Mercurial > hg > xemacs-beta
view src/text.c @ 5001:714d854d00e9
Automatic merge
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Sun, 07 Feb 2010 05:23:07 -0600 |
parents | 16112448d484 |
children | ae48681c47fa |
line wrap: on
line source
/* Text manipulation primitives for XEmacs. Copyright (C) 1995 Sun Microsystems, Inc. Copyright (C) 1995, 1996, 2000, 2001, 2002, 2003, 2004 Ben Wing. Copyright (C) 1999 Martin Buchholz. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ /* Authorship: */ #include <config.h> #include "lisp.h" #include "buffer.h" #include "charset.h" #include "file-coding.h" #include "lstream.h" #include "profile.h" /************************************************************************/ /* long comments */ /************************************************************************/ /* NB: Everything below was written by Ben Wing except as otherwise noted. */ /************************************************************************/ /* */ /* */ /* Part A: More carefully-written documentation */ /* */ /* */ /************************************************************************/ /* Authorship: Ben Wing ========================================================================== 7. Handling non-default formats ========================================================================== We support, at least to some extent, formats other than the default variable-width format, for speed; all of these alternative formats are fixed-width. Currently we only handle these non-default formats in buffers, because access to their text is strictly controlled and thus the details of the format mostly compartmentalized. The only really tricky part is the search code -- the regex, Boyer-Moore, and simple-search algorithms in search.c and regex.c. All other code that knows directly about the buffer representation is the basic code to modify or retrieve the buffer text. Supporting fixed-width formats in Lisp strings is harder, but possible -- FSF currently does this, for example. In this case, however, probably only 8-bit-fixed is reasonable for Lisp strings -- getting non-ASCII-compatible fixed-width formats to work is much, much harder because a lot of code assumes that strings are ASCII-compatible (i.e. ASCII + other characters represented exclusively using high-bit bytes) and a lot of code mixes Lisp strings and non-Lisp strings freely. The different possible fixed-width formats are 8-bit fixed, 16-bit fixed, and 32-bit fixed. The latter can represent all possible characters, but at a substantial memory penalty. The other two can represent only a subset of the possible characters. How these subsets are defined can be simple or very tricky. Currently we support only the default format and the 8-bit fixed format, and in the latter, we only allow these to be the first 256 characters in an Ichar (ASCII and Latin 1). One reasonable approach for 8-bit fixed is to allow the upper half to represent any 1-byte charset, which is specified on a per-buffer basis. This should work fairly well in practice since most documents are in only one foreign language (possibly with some English mixed in). I think FSF does something like this; or at least, they have something called nonascii-translation-table and use it when converting from 8-bit-fixed text ("unibyte text") to default text ("multibyte text"). With 16-bit fixed, you could do something like assign chunks of the 64K worth of characters to charsets as they're encountered in documents. This should work well with most Asian documents. If/when we switch to using Unicode internally, we might have formats more like this: -- UTF-8 or some extension as the default format. Perl uses an extension that handles 64-bit chars and requires as much as 13 bytes per char, vs. the standard of 31-bit chars and 6 bytes max. UTF-8 has the same basic properties as our own variable-width format (see text.c, Internal String Encoding) and so most code would not need to be changed. -- UTF-16 as a "pseudo-fixed" format (i.e. 16-bit fixed plus surrogates for representing characters not in the BMP, aka >= 65536). The vast majority of documents will have no surrogates in them so byte/char conversion will be very fast. -- an 8-bit fixed format, like currently. -- possibly, UCS-4 as a 32-bit fixed format. The fixed-width formats essentially treat the buffer as an array of 8-bit, 16-bit or 32-bit integers. This means that how they are stored in memory (in particular, big-endian or little-endian) depends on the native format of the machine's processor. It also means we have to worry a bit about alignment (basically, we just need to keep the gap an integral size of the character size, and get things aligned properly when converting the buffer between formats). ========================================================================== 8. Using UTF-16 as the default text format ========================================================================== NOTE: The Eistring API is (or should be) Mule-correct even without an ASCII-compatible internal representation. #### Currently, the assumption that text units are one byte in size is embedded throughout XEmacs, and `Ibyte *' is used where `Itext *' should be. The way to fix this is to (among other things) (a) review all places referencing `Ibyte' and `Ibyte *', change them to use Itext, and fix up the code. (b) change XSTRING_DATA to be of type Itext * (c) review all uses of XSTRING_DATA (d) eliminate XSTRING_LENGTH, splitting it into XSTRING_BYTE_LENGTH and XSTRING_TEXT_LENGTH and reviewing all places referencing this (e) make similar changes to other API's that refer to the "length" of something, such as qxestrlen() and eilen() (f) review all use of `CIbyte *'. Currently this is usually a way of passing literal ASCII text strings in places that want internal text. Either create separate _ascii() and _itext() versions of the functions taking CIbyte *, or make use of something like the WEXTTEXT() macro, which will generate wide strings as appropriate. (g) review all uses of Bytecount and see which ones should be Textcount. (h) put in error-checking code that will be tripped as often as possible when doing anything with internal text, and check to see that ASCII text has not mistakenly filtered in. This should be fairly easy as ASCII text will generally be entirely spaces and letters whereas every second byte of Unicode text will generally be a null byte. Either we abort if the second bytes are entirely letters and numbers, or, perhaps better, do the equivalent of a non-MULE build, where we should be dealing entirely with 8-bit characters, and assert that the high bytes of each pair are null. (i) review places where xmalloc() is called. If we convert each use of xmalloc() to instead be xnew_array() or some other typed routine, then we will find every place that allocates space for Itext and assumes it is based on one-byte units. (j) encourage the use of ITEXT_ZTERM_SIZE instead of '+ 1' whenever we are adding space for a zero-terminator, to emphasize what we are doing and make sure the calculations are correct. Similarly for EXTTEXT_ZTERM_SIZE. (k) Note that the qxestr*() functions, among other things, will need to be rewritten. Note that this is a lot of work, and is not high on the list of priorities currently. ========================================================================== 