, toolbar-common.c, toolbar-gtk.c, toolbar-msw.c, toolbar-x.c, toolbar.c, unicode.c, window.c, window.h: The following are the major changes made:
(1) Separation of various header files into an external and an
internal version, similar to the existing separation of process.h
and procimpl.h. Eventually this should be done for all Lisp
objects. The external version has the same name as currently; the
internal adds -impl. The external file has XFOO() macros for
objects, but the structure is opaque and defined only in the
internal file. It's now reasonable to move all prototypes in
lisp.h into the appropriate external file, and this should be
done. Currently, separation has been done on extents.h,
objects*.h, console.h, device.h, frame.h, and window.h.
For c/d/f/w, the most basic properties are available in the
external header file, with the macros resolving to functions. In
the internal header file, the macros are redefined to directly
access the structure. Also, the global MARK_FOO_CHANGED macros
have been made into functions so that they can be accessed without
needing to include lots of -impl headers -- they are used in
almost exclusively in non-time-critical functions, and take up
enough time that the function overhead will be negligible.
Similarly, the function overhead from making the basic properties
mentioned above into functions is negligible, and code that does
heavy accessing of c/d/f/w structures inevitably ends up needing
the internal header files, anyway.
(2) More face changes.
-- Major rewrite of objects-msw.c. Now handles wildcard specs
properly, rather than "truenaming" (or even worse, signalling an
error, which previously happened with some of the fallbacks if you
tried to use them in make-font-instance!).
-- Split charset matching of fonts into two stages -- one to find
a font specifically designed for a particular charset (by
examining its registry), the second to find a Unicode font that
can support the charset. This needs to proceed as two complete,
separate instantiations in order to work properly (otherwise many
of the fonts in the HELLO page look wrong). This should also make
it easy to support iso10646 (Unicode) fonts under X.
-- All default values for fonts are now completely specified in
the fallbacks. Stuff from mule-x-init.el has all been moved here,
merged with the existing specs, and totally rethought so you get
sensible results. (HELLO now looks much better!).
-- Generalize the "default X/GTK device" stuff into a
per-device-type "default device".
-- Add mswindows-{set-}charset-registry. In time,
charset<->code-page conversion functions will be removed.
-- Wrap protective code around calls to compute device specifier tags,
and do this computation before calling the face initialization code
because the latter may need these tags to be correctly updated.
(3) Other changes.
EmacsFrame.c, glyphs-msw.c, eval.c, gui-x.c, intl-encap-win32.c, search.c, signal.c, toolbar-msw.c, unicode.c: Warning fixes.
config.h.in: #undefs meant to be frobbed by configure *MUST* go inside of
#ifndef WIN32_NO_CONFIGURE, and everything else *MUST* go outside!
eval.c: Let detailed backtraces be detailed.
specifier.c: Don't override user's print-string-length/print-length settings.
glyphs.c: New function image-instance-instantiator.
config.h.in, sysdep.c: Changes for fastcall.
sysdep.c, nt.c: Fix up a previous botched patch that tried to add support for both
EEXIST and EACCES. IF THE BOTCHED PATCH WENT INTO 21.4, THIS FIXUP
NEEDS TO GO IN, TOO.
search.c: Fix *evil* crash due to incorrect synching of syntax-cache code
with 21.1. THIS SHOULD GO INTO 21.4.
