Mercurial > hg > xemacs-beta
view src/alloca.c @ 872:79c6ff3eef26
[xemacs-hg @ 2002-06-20 21:18:01 by ben]
font changes etc.; some 21.4 changes
mule/mule-msw-init-late.el: Specify charset->windows-registry conversion.
mule/mule-x-init.el: Delete extra mule font additions here. Put them in faces.c.
cl-macs.el: Document better.
font-lock.el: Move Lisp function regexp to lisp-mode.el.
lisp-mode.el: Various indentation fixes:
Handle flet functions better.
Handle argument lists in defuns and flets.
Handle quoted lists, e.g. property lists -- don't indent like
function calls. Distinguish between lambdas and other lists.
lisp-mode.el: Handle this form.
faces.el, font-menu.el, font.el, gtk-faces.el, msw-faces.el, msw-font-menu.el, x-faces.el, x-init.el: Major overhaul of face-handling code:
-- Fix lots of bogus code in msw-faces.el, msw-font-menu.el,
font-menu.el that was "truenaming" font specs -- i.e. in the
process of frobbing a particular field in a general user-specified
font spec with wildcarded fields, sticking in particular values
for all the remaining wildcarded fields. This bug was rampant
everywhere except in x-faces.el (the oldest and only correctly
written code). This also means that we need to work with font
names at all times and not font instances, because a font instance
is essentially a truenamed font.
-- Total rewrite of extremely junky code in msw-faces.el. Work
with names as well as font instances, and return names; stop
truenaming when canonicalizing and frobbing; fix handling of the
combined style field, i.e. weight/slant (also fixed in font.el).
-- Totally rewrite the frobbing functions in faces.el. This time,
we frob all the instantiators rather than just computing a single
instance value and working backwards. That way, e.g., `bold' will
work for all charsets that have bold available, rather than only
for whatever charset was part of the computed font instance
(another example of the truename virus). Also fix up code to look
at the fallbacks (all of them) when no global value present, so we
don't need to put something in the global value. Intelligently
handle a request to frob a buffer locale, rather than signalling
an error. When frobbing instantiators, try hard to figure out
what device type is associated with them, and frob each according
to its own proper device type. Correctly handle inheritance
vectors given as instantiators. Preserve existing tags when
putting back frobbed instantiators. Extract out general
specifier-frobbing code into specifier.el. Document everything
cleanly. Do lots of other things better, etc.
-- Don't duplicatively set a global specification for the default
font -- it's already in the fallback and we no longer need a
default global specification present. Delete various code in
x-faces.el and msw-faces.el that duplicated the lists of fonts in
faces.c.
-- init-global-faces was not being called at all under MS Windows!
Major bogosity. That caused device-specific values to get stuck
into all the fonts, making it very hard to change them -- setting
global specs caused nothing to happen.
-- Correct weight names in font.el.
-- Lots more font fixups in objects*.c.
Printer.el: Warning fix.
specifier.el: Add more args to map-specifier.
Add various "heuristic" specifier functions to aid in creation of
specifier-munging code such as in faces.el.
subr.el: New functions.
lwlib.c: Fix warning.
config.inc.samp: Clean up, add args to control fastcall (not yet supported! the
changes needed are in another ws of mine), profile support, vc6
support, union-type.
xemacs.dsp, xemacs.mak: Semi-major overhaul.
Fix bug where dump-id was always getting recomputed, forcing a
redump even when nothing changed.
Add support for fastcall. Support edit-and-continue (on by
default) with vc6. Use incremental linking when doing a debug
compilation. Add support for profiling.
Consolidate the various debug flags.
Partial support for "batch-compiling" -- compiling many files on a
single invocation of the compiler. Doesn't seem to help that much
for me, so it's not finished or enabled by default.
Remove HAVE_MSW_C_DIRED, we always do.