9. Miscellaneous ========================================================================== A. Unicode Support Unicode support is very desirable. Currrently we know how to handle externally-encoded Unicode data in various encodings -- UTF-16, UTF-8, etc. However, we really need to represent Unicode characters internally as-is, rather than converting to some language-specific character set. For efficiency, we should represent Unicode characters using 3 bytes rather than 4. This means we need to find leading bytes for Unicode. Given that there are 65,536 characters in Unicode and we can attach 96x96 = 9,216 characters per leading byte, we need eight leading bytes for Unicode. We currently have four free (0x9A - 0x9D), and with a little bit of rearranging we can get five: ASCII doesn't really need to take up a leading byte. (We could just as well use 0x7F, with a little change to the functions that assume that 0x80 is the lowest leading byte.) This means we still need to dump three leading bytes and move them into private space. The CNS charsets are good candidates since they are rarely used, and JAPANESE_JISX0208_1978 is becoming less and less used and could also be dumped. B. Composite Characters Composite characters are characters constructed by overstriking two or more regular characters. 1) The old Mule implementation involves storing composite characters in a buffer as a tag followed by all of the actual characters used to make up the composite character. I think this is a bad idea; it greatly complicates code that wants to handle strings one character at a time because it has to deal with the possibility of great big ungainly characters. It's much more reasonable to simply store an index into a table of composite characters. 2) The current implementation only allows for 16,384 separate composite characters over the lifetime of the XEmacs process. This could become a potential problem if the user edited lots of different files that use composite characters. Due to FSF bogosity, increasing the number of allowable composite characters under Mule would decrease the number of possible faces that can exist. Mule already has shrunk this to 2048, and further shrinkage would become uncomfortable. No such problems exist in XEmacs. Composite characters could be represented as 0x8D C1 C2 C3, where each C[1-3] is in the range 0xA0 - 0xFF. This allows for slightly under 2^20 (one million) composite characters over the XEmacs process lifetime. Or you could use 0x8D C1 C2 C3 C4, allowing for about 85 million (slightly over 2^26) composite characters. ========================================================================== 10. Internal API's ========================================================================== All of these are documented in more detail in text.h. @enumerate @item Basic internal-format API's These are simple functions and macros to convert between text representation and characters, move forward and back in text, etc. @item The DFC API This is for conversion between internal and external text. Note that there is also the "new DFC" API, which *returns* a pointer to the converted text (in alloca space), rather than storing it into a variable. @item The Eistring API \(This API is currently under-used) When doing simple things with internal text, the basic internal-format API's are enough. But to do things like delete or replace a substring, concatenate various strings, etc. is difficult to do cleanly because of the allocation issues. The Eistring API is designed to deal with this, and provides a clean way of modifying and building up internal text. (Note that the former lack of this API has meant that some code uses Lisp strings to do similar manipulations, resulting in excess garbage and increased garbage collection.) NOTE: The Eistring API is (or should be) Mule-correct even without an ASCII-compatible internal representation. @end enumerate ========================================================================== 11. Other Sources of Documentation ========================================================================== man/lispref/mule.texi @enumerate @item another intro to characters, encodings, etc; #### Merge with the above info @item documentation of ISO-2022 @item The charset and coding-system Lisp API's @item The CCL conversion language for writing encoding conversions @item The Latin-Unity package for unifying Latin charsets @end enumerate man/internals/internals.texi (the Internals manual) @enumerate @item "Coding for Mule" -- how to write Mule-aware code @item "Modules for Internationalization" @item "The Text in a Buffer" -- more about the different ways of viewing buffer positions; #### Merge with the above info @item "MULE Character Sets and Encodings" -- yet another intro to characters, encodings, etc; #### Merge with the above info; also some documentation of Japanese EUC and JIS7, and CCL internals @end enumerate text.h -- info about specific XEmacs-C API's for handling internal and external text intl-win32.c -- Windows-specific I18N information lisp.h -- some info appears alongside the definitions of the basic character-related types unicode.c -- documentation about Unicode translation tables */ /************************************************************************/ /* */ /* */ /* Part B: Random proposals for work to be done */ /* */ /* */ /************************************************************************/ /* ========================================================================== - Mule design issues (ben) ========================================================================== circa 1999 Here is a more detailed list of Mule-related projects that we will be working on. They are more or less ordered according to how we will proceed, but it's not exact. In particular, there will probably be time overlap among adjacent projects. @enumerate @item Modify the internal/external conversion macros to allow for MS Windows support. @item Modify the buffer macros to allow for more than one internal representation, e.g. fixed width and variable width. @item Review the existing Mule code, especially the lisp code, for code quality issues and improve the cleanliness of it. Also work on creating a specification for the Mule API. @item Write some more automated mule tests. @item Integrate Tomohiko's UTF-2000 code, fixing it up so that nothing is broken when the UTF-2000 configure option is not enabled. @item Fix up the MS Windows code to be Mule-correct, so that you can compile with Mule support under MS windows and have a working XEmacs, at least just with Latin-1. @item Implement a scheme to guarantee no corruption of files, even with an incorrect coding system - in particular, guarantee no corruption of binary files. @item Make the text property support in XEmacs robust with respect to string and text operations, so that the `no corruption' support in the previous entry works properly, even if a lot of cutting and pasting is done. @item Improve the handling of auto-detection so that, when there is any possibility at all of mistake, the user is informed of the detected encoding and given the choice of choosing other possibilities. @item Improve the support for different language environments in XEmacs, for example, the priority of coding systems used in auto-detection should properly reflect the language environment. This