author | ben |
---|---|
date | Thu, 20 Jun 2002 21:19:10 +0000 |
parents | 804517e16990 |
children | 308d34e9f07d |
line wrap: on
line source
/* Line number cache. Copyright (C) 1997 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ /* To calculate the line numbers, redisplay must count the newlines from a known position. This used to be BUF_BEGV, but this made the line numbering extremely slow for large buffers, because Emacs had to rescan the whole buffer at each redisplay. To make line numbering efficient, we maintain a buffer-local cache of recently used positions and their line numbers. The cache is implemented as a small ring of cache positions. A cache position is either nil or a cons of a buffer position (marker) and the corresponding line number. When calculating the line numbers, this cache is consulted if it would otherwise take too much time to count the newlines in the buffer (see the comment to buffer_line_number().) Insertion and deletions that contain/delete newlines invalidate the cached positions after the insertion point. This guarantees relatively fast line numbers caching (even in buffers where point moves a lot), and low memory usage. All of this is done only in the buffers where the cache is actually initialized -- i.e. where line-numbering is on, and you move the point farther than LINE_NUMBER_FAR from the beginning of buffer. In this sense, the cache is lazy -- if you don't use it, you don't pay for it. NOTE: line-number cache should not be confused with line-start cache. Line-start cache (a part of redisplay) works with the display lines, whereas this works with the buffer lines (literally counting the newlines). */ #include <config.h> #include "lisp.h" #include "buffer.h" #include "line-number.h" /* #### The following three values could stand more exploration for best performance. */ /* Size of the ring. The current code expects this to be a small number. If you make it larger, you should probably optimize the code below to keep it sorted. */ #define LINE_NUMBER_RING_SIZE 8 /* How much traversal has to be exceeded for two points to be considered "far" from each other. When two points are far, cache will be used. */ #define LINE_NUMBER_FAR 16384 /* How large a string has to be to give up searching it for newlines, before change. */ #define LINE_NUMBER_LARGE_STRING 256 /* To be used only when you *know* the cache has been allocated! */ #define LINE_NUMBER_RING(b) (XCAR ((b)->text->line_number_cache)) #define LINE_NUMBER_BEGV(b) (XCDR ((b)->text->line_number_cache)) /* Initialize the cache. Cache is (in pseudo-BNF): CACHE = nil | INITIALIZED-CACHE INITIALIZED-CACHE = cons (RING, BEGV-LINE) RING = vector (*RING-ELEMENT) RING-ELEMENT = nil | RING-PAIR RING-PAIR = cons (marker, integer) BEGV-LINE = integer Line number cache should never, ever, be visible to Lisp (because destructively modifying its elements can cause crashes.) Debug it using debug_print (current_buffer->text->last_number_cache). */ static void allocate_line_number_cache (struct buffer *b) { b->text->line_number_cache = Fcons (make_vector (LINE_NUMBER_RING_SIZE, Qnil), Qzero); narrow_line_number_cache (b); } /* Flag LINE_NUMBER_BEGV (b) as dirty. Do it only if the line number cache is already initialized. */ void narrow_line_number_cache (struct buffer *b) { if (NILP (b->text->line_number_cache)) return; if (BUF_BEG (b) == BUF_BEGV (b)) /* The is the case Fwiden and save_restriction_restore. Since we know the correct value, we can update it now. */ LINE_NUMBER_BEGV (b) = Qzero; else /* Calculating the line number of BUF_BEGV here is a bad idea, because there is absolutely no reason to do it before the next redisplay. We simply mark it as dirty instead. */ LINE_NUMBER_BEGV (b) = make_int (-1); } /* Invalidate the line number cache positions that lie after POS. */ static void invalidate_line_number_cache (struct buffer *b, Charbpos pos) { EMACS_INT i, j; Lisp_Object *ring = XVECTOR_DATA (LINE_NUMBER_RING (b)); for (i = 0; i < LINE_NUMBER_RING_SIZE; i++) { if (!CONSP (ring[i])) break; /* As the marker stays behind the insertions, this check might as well be `>'. However, Finsert_before_markers can advance the marker anyway, which bites in shell buffers. #### This forces recreation of the cached marker (and recalculation of newlines) every time a newline is inserted at point, which is way losing. Isn't there a way to make a marker impervious to Finsert_before_markers()?? Maybe I should convert the code to use extents. */ if (marker_position (XCAR (ring[i])) >= pos) { /* Get the marker out of the way. */ Fset_marker (XCAR (ring[i]), Qnil, Qnil); /* ...and shift the ring elements, up to the first nil. */ for (j = i; !NILP (ring[j]) && j < LINE_NUMBER_RING_SIZE - 1; j++) ring[j] = ring[j + 1]; ring[j] = Qnil; /* Must recheck position i. */ i--; } } } /* Invalidate the cache positions