Correct some sloppy use of directories.
s/cygwin32.h: Allow pdump to work under Cygwin (mmap is broken, so need to undefine
HAVE_MMAP).
s/win32-common.h, s/windowsnt.h: Support for fastcall. Add WIN32_ANY for identifying all Win32
variants (Cygwin, native, MinGW). Both of these are properly used
in another ws.
alloc.c, balloon-x.c, buffer.c, bytecode.c, callint.c, cm.c, cmdloop.c, cmds.c, console-gtk.c, console-gtk.h, console-msw.c, console-msw.h, console-stream.c, console-stream.h, console-tty.c, console-tty.h, console-x.c, console-x.h, console.c, console.h, device-gtk.c, device-msw.c, device-tty.c, device-x.c, device.c, device.h, devslots.h, dialog-gtk.c, dialog-msw.c, dialog-x.c, dialog.c, dired-msw.c, editfns.c, emacs.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, event-tty.c, event-unixoid.c, events.c, extents.c, extents.h, faces.c, fileio.c, fns.c, frame-gtk.c, frame-msw.c, frame-tty.c, frame-x.c, frame.c, frame.h, glyphs-eimage.c, glyphs-gtk.c, glyphs-msw.c, glyphs-widget.c, glyphs-x.c, glyphs.c, glyphs.h, gui-gtk.c, gui-msw.c, gui-x.c, gui.c, gutter.c, input-method-xlib.c, intl-encap-win32.c, intl-win32.c, keymap.c, lisp.h, macros.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, menubar.h, minibuf.c, mule-charset.c, nt.c, objects-gtk.c, objects-gtk.h, objects-msw.c, objects-msw.h, objects-tty.c, objects-tty.h, objects-x.c, objects-x.h, objects.c, objects.h, postgresql.c, print.c, process.h, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-tty.c, redisplay-x.c, redisplay.c, redisplay.h, scrollbar-gtk.c, scrollbar-msw.c, scrollbar-x.c, scrollbar.c, select-gtk.c, select-msw.c, select-x.c, select.c, signal.c, sound.c, specifier.c, symbols.c, syntax.c, sysdep.c, syssignal.h, syswindows.h, toolbar-common.c, toolbar-gtk.c, toolbar-msw.c, toolbar-x.c, toolbar.c, unicode.c, window.c, window.h: The following are the major changes made:
(1) Separation of various header files into an external and an
internal version, similar to the existing separation of process.h
and procimpl.h. Eventually this should be done for all Lisp
objects. The external version has the same name as currently; the
internal adds -impl. The external file has XFOO() macros for
objects, but the structure is opaque and defined only in the
internal file. It's now reasonable to move all prototypes in
lisp.h into the appropriate external file, and this should be
done. Currently, separation has been done on extents.h,
objects*.h, console.h, device.h, frame.h, and window.h.
For c/d/f/w, the most basic properties are available in the
external header file, with the macros resolving to functions. In
the internal header file, the macros are redefined to directly
access the structure. Also, the global MARK_FOO_CHANGED macros
have been made into functions so that they can be accessed without
needing to include lots of -impl headers -- they are used in
almost exclusively in non-time-critical functions, and take up
enough time that the function overhead will be negligible.
Similarly, the function overhead from making the basic properties
mentioned above into functions is negligible, and code that does
heavy accessing of c/d/f/w structures inevitably ends up needing
the internal header files, anyway.
(2) More face changes.
-- Major rewrite of objects-msw.c. Now handles wildcard specs
properly, rather than "truenaming" (or even worse, signalling an
error, which previously happened with some of the fallbacks if you
tried to use them in make-font-instance!).
-- Split charset matching of fonts into two stages -- one to find
a font specifically designed for a particular charset (by
examining its registry), the second to find a Unicode font that
can support the charset. This needs to proceed as two complete,
separate instantiations in order to work properly (otherwise many
of the fonts in the HELLO page look wrong). This should also make
it easy to support iso10646 (Unicode) fonts under X.
-- All default values for fonts are now completely specified in
the fallbacks. Stuff from mule-x-init.el has all been moved here,
merged with the existing specs, and totally rethought so you get
sensible results. (HELLO now looks much better!).
-- Generalize the "default X/GTK device" stuff into a
per-device-type "default device".
-- Add mswindows-{set-}charset-registry. In time,
charset<->code-page conversion functions will be removed.
-- Wrap protective code around calls to compute device specifier tags,
and do this computation before calling the face initialization code
because the latter may need these tags to be correctly updated.
(3) Other changes.