probably necessitates rethinking the current `coding system priority' scheme. @item Do quality work to improve the existing UTF-2000 implementation. @item Implement preliminary support for 8-bit fixed width representation. First, we will only implement 7-bit support, and will fall back to variable width as soon as any non-ASCII character is encountered. Then we will improve the support to handle an arbitrary character set in the upper half of the 8-bit space. @item Investigate any remaining hurdles to making --with-mule be the default configure option. @end enumerate ========================================================================== - Mule design issues (stephen) ========================================================================== What I see as Mule priorities (in rough benefit order, I am not taking account of difficulty, nor the fact that some - eg 8 & 10 - will probably come as packages): @enumerate @item Fix the autodetect problem (by making the coding priority list user-configurable, as short as he likes, even null, with "binary" as the default). @item Document the language environments and other Mule "APIs" as implemented (since there is no real design spec). Check to see how and where they are broken. @item Make the Mule menu useful to non-ISO-2022-literate folks. @item Redo the lstreams stuff to make it easy and robust to "pipeline", eg, libz | gnupg | jis2mule. @item Make Custom Mule-aware. (This probably depends on a sensible fonts model.) @item Implement the "literal byte stream" memory feature. @item Study the FSF implementation of Mule for background for 7 & 8. @item Identify desirable Mule features (eg, i18n-ized messages as above, collating tables by language environment, etc). (New features might have priority as high as 9.) @item Specify Mule UIs, APIs, etc, and design and (re)implement them. @item Implement the 8-bit-wide buffer optimization. @item Move the internal encoding to UTF-32 (subject to Olivier's caveats regarding compose characters), with the variable-width char buffers using UTF-8. @item Implement the 16- and 32-bit-wide buffer optimizations. @end enumerate ========================================================================== - Mule design issues "short term" (ben) ========================================================================== @enumerate @item Finish changes in fixup/directory, get in CVS. (Test with and without "quick-build", to see if really faster) (need autoconf) @item Finish up Windows/Mule changes. Outline of this elsewhere; Do *minimal* effort. @item Continue work on Windows stability, e.g. go through existing notes on Windows Mule-ization + extract all info. @item Get Unicode translation tables integrated. Finish UCS2/UTF16 coding system. @item Make sure coding system priority list is language-environment specific. @item Consider moving language selection Menu up to be parallel with Mule menu. @item Check to make sure we grok the default locale at startup under Windows and understand the Windows locales. Finish implementation of mswindows-multibyte and make sure it groks all the locales. @item Do the above as best as we can without using Unicode tables. @item Start tagging all text with a language text property, indicating the current language environment when the text was input. @item Make sure we correctly accept input of non-ASCII chars (probably already do!) @item Implement active language/keyboard switching under Windows. @item Look into implementing support for "MS IME" protocol (Microsoft fancy built-in Asian input methods). @item Redo implementation of mswindows-multibyte and internal display to entirely use translation to/from Unicode for increased accuracy. @item Implement buf<->char improvements from FSF. Also implement my string byte<->char optimization structure. @item Integrate all Mule DOCS from 20.6 or 21.0. Try to add sections for what we've added. @item Implement 8-bit fixed width optimizations. Then work on 16-bit. @end enumerate ========================================================================== - Mule design issues (more) (ben) ========================================================================== Get minimal Mule for Windows working using Ikeyama's patches. At first, rely on his conversion of internal -> external locale-specific but very soon (as soon as we get translation tables) can switch to using Unicode versions of display funs, which will allow many more charsets to be handled and in a more consistent fashion. i.e. to convert an internal string to an external format, at first we use our own knowledge of the Microsoft locale file formats but an alternative is to convert to Unicode and use Microsoft's convert-Unicode-to-locale encoding functions. This gains us a great deal of generality, since in practice all charset caching points can be wrapped into Unicode caching points. This requires adding UCS2 support, which I'm doing. This support would let us convert internal -> Unicode, which is exactly what we want. At first, though, I would do the UCS2 support, but leave the existing way of doing things in redisplay. Meanwhile, I'd go through and fix up the places in the code that assume we are dealing with unibytes. After this, the font problems will be fixed , we should have a pretty well working XEmacs + MULE under Windows. The only real other work is the clipboard code, which should be straightforward. ========================================================================== - Mule design discussion ========================================================================== -------------------------------------------------------------------------- Ben April 11, 2000 Well yes, this was the whole point of my "no lossage" proposal of being able to undo any coding-system transformation on a buffer. The idea was to figure out which transformations were definitely reversable, and for all the others, cache the original text in a text property. This way, you could probably still do a fairly good job at constructing a good reversal even after you've gone into the text and added, deleted, and rearranged some things. But you could implement it much more simply and usefully by just determining, for any text being decoded into mule-internal, can we go back and read the source again? If not, remember the entire file (GNUS message, etc) in text properties. Then, implement the UI interface (like Netscape's) on top of that. This way, you have something that at least works, but it might be inefficient. All we would need to do is work on making the underlying implementation more efficient. Are you interested in doing this? It would be a huge win for users. Hrvoje Niksic wrote: > Ben Wing <ben@666.com> writes: > > > let me know exactly what "rethink" functionality you want and i'll > > come up with an interface. perhaps you just want something like > > netscape's encoding menu, where if you switch encodings, it reloads > > and reencodes? > > It might be a bit more complex than that. In many cases, it's hard or > impossible to meaningfully "reload" -- for instance, this > functionality should be available while editing a Gnus message, as > well as while visiting a file. > > For the special case of Latin-N <-> Latin-M conversion, things could > be done easily -- to convert from N to M, you only need to convert > internal representation back to N, and then