after POS, if the string to be inserted contains a newline. If the string is too large (larger than LINE_NUMBER_LARGE_STRING), invalidate the cache positions after POS without prior search. This will do nothing if the cache is uninitialized. */ void insert_invalidate_line_number_cache (struct buffer *b, Charbpos pos, const Ibyte *nonreloc, Bytecount length) { if (NILP (b->text->line_number_cache)) return; if (length > LINE_NUMBER_LARGE_STRING || /* We could also count how many newlines there are in the string and update the cache accordingly, but it would be too much work for too little gain. */ memchr ((void *)nonreloc, '\n', length)) invalidate_line_number_cache (b, pos); } /* Invalidate the cache positions after FROM, if the region to be deleted contains a newline. If the region-to-be-deleted is larger than LINE_NUMBER_LARGE_STRING, invalidate the cache positions after FROM without unconditionally. This will do nothing if the cache is uninitialized. */ void delete_invalidate_line_number_cache (struct buffer *b, Charbpos from, Charbpos to) { if (NILP (b->text->line_number_cache)) return; if ((to - from) > LINE_NUMBER_LARGE_STRING) invalidate_line_number_cache (b, from); else { EMACS_INT shortage; scan_buffer (b, '\n', from, to, 1, &shortage, 0); if (!shortage) invalidate_line_number_cache (b, from); } } /* Get the nearest known position we know the line number of (i.e. BUF_BEGV, and cached positions). The return position will be either closer than BEG, or BEG. The line of this known position will be stored in LINE. *LINE should be initialized to the line number of BEG (normally, BEG will be BUF_BEGV, and *LINE will be XINT (LINE_NUMBER_BEGV). This will initialize the cache, if necessary. */ static void get_nearest_line_number (struct buffer *b, Charbpos *beg, Charbpos pos, EMACS_INT *line) { EMACS_INT i; Lisp_Object *ring = XVECTOR_DATA (LINE_NUMBER_RING (b)); Charcount length = pos - *beg; if (length < 0) length = -length; /* Find the ring entry closest to POS, if it is closer than BEG. */ for (i = 0; i < LINE_NUMBER_RING_SIZE && CONSP (ring[i]); i++) { Charbpos newpos = marker_position (XCAR (ring[i])); Charcount howfar = newpos - pos; if (howfar < 0) howfar = -howfar; if (howfar < length) { length = howfar; *beg = newpos; *line = XINT (XCDR (ring[i])); } } } /* Add a (POS . LINE) pair to the ring, and rotate it. */ static void add_position_to_cache (struct buffer *b, Charbpos pos, EMACS_INT line) { Lisp_Object *ring = XVECTOR_DATA (LINE_NUMBER_RING (b)); int i = LINE_NUMBER_RING_SIZE - 1; /* Set the last marker in the ring to point nowhere. */ if (CONSP (ring[i])) Fset_marker (XCAR (ring[i]), Qnil, Qnil); /* Rotate the ring... */ for (; i > 0; i--) ring[i] = ring[i - 1]; /* ...and update it. */ ring[0] = Fcons (Fset_marker (Fmake_marker (), make_int (pos), wrap_buffer (b)), make_int (line)); } /* Calculate the line number in buffer B at position POS. If CACHEP is non-zero, initialize and facilitate the line-number cache. The line number of the first line is 0. If narrowing is in effect, count the lines are counted from the beginning of the visible portion of the buffer. The cache works as follows: To calculate the line number, we need two positions: position of point (POS) and the position from which to count newlines (BEG). We start by setting BEG to BUF_BEGV. If this would require too much searching (i.e. pos - BUF_BEGV > LINE_NUMBER_FAR), try to find a closer position in the ring. If it is found, use that position for BEG, and increment the line number appropriately. If the calculation (with or without the cache lookup) required more than LINE_NUMBER_FAR characters of traversal, update the cache. */ EMACS_INT buffer_line_number (struct buffer *b, Charbpos pos, int cachep) { Charbpos beg = BUF_BEGV (b); EMACS_INT cached_lines = 0; EMACS_INT shortage, line; if ((pos > beg ? pos - beg : beg - pos) <= LINE_NUMBER_FAR) cachep = 0; if (cachep) { if (NILP (b->text->line_number_cache)) allocate_line_number_cache (b); /* If we don't know the line number of BUF_BEGV, calculate it now. */ if (XINT (LINE_NUMBER_BEGV (b)) == -1) { LINE_NUMBER_BEGV (b) = Qzero; /* #### This has a side-effect of changing the cache. */ LINE_NUMBER_BEGV (b) = make_int (buffer_line_number (b, BUF_BEGV (b), 1)); } cached_lines = XINT (LINE_NUMBER_BEGV (b)); get_nearest_line_number (b, &beg, pos, &cached_lines); } scan_buffer (b, '\n', beg, pos, pos > beg ? EMACS_INT_MAX : -EMACS_INT_MAX, &shortage, 0); line = EMACS_INT_MAX - shortage; if (beg > pos) line = -line; line += cached_lines; if (cachep) { /* If too far, update the cache. */ if ((pos > beg ? pos - beg : beg - pos) > LINE_NUMBER_FAR) add_position_to_cache (b, pos, line); /* Account for narrowing. If cache is not used, this is unnecessary, because we counted from BUF_BEGV anyway. */ line -= XINT (LINE_NUMBER_BEGV (b)); } return line; }