EmacsFrame.c, glyphs-msw.c, eval.c, gui-x.c, intl-encap-win32.c, search.c, signal.c, toolbar-msw.c, unicode.c: Warning fixes.
config.h.in: #undefs meant to be frobbed by configure *MUST* go inside of
#ifndef WIN32_NO_CONFIGURE, and everything else *MUST* go outside!
eval.c: Let detailed backtraces be detailed.
specifier.c: Don't override user's print-string-length/print-length settings.
glyphs.c: New function image-instance-instantiator.
config.h.in, sysdep.c: Changes for fastcall.
sysdep.c, nt.c: Fix up a previous botched patch that tried to add support for both
EEXIST and EACCES. IF THE BOTCHED PATCH WENT INTO 21.4, THIS FIXUP
NEEDS TO GO IN, TOO.
search.c: Fix *evil* crash due to incorrect synching of syntax-cache code
with 21.1. THIS SHOULD GO INTO 21.4.
author | ben |
---|---|
date | Thu, 20 Jun 2002 21:19:10 +0000 |
parents | e7ee5f8bde58 |
children | 184461bc8de4 |
line wrap: on
line source
/* alloca.c -- allocate automatically reclaimed memory (Mostly) portable public-domain implementation -- D A Gwyn This implementation of the PWB library alloca function, which is used to allocate space off the run-time stack so that it is automatically reclaimed upon procedure exit, was inspired by discussions with J. Q. Johnson of Cornell. J.Otto Tennant <jot@cray.com> contributed the Cray support. There are some preprocessor constants that can be defined when compiling for your specific system, for improved efficiency; however, the defaults should be okay. The general concept of this implementation is to keep track of all alloca-allocated blocks, and reclaim any that are found to be deeper in the stack than the current invocation. This heuristic does not reclaim storage as soon as it becomes invalid, but it will do so eventually. As a special case, alloca(0) reclaims storage without allocating any. It is a good idea to use alloca(0) in your main control loop, etc. to force garbage collection. */ /* Synched up with: FSF 19.30. */ /* Authorship: FSF: A long time ago. Some cleanups for XEmacs. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #ifdef emacs #include "lisp.h" #endif /* If your stack is a linked list of frames, you have to provide an "address metric" ADDRESS_FUNCTION macro. */ #if defined (CRAY) && defined (CRAY_STACKSEG_END) long i00afunc (); #define ADDRESS_FUNCTION(arg) (char *) i00afunc (&(arg)) #else #define ADDRESS_FUNCTION(arg) &(arg) #endif typedef void *pointer; #ifndef NULL #define NULL 0 #endif /* Define STACK_DIRECTION if you know the direction of stack growth for your system; otherwise it will be automatically deduced at run-time. STACK_DIRECTION > 0 => grows toward higher addresses STACK_DIRECTION < 0 => grows toward lower addresses STACK_DIRECTION = 0 => direction of growth unknown */ #ifndef STACK_DIRECTION #define STACK_DIRECTION 0 /* Direction unknown. */ #endif #if STACK_DIRECTION != 0 #define STACK_DIR STACK_DIRECTION /* Known at compile-time. */ #else /* STACK_DIRECTION == 0; need run-time code. */ static int stack_dir; /* 1 or -1 once known. */ #define STACK_DIR stack_dir static void find_stack_direction () { static char *addr = NULL; /* Address of first `dummy', once known. */ auto char dummy; /* To get stack address. */ if (addr == NULL) { /* Initial entry. */ addr = ADDRESS_FUNCTION (dummy); find_stack_direction (); /* Recurse once. */ } else { /* Second entry. */ if (ADDRESS_FUNCTION (dummy) > addr) stack_dir = 1; /* Stack grew upward. */ else stack_dir = -1; /* Stack grew downward. */ } } #endif /* STACK_DIRECTION == 0 */ /* An "alloca header" is used to: (a) chain together all alloca'ed blocks; (b) keep track of stack depth. It is very important that sizeof(header) agree with malloc alignment chunk size. The following default should work okay. */ #ifndef ALIGNMENT_SIZE #define ALIGNMENT_SIZE sizeof(double) #endif typedef union hdr { char align[ALIGNMENT_SIZE]; /* To force sizeof(header). */ struct { union hdr *next; /* For chaining headers. */ char *deep; /* For stack depth measure. */ } h; } header; static header *last_alloca_header = NULL; /* -> last alloca header. */ /* Return a pointer to at least SIZE bytes of storage, which will be automatically reclaimed upon exit from the procedure that called alloca. Originally, this space was supposed to be taken from the current