convert it forth to M. -------------------------------------------------------------------------- April 11, 2000 Well yes, this was the whole point of my "no lossage" proposal of being able to undo any coding-system transformation on a buffer. The idea was to figure out which transformations were definitely reversable, and for all the others, cache the original text in a text property. This way, you could probably still do a fairly good job at constructing a good reversal even after you've gone into the text and added, deleted, and rearranged some things. But you could implement it much more simply and usefully by just determining, for any text being decoded into mule-internal, can we go back and read the source again? If not, remember the entire file (GNUS message, etc) in text properties. Then, implement the UI interface (like Netscape's) on top of that. This way, you have something that at least works, but it might be inefficient. All we would need to do is work on making the underlying implementation more efficient. Are you interested in doing this? It would be a huge win for users. Hrvoje Niksic wrote: > Ben Wing <ben@666.com> writes: > > > let me know exactly what "rethink" functionality you want and i'll > > come up with an interface. perhaps you just want something like > > netscape's encoding menu, where if you switch encodings, it reloads > > and reencodes? > > It might be a bit more complex than that. In many cases, it's hard or > impossible to meaningfully "reload" -- for instance, this > functionality should be available while editing a Gnus message, as > well as while visiting a file. > > For the special case of Latin-N <-> Latin-M conversion, things could > be done easily -- to convert from N to M, you only need to convert > internal representation back to N, and then convert it forth to M. ------------------------------------------------------------------------ ========================================================================== - Redoing translation macros [old] ========================================================================== Currently the translation macros (the macros with names such as GET_C_STRING_CTEXT_DATA_ALLOCA) have names that are difficult to parse or remember, and are not all that general. In the process of reviewing the Windows code so that it could be muleized, I discovered that these macros need to be extended in various ways to allow for the Windows code to be easily muleized. Since the macros needed to be changed anyways, I figured it would be a good time to redo them properly. I propose new macros which have names like this: @itemize @bullet @item <A>_TO_EXTERNAL_FORMAT_<B> @item <A>_TO_EXTERNAL_FORMAT_<B>_1 @item <C>_TO_INTERNAL_FORMAT_<D> @item <C>_TO_INTERNAL_FORMAT_<D>_1 @end itemize A and C represent the source of the data, and B and D represent the sink of the data. All of these macros call either the functions convert_to_external_format or convert_to_internal_format internally, with some massaging of the arguments. All of these macros take the following arguments: @itemize @bullet @item First, one or two arguments indicating the source of the data. @item Second, an argument indicating the coding system. (In order to avoid an excessive number of macros, we no longer provide separate macros for specific coding systems.) @item Third, one or two arguments indicating the sink of the data. @item Fourth, optionally, arguments indicating the error behavior and the warning class (these arguments are only present in the _1 versions of the macros). The other, shorter named macros are trivial interfaces onto these macros with the error behavior being ERROR_ME_WARN, with the warning class being Vstandard_warning_class. @end itemize <A> can be one of the following: @itemize @bullet @item LISP (which means a Lisp string) Takes one argument, a Lisp Object. @item LSTREAM (which indicates an lstream) Takes one argument, an lstream. The data is read from the lstream until EOF is reached. @item DATA (which indicates a raw memory area) Takes two arguments, a pointer and a length in bytes. (You must never use this if the source of the data is a Lisp string, because of the possibility of relocation during garbage collection.) @end itemize <B> can be one of the following: @itemize @bullet @item ALLOCA (which means that the resulting data is stored in alloca()ed memory. Two arguments should be specified, a pointer and a length, which should be lvalues.) @item MALLOC (which means that the resulting data is stored in malloc()ed memory. Two arguments should be specified, a pointer and a length. The memory must be free()d by the caller. @item OPAQUE (which means the resulting data is stored in an opaque Lisp Object. This takes one argument, a lvalue Lisp Object. @item LSTREAM. The data is written to an lstream. @end itemize <C> can be one of the : @itemize @bullet @item DATA @item LSTREAM @end itemize (just like <A> above) <D> can be one of @itemize @bullet @item ALLOCA @item MALLOC @item LISP This means a Lisp String. @item BUFFER The resulting data is inserted into a buffer at the buffer's value of point. @item LSTREAM The data is written to the lstream. @end itemize Note that I have eliminated the FORMAT argument of previous macros, and replaced it with a coding system. This was made possible by coding system aliases. In place of old `format's, we use a `virtual coding system', which is aliased to the actual coding system. The value of the coding system argument can be anything that is legal input to get_coding_system, i.e. a symbol or a coding system object. ========================================================================== - creation of generic macros for accessing internally formatted data [old] ========================================================================== I have a design; it's all written down (I did it in Tsukuba), and I just have to have it transcribed. It's higher level than the macros, though; it's Lisp primitives that I'm designing. As for the design of the macros, don't worry so much about all files having to get included (which is inevitable with macros), but about how the files are separated. Your design might go like this: @enumerate @item you have generic macro interfaces, which specify a particular behavior but not an implementation. these generic macros have complementary versions for buffers and for strings (and the buffer or string is an argument to all of the macros), and do such things as convert between byte and char indices, retrieve the character at a particular byte or char index, increment or decrement a byte index to the beginning of the next or previous character, indicate the number of bytes occupied by the character at a particular byte or character index, etc. These are similar to what's already out there except that they confound buffers and strings and that they can also work with actual char *'s, which I think is a really bad idea because it encourages code to "assume" that the representation is ASCII compatible, which is might not be (e.g. 16-bit fixed width). In fact, one thing I'm planning on doing is redefining Bufbyte as a struct, for debugging purposes, to catch all places that cavalierly compare them with ASCII char's. Note also that I really want to rename Bufpos and Bytind, which are confusing and wrong in that they also apply to strings. They should be Bytepos and Charpos, or something like that, to go along with Bytecount and Charcount. Similarly, Bufbyte is similarly a misnomer and should be Intbyte -- a byte in the internal string representation (any of the internal representations) of a string or buffer. Corresponding to this is Extbyte (which we already have), a byte in any external string representation. We also have Extcount, which makes sense, and we might possibly want Extcharcount, the number of characters in an external string representation; but that gets sticky in modal encodings, and it's not clear how useful it would be. @item for all generic macro interfaces, there are specific versions of each of them for each possible representation (pure ASCII in the non-Mule world, Mule standard, UTF-8, 8-bit fixed, 16-bit fixed, 32-bit fixed, etc.; there may well be more than one possible 16-bit fixed version, as well). Each representation has a corresponding prefix, e.g. MULE_ or FIXED16_ or whatever, which is prefixed onto the generic macro names. The resulting macros perform the operation defined for the macro, but assume, and only work correctly with, text in the corresponding representation. @item The definition of the generic versions merely conditionalizes on the appropriate things (i.e. bit flags in the buffer or string object) and calls the appropriate representation-specific version. There may be more than one definition (protected by ifdefs, of course), or one definition that amalgamated out of many ifdef'ed sections. @item You should probably put each different representation in its own header file, e.g. charset-mule.h or charset-fixed16.h or charset-ascii.h or whatever. Then put the main macros into charset.h, and conditionalize in this file appropriately to include the other ones. That way, code that actually needs to play around with internal-format text at this level can include "charset.h" (certainly a much better place than buffer.h), and everyone else uses higher-level routines. The representation-specific macros should not normally be used *directly* at all; they are invoked automatically from the generic macros. However, code that needs to be highly, highly optimized might choose to take a loop and write two versions of it, one for each representation, to avoid the per-loop-iteration cost of a comparison. Until the macro interface is rock stable and solid, we should strongly discourage such nanosecond optimizations. @end enumerate ========================================================================== - UTF-16 compatible representation ========================================================================== NOTE: One possible default internal representation that was compatible with UTF16 but allowed all possible chars in UCS4 would be to take a more-or-less unused range of 2048 chars (not from the private area because Microsoft actually uses up most or all of it with EUDC chars). Let's say we picked A400 - ABFF. Then, we'd have: 0000 - FFFF Simple chars D[8-B]xx D[C-F]xx Surrogate char, represents 1M chars A[4-B]xx D[C-F]xx D[C-F]xx Surrogate char, represents 2G chars This is exactly the same number of chars as UCS-4 handles, and it follows the same property as UTF8 and Mule-internal: @enumerate @item There are two disjoint groupings of units, one representing leading units and one representing non-leading units. @item Given a leading unit, you immediately know how many units follow to make up a valid char, irrespective of any other context. @end enumerate Note that A4xx is actually currently assigned to Yi. Since this is an internal representation, we could just move these elsewhere. An alternative is to pick two disjoint ranges, e.g. 2D00 - 2DFF and A500 - ABFF. ========================================================================== New API for char->font mapping ========================================================================== - ; supersedes charset-registry and CCL; supports all windows systems; powerful enough for Unicode; etc. (charset-font-mapping charset) font-mapping-specifier string char-font-mapping-table char-table, specifier; elements of char table are either strings (which specify a registry or comparable font property, or vectors of a string (same) followed by keyword-value pairs (optional). The only allowable keyword currently is :ccl-program, which specifies a CCL program to map the characters into font indices. Other keywords may be added e.g. allowing Elisp fragments instead of CCL programs, also allowed is [inherit], which inherits from the next less-specific char-table in the specifier. The preferred interface onto this mapping (which should be portable across Emacsen) is (set-char-font-mapping key value &optional locale tag-set how-to-add) where key is a char, range or charset (as for put-char-table), value is as above, and the other arguments are standard for specifiers. This automatically creates a char table in the locale, as necessary (all elements default to [inherit]). On GNU Emacs, some specifiers arguments may be unimplemented. (char-font-mapping key value &optional locale) works vaguely like get-specifier? But does inheritance processing. locale should clearly default here to current-buffer #### should get-specifier as well? Would make it work most like #### buffer-local variables. NB. set-charset-registry and set-charset-ccl-program are obsoleted. ========================================================================== Implementing fixed-width 8,16,32 bit buffer optimizations ========================================================================== Add set-buffer-optimization (buffer &rest keywords) for controlling these things. Also, put in hack so that correct arglist can be retrieved by Lisp code. Look at the way keyword primitives are currently handled; make sure it works and is documented, etc. Implement 8-bit fixed width optimization. Take the things that know about the actual implementation and put them in a single file, in essence creating an abstraction layer to allow pluggable internal representations. Implement a fairly general scheme for mapping between character codes in the 8 bits or 16 bits representation and on actual charset characters. As part of set-buffer-optimization, you can specify a list of character sets to be used in the 8 bit to 16 bit, etc. world. You can also request that the buffer be in 8, 16, etc. if possible. -> set defaults wrt this. -> perhaps this should be just buffer properties. -> this brings up the idea of default properties on an object. -> Implement default-put, default-get, etc. What happens when a character not assigned in the range gets added? Then, must convert to variable width of some sort. Note: at first, possibly we just convert whole hog to get things right. Then we'd have to poy alternative to characters that got added + deleted that were unassigned in the fixed width. When this goes to zero and there's been enough time (heuristics), we go back to fixed. Side note: We could dynamically build up the set of assigned chars as they go. Conceivably this could even go down to the single char level: Just keep a big array of mapping from 16 bit values to chars, and add empty time, a char has been encountered that wasn't there before. Problem need inverse mapping. -> Possibility; chars are actual objects, not just numbers. Then you could keep track of such info in the chars itself. *Think about this.