stack frame of the caller, but that method cannot be made to work for some implementations of C, for example under Gould's UTX/32. */ pointer xemacs_c_alloca (unsigned int size) { auto char probe; /* Probes stack depth: */ register char *depth = ADDRESS_FUNCTION (probe); #if STACK_DIRECTION == 0 if (STACK_DIR == 0) /* Unknown growth direction. */ find_stack_direction (); #endif /* Reclaim garbage, defined as all alloca'd storage that was allocated from deeper in the stack than currently. */ { register header *hp; /* Traverses linked list. */ for (hp = last_alloca_header; hp != NULL;) if ((STACK_DIR > 0 && hp->h.deep > depth) || (STACK_DIR < 0 && hp->h.deep < depth)) { register header *np = hp->h.next; #ifdef emacs xfree (hp); /* Collect garbage. */ #else free (hp); /* Collect garbage. */ #endif hp = np; /* -> next header. */ } else break; /* Rest are not deeper. */ last_alloca_header = hp; /* -> last valid storage. */ } #ifdef emacs need_to_check_c_alloca = size > 0 || last_alloca_header; recompute_funcall_allocation_flag (); #endif if (size == 0) return NULL; /* No allocation required. */ /* Allocate combined header + user data storage. */ { #ifdef emacs register pointer new = xmalloc (sizeof (header) + size); #else register pointer new = malloc (sizeof (header) + size); #endif /* Address of header. */ ((header *) new)->h.next = last_alloca_header; ((header *) new)->h.deep = depth; last_alloca_header = (header *) new; /* User storage begins just after header. */ return (pointer) ((char *) new + sizeof (header)); } } #if defined (CRAY) && defined (CRAY_STACKSEG_END) #ifdef DEBUG_I00AFUNC #include <stdio.h> #endif #ifndef CRAY_STACK #define CRAY_STACK #ifndef CRAY2 /* Stack structures for CRAY-1, CRAY X-MP, and CRAY Y-MP */ struct stack_control_header { long shgrow:32; /* Number of times stack has grown. */ long shaseg:32; /* Size of increments to stack. */ long shhwm:32; /* High water mark of stack. */ long shsize:32; /* Current size of stack (all segments). */ }; /* The stack segment linkage control information occurs at the high-address end of a stack segment. (The stack grows from low addresses to high addresses.) The initial part of the stack segment linkage control information is 0200 (octal) words. This provides for register storage for the routine which overflows the stack. */ struct stack_segment_linkage { long ss[0200]; /* 0200 overflow words. */ long sssize:32; /* Number of words in this segment. */ long ssbase:32; /* Offset to stack base. */ long:32; long sspseg:32; /* Offset to linkage control of previous segment of stack. */ long:32; long sstcpt:32; /* Pointer to task common address block. */ long sscsnm; /* Private control structure number for microtasking. */ long ssusr1; /* Reserved for user. */ long ssusr2; /* Reserved for user. */ long sstpid; /* Process ID for pid based multi-tasking. */ long ssgvup; /* Pointer to multitasking thread giveup. */ long sscray[7]; /* Reserved for Cray Research. */ long ssa0; long ssa1; long ssa2; long ssa3; long ssa4; long ssa5; long ssa6; long ssa7; long sss0; long sss1; long sss2; long sss3; long sss4; long sss5; long sss6; long sss7; }; #else /* CRAY2 */ /* The following structure defines the vector of words returned by the STKSTAT library routine. */ struct stk_stat { long now; /* Current total stack size. */ long maxc; /* Amount of contiguous space which would be required to satisfy the maximum stack demand to date. */ long high_water; /* Stack high-water mark. */ long overflows; /* Number of stack overflow ($STKOFEN) calls. */ long hits; /* Number of internal buffer hits. */ long extends; /* Number of block extensions. */ long stko_mallocs; /* Block allocations by $STKOFEN. */ long underflows; /* Number of stack underflow calls ($STKRETN). */ long stko_free; /* Number of deallocations by $STKRETN. */ long stkm_free; /* Number of deallocations by $STKMRET. */ long segments; /* Current number of stack segments. */ long maxs; /* Maximum number of stack segments so far. */ long pad_size; /* Stack pad size. */ long current_address; /* Current stack segment address. */ long current_size; /* Current stack segment size. This number is actually corrupted by STKSTAT to include the fifteen word trailer area. */ long initial_address; /* Address of initial segment. */ long initial_size; /* Size of initial segment. */ }; /* The following structure describes the data structure which trails any stack segment. I think that the description in 'asdef' is out of date. I only describe the parts that I am sure about. */ struct stk_trailer { long this_address; /* Address of this block. */ long this_size; /* Size of this block (does not include this trailer). */ long unknown2; long unknown3; long link; /* Address of trailer block of previous segment. */ long unknown5; long unknown6; long unknown7; long unknown8; long unknown9; long unknown10; long unknown11; long unknown12; long unknown13; long unknown14; }; #endif /* CRAY2 */ #endif /* not CRAY_STACK */ #ifdef CRAY2 /* Determine a "stack measure" for an arbitrary ADDRESS. I doubt that "lint" will like this much. */ static long i00afunc (long *address) { struct stk_stat status; struct stk_trailer *trailer; long *block, size; long result = 0; /* We want to iterate through all of the segments. The first step is to get the stack status structure. We could do this more quickly and more directly, perhaps, by referencing the $LM00 common block, but I know that this works. */ STKSTAT (&status); /* Set up the iteration. */ trailer = (struct stk_trailer *) (status.current_address + status.current_size - 15); /* There must be at least one stack segment. Therefore it is a fatal error if "trailer" is null. */ if (trailer == 0) abort (); /* Discard segments that do not contain our argument address. */ while (trailer != 0) { block = (long *) trailer->this_address; size = trailer->this_size; if (block == 0 || size == 0) abort (); trailer = (struct stk_trailer *) trailer->link; if ((block <= address) && (address < (block + size))) break; } /* Set the result to the offset in this segment and add the sizes of all predecessor segments. */ result = address - block; if (trailer == 0) { return result; } do { if (trailer->this_size <= 0) abort (); result += trailer->this_size; trailer = (struct stk_trailer *) trailer->link; } while (trailer != 0); /* We are done. Note that if you present a bogus address (one not in any segment), you will get a different number back, formed from subtracting the address of the first block. This is probably not what you want. */ return (result); } #else /* not CRAY2 */ /* Stack address function for a CRAY-1, CRAY X-MP, or CRAY Y-MP. Determine the number of the cell within the stack, given the address of the cell. The purpose of this routine is to linearize, in some sense, stack addresses for alloca. */ static long i00afunc (long address) { long stkl = 0; long size, pseg, this_segment, stack; long result = 0; struct stack_segment_linkage *ssptr; /* Register B67 contains the address of the end of the current stack segment. If you (as a subprogram) store your registers on the stack and find that you are past the contents of B67, you have overflowed the segment. B67 also points to the stack segment linkage control area, which is what we are really interested in. */ stkl = CRAY_STACKSEG_END (); ssptr = (struct stack_segment_linkage *) stkl; /* If one subtracts 'size' from the end of the segment, one has the address of the first word of the segment. If this is not the first segment, 'pseg' will be nonzero. */ pseg = ssptr->sspseg; size = ssptr->sssize; this_segment = stkl - size; /* It is possible that calling this routine itself caused a stack overflow. Discard stack segments which do not contain the target address. */ while (!(this_segment <= address && address <= stkl)) { #ifdef DEBUG_I00AFUNC fprintf (stderr, "%011o %011o %011o\n", this_segment, address, stkl); #endif if (pseg == 0) break; stkl = stkl - pseg; ssptr = (struct stack_segment_linkage *) stkl; size = ssptr->sssize; pseg = ssptr->sspseg; this_segment = stkl - size; } result = address - this_segment; /* If you subtract pseg from the current end of the stack, you get the address of the previous stack segment's end. This seems a little convoluted to me, but I'll bet you save a cycle somewhere. */ while (pseg != 0) { #ifdef DEBUG_I00AFUNC fprintf (stderr, "%011o %011o\n", pseg, size); #endif stkl = stkl - pseg; ssptr = (struct stack_segment_linkage *) stkl; size = ssptr->sssize; pseg = ssptr->sspseg; result += size; } return (result); } #endif /* not CRAY2 */ #endif /* CRAY */