* Eventually, we might consider allowing mixed fixed-width, variable-width buffer encodings. Then, we use range tables to indicate which sections are fixed and which variable and INC_CHAR does something like this: binary search to find the current range, which indicates whether it's fixed or variable, and tells us what the increment is. We can cache this info and use it next time to speed up. -> We will then have two partially shared range tables - one for overall fixed width vs. variable width, and possibly one containing this same info, but partitioning the variable width in one. Maybe need fancier nested range table model. ========================================================================== Expansion of display table and case mapping table support for all chars, not just ASCII/Latin1. ========================================================================== ========================================================================== Improved flexibility for display tables, and evaluation of its features to make sure it meshes with and complements the char<->font mapping API mentioned earlier ========================================================================== ========================================================================== String access speedup: ========================================================================== For strings larger than some size in bytes (10?), keep extra fields of info: length in chars, and a (char, byte) pair in the middle to speed up sequential access. (Better idea: do this for any size string, but only if it contains non-ASCII chars. Then if info is missing, we know string is ASCII-only.) Use a string-extra-info object, replacing string property slot and containing fields for string mod tick, string extents, string props, and string char length, and cached (char,byte) pair. string-extra-info (or string-auxiliary?) objects could be in frob blocks, esp. if creating frob blocks is easy + worth it. - Caching of char<->byte conversions in strings - should make nearly all operations on strings O(N) ========================================================================== Improvements in buffer char<->byte mapping ========================================================================== - Range table implementation - especially when there are few runs of different widths, e.g. recently converted from fixed-width optimization to variable width Range Tables to speed up Bufpos <-> Bytind caching ================================================== This describes an alternative implementation using ranges. We maintain a range table of all spans of characters of a fixed width. Updating this table could take time if there are a large number of spans; but constant factors of operations should be quick. This method really wins when you have 8-bit buffers just converted to variable width, where there will be few spans. More specifically, lookup in this range table is O(log N) and can be done with simple binary search, which is very fast. If we maintain the ranges using a gap array, updating this table will be fast for local operations, which is most of the time. We will also provide (at first, at least) a Lisp function to set the caching mechanism explicitly - either range tables or the existing implementation. Eventually, we want to improve things, to the point where we automatically pick the right caching for the situation and have more caching schemes implemented. ========================================================================== - Robustify Text Properties ========================================================================== ========================================================================== Support for unified internal representation, e.g. Unicode ========================================================================== Start tagging all text with a language text property, indicating the current language environment when the text was input. (needs "Robustify Text Properties") ========================================================================== - Generalized Coding Systems ========================================================================== - Lisp API for Defining Coding Systems User-defined coding systems. (define-coding-system-type 'type :encode-function fun :decode-function fun :detect-function fun :buffering (number = at least this many chars line = buffer up to end of line regexp = buffer until this regexp is found in match source data. match data will be appropriate when fun is called encode fun is called as (encode instream outstream) should read data from instream and write converted result onto outstream. Can leave some data stuff in stream, it will reappear next time. Generally, there is a finite amount of data in instream and further attempts to read lead to would-block errors or retvals. Can use instream properties to record state. May use read-stream functionality to read everything into a vector or string. ->Need vectors + string exposed to resizing of Lisp implementation where necessary. ========================================================================== Support Windows Active Kbd Switching, Far East IME API (done already?) ========================================================================== ========================================================================== - UI/design changes for Coding System Pipelining ========================================================================== ------------------------------------------------------------------ CODING-SYSTEM CHAINS ------------------------------------------------------------------ sjt sez: There should be no elementary coding systems in the Lisp API, only chains. Chains should be declared, not computed, as a sequence of coding formats. (Probably the internal representation can be a vector for efficiency but programmers would probably rather work with lists.) A stream has a token type. Most streams are octet streams. Text is a stream of characters (in _internal_ format; a file on disk is not text!) An octet-stream has no implicit semantics, so its format must always be specified. The only type currently having semantics is characters. This means that the chain [euc-jp -> internal -> shift_jis) may be specified (euc-jp, shift_jis), and if no euc-jp -> shift_jis converter is available, then the chain is automatically constructed. (N.B. I f we have fixed width buffers in the future, then we could have ASCII -> 8-bit char -> 16-bit char -> ISO-2022-JP (with escape sequences). EOL handling is a char <-> char coding. It should not be part of another coding system except as a convenience for users. For text coding, automatically insert EOL handlers between char <-> octet boundaries. ------------------------------------------------------------------ ABOUT DETECTION ------------------------------------------------------------------ ------------------------------------------------------------------ EFFICIENCY OF CODING CONVERSION WITH MULTIPLE COPIES/CHAINS ------------------------------------------------------------------ A comment in encode_decode_coding_region(): The chain of streams looks like this: [BUFFER] <----- (( read from/send to loop )) ------> [CHAR->BYTE i.e. ENCODE AS BINARY if source is in bytes] ------> [ENCODE/DECODE AS SPECIFIED] ------> [BYTE->CHAR i.e. DECODE AS BINARY if sink is in bytes] ------> [AUTODETECT EOL if we're decoding and coding system calls for this] ------> [BUFFER] sjt (?) responds: Of course, this is just horrible. BYTE<->CHAR should only be available to I/O routines. It should not be visible to Mule proper. A comment on the implementation. Hrvoje and Kyle worry about the inefficiency of repeated copying among buffers that chained coding systems entail. But this may not be as time inefficient as it appears in the Mule ("house rules") context. The issue is how do you do chain coding systems without copying? In theory you could have IChar external_to_raw (ExtChar *cp, State *s); IChar decode_utf16 (IChar c, State *s); IChar decode_crlf (ExtChar *cp, State *s); typedef Ichar (*Converter[]) (Ichar, State*); Converter utf16[2] = { &decode_utf16, &decode_crlf }; void convert (ExtChar *inbuf, IChar *outbuf, Converter cvtr) { int i; ExtChar c; State s; while (c = external_to_raw (*inbuf++, &s)) { for (i = 0; i < sizeof(cvtr)/sizeof(Converter); ++i) if (s.ready) c = (*cvtr[i]) (c, &s); } if (s.ready) *outbuf++ = c; } But this is a lot of function calls; what Ben is doing is basically reducing this to one call per buffer-full. The only way to avoid this is to hardcode all the "interesting" coding systems, maybe using inline or macros to give structure. But this is still a huge amount of work, and code. One advantage to the call-per-char approach is that we might be able to do something about the marker/extent destruction that coding normally entails. ben sez: it should be possible to preserve the markers/extents without switching completely to one-call-per-char -- we could at least do one call per "run", where a run is more or less the maximal stretch of text not overlapping any markers or extent boundaries. (It's a bit more complicated if we want to properly support the different extent begins/ends; in some cases we might have to pump a single character adjacent to where two extents meet.) The "stateless" way that I wrote all of the conversion routines may be a real hassle but it allows something like this to work without too much problem -- pump in one run at a time into one end of the chain, do a flush after each iteration, and stick what comes out the other end in its place. ------------------------------------------------------------------ ABOUT FORMATS ------------------------------------------------------------------ when calling make-coding-system, the name can be a cons of (format1 . format2), specifying that it decodes format1->format2 and encodes the other way. if only one name is given, that is assumed to be format1, and the other is either `external' or `internal' depending on the end type. normally the user when decoding gives the decoding order in formats, but can leave off the last one, `internal', which is assumed. a multichain might look like gzip|multibyte|unicode, using the coding systems named `gzip', `(unicode . multibyte)' and `unicode'. the way this actually works is by searching for gzip->multibyte; if not found, look for gzip->external or gzip->internal. (In general we automatically do conversion between internal and external as necessary: thus gzip|crlf does the expected, and maps to gzip->external, external->internal, crlf->internal, which when fully specified would be gzip|external:external|internal:crlf|internal -- see below.) To forcibly fit together two converters that have explicitly specified and incompatible names (say you have unicode->multibyte and iso8859-1->ebcdic and you know that the multibyte and iso8859-1 in this case are compatible), you can force-cast using :, like this: ebcdic|iso8859-1:multibyte|unicode. (again, if you force-cast between internal and external formats, the conversion happens automatically.) -------------------------------------------------------------------------- ABOUT PDUMP, UNICODE, AND RUNNING XEMACS FROM A DIRECTORY WITH WEIRD CHARS -------------------------------------------------------------------------- -- there's the problem that XEmacs can't be run in a directory with non-ASCII/Latin-1 chars in it, since it will be doing Unicode processing before we've had a chance to load the tables. In fact, even finding the tables in such a situation is problematic using the normal commands. my idea is to eventually load the stuff extremely extremely early, at the same time as the pdump data gets loaded. in fact, the unicode table data (stored in an efficient binary format) can even be stuck into the pdump file (which would mean as a resource to the executable, for windows). we'd need to extend pdump a bit: to allow for attaching extra data to the pdump file. (something like pdump_attach_extra_data (addr, length) returns a number of some sort, an index into the file, which you can then retrieve with pdump_load_extra_data(), which returns an addr (mmap()ed or loaded), and later you pdump_unload_extra_data() when finished. we'd probably also need pdump_attach_extra_data_append(), which appends data to the data just written out with pdump_attach_extra_data(). this way, multiple tables in memory can be written out into one contiguous table. (we'd use the tar-like trick of allowing new blocks to be written without going back to change the old blocks -- we just rely on the end of file/end of memory.) this same mechanism could be extracted out of pdump and used to handle the non-pdump situation (or alternatively, we could just dump either the memory image of the tables themselves or the compressed binary version). in the case of extra unicode tables not known about at compile time that get loaded before dumping, we either just dump them into the image (pdump and all) or extract them into the compressed binary format, free the original tables, and treat them like all other tables. ========================================================================== - Generalized language appropriate word wrapping (requires layout-exposing API defined in BIDI section) ========================================================================== ========================================================================== - Make Custom Mule-aware ========================================================================== ========================================================================== - Composite character support ========================================================================== ========================================================================== - Language appropriate sorting and searching ========================================================================== ========================================================================== - Glyph shaping for Arabic and Devanagari ========================================================================== - (needs to be handled mostly at C level, as part of layout; luckily it's entirely local in its changes, as this is not hard) ========================================================================== Consider moving language selection Menu up to be parallel with Mule menu ========================================================================== */ /************************************************************************/ /* declarations */ /************************************************************************/ Eistring the_eistring_zero_init, the_eistring_malloc_zero_init; #define MAX_CHARBPOS_GAP_SIZE_3 (65535/3) #define MAX_BYTEBPOS_GAP_SIZE_3 (3 * MAX_CHARBPOS_GAP_SIZE_3) short three_to_one_table[1 + MAX_BYTEBPOS_GAP_SIZE_3]; #ifdef MULE /* Table of number of bytes in the string representation of a character indexed by the first byte of that representation. rep_bytes_by_first_byte(c) is more efficient than the equivalent canonical computation: XCHARSET_REP_BYTES (charset_by_leading_byte (c)) */ const Bytecount rep_bytes_by_first_byte[0xA0] = { /* 0x00 - 0x7f are for straight ASCII */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x80 - 0x8f are for Dimension-1 official charsets */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x90 - 0x9d are for Dimension-2 official charsets */ /* 0x9e is for Dimension-1 private charsets */ /* 0x9f is for Dimension-2 private charsets */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4 }; #ifdef ENABLE_COMPOSITE_CHARS /* Hash tables for composite chars. One maps string representing composed chars to their equivalent chars; one goes the other way. */ Lisp_Object Vcomposite_char_char2string_hash_table; Lisp_Object Vcomposite_char_string2char_hash_table; static int composite_char_row_next; static int composite_char_col_next; #endif /* ENABLE_COMPOSITE_CHARS */ #endif /* MULE */ Lisp_Object QSin_char_byte_conversion; Lisp_Object QSin_internal_external_conversion; /************************************************************************/ /* qxestr***() functions */ /************************************************************************/ /* Most are inline functions in lisp.h */ int qxesprintf (Ibyte *buffer, const CIbyte *format, ...) { va_list args; int retval; va_start (args, format); retval = vsprintf ((Chbyte *) buffer, format, args); va_end (args); return retval; } /* strcasecmp() implementation from BSD */ static Ibyte strcasecmp_charmap[] = { 0000, 0001, 0002, 0003, 0004, 0005, 0006, 0007, 0010, 0011, 0012, 0013, 0014, 0015, 0016, 0017, 0020, 0021, 0022, 0023, 0024, 0025, 0026, 0027, 0030, 0031, 0032, 0033, 0034, 0035, 0036, 0037, 0040, 0041, 0042, 0043, 0044, 0045, 0046, 0047, 0050, 0051, 0052, 0053, 0054, 0055, 0056, 0057, 0060, 0061, 0062, 0063, 0064, 0065, 0066, 0067, 0070, 0071, 0072, 0073, 0074, 0075, 0076, 0077, 0100, 0141, 0142, 0143, 0144, 0145, 0146, 0147, 0150, 0151, 0152, 0153, 0154, 0155, 0156, 0157, 0160, 0161, 0162, 0163, 0164, 0165, 0166, 0167, 0170, 0171, 0172, 0133, 0134, 0135, 0136, 0137, 0140, 0141, 0142, 0143, 0144, 0145, 0146, 0147, 0150, 0151, 0152, 0153, 0154, 0155, 0156, 0157, 0160, 0161, 0162, 0163, 0164, 0165, 0166, 0167, 0170, 0171, 0172, 0173, 0174, 0175, 0176, 0177, 0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207, 0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217, 0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227, 0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237, 0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247, 0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257, 0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267, 0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277, 0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307, 0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317, 0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327, 0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337, 0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347, 0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357, 0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367, 0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377 }; /* A version that works like generic strcasecmp() -- only collapsing case in ASCII A-Z/a-z. This is safe on Mule strings due to the current representation. This version was written by some Berkeley coder, favoring nanosecond improvements over clarity. In all other versions below, we use symmetrical algorithms that may sacrifice a few machine cycles but are MUCH MUCH clearer, which counts a lot more. */ int qxestrcasecmp (const Ibyte *s1, const Ibyte *s2) { Ibyte *cm = strcasecmp_charmap; while (cm[*s1] == cm[*s2++]) if (*s1++ == '\0') return (0); return (cm[*s1] - cm[*--s2]); } int ascii_strcasecmp (const Ascbyte *s1, const Ascbyte *s2) { return qxestrcasecmp ((const Ibyte *) s1, (const Ibyte *) s2); } int qxestrcasecmp_ascii (const Ibyte *s1, const Ascbyte *s2) { return qxestrcasecmp (s1, (const Ibyte *) s2); } /* An internationalized version that collapses case in a general fashion. */ int qxestrcasecmp_i18n (const Ibyte *s1, const Ibyte *s2) { while (*s1 && *s2) { if (CANONCASE (0, itext_ichar (s1)) != CANONCASE (0, itext_ichar (s2))) break; INC_IBYTEPTR (s1); INC_IBYTEPTR (s2); } return (CANONCASE (0, itext_ichar (s1)) - CANONCASE (0, itext_ichar (s2))); } /* The only difference between these next two and qxememcasecmp()/qxememcasecmp_i18n() is that these two will stop if both strings are equal and less than LEN in length, while the mem...() versions would would run off the end. */ int qxestrncasecmp (const Ibyte *s1, const Ibyte *s2, Bytecount len) { Ibyte *cm = strcasecmp_charmap; while (len--) { int diff = cm[*s1] - cm[*s2]; if (diff != 0) return diff; if (!*s1) return 0; s1++, s2++; } return 0; } int ascii_strncasecmp (const Ascbyte *s1, const Ascbyte *s2, Bytecount len) { return qxestrncasecmp ((const Ibyte *) s1, (const Ibyte *) s2, len); } int qxestrncasecmp_ascii (const Ibyte *s1, const Ascbyte *s2, Bytecount len) { return qxestrncasecmp (s1, (const Ibyte *) s2, len); } /* Compare LEN_FROM_S1 worth of characters from S1 with the same number of characters from S2, case insensitive. NOTE: Downcasing can convert characters from one length in bytes to another, so reversing S1 and S2 is *NOT* a symmetric operations! You must choose a length that agrees with S1. */ int qxestrncasecmp_i18n (const Ibyte *s1, const Ibyte *s2, Bytecount len_from_s1) { while (len_from_s1 > 0) { const Ibyte *old_s1 = s1; int diff = (CANONCASE (0, itext_ichar (s1)) - CANONCASE (0, itext_ichar (s2))); if (diff != 0) return diff; if (!*s1) return 0; INC_IBYTEPTR (s1); INC_IBYTEPTR (s2); len_from_s1 -= s1 - old_s1; } return 0; } int qxememcmp (const Ibyte *s1, const Ibyte *s2, Bytecount len) { return memcmp (s1, s2, len); } int qxememcmp4 (const Ibyte *s1, Bytecount len1, const Ibyte *s2, Bytecount len2) { int retval = qxememcmp (s1, s2, min (len1, len2)); if (retval) return retval; return len1 - len2; } int qxememcasecmp (const Ibyte *s1, const Ibyte *s2, Bytecount len) { Ibyte *cm = strcasecmp_charmap; while (len--) { int diff = cm[*s1] - cm[*s2]; if (diff != 0) return diff; s1++, s2++; } return 0; } int qxememcasecmp4 (const Ibyte *s1, Bytecount len1, const Ibyte *s2, Bytecount len2) { int retval = qxememcasecmp (s1, s2, min (len1, len2)); if (retval) return retval; return len1 - len2; } /* Do a character-by-character comparison, returning "which is greater" by comparing the Ichar values. (#### Should have option to compare Unicode points) */ int qxetextcmp (const Ibyte *s1, Bytecount len1, const Ibyte *s2, Bytecount len2) { while (len1 > 0 && len2 > 0) { const Ibyte *old_s1 = s1; const Ibyte *old_s2 = s2; int diff = itext_ichar (s1) - itext_ichar (s2); if (diff != 0) return diff; INC_IBYTEPTR (s1); INC_IBYTEPTR (s2); len1 -= s1 - old_s1; len2 -= s2 - old_s2; } assert (len1 >= 0 && len2 >= 0); return len1 - len2; } int qxetextcmp_matching (const Ibyte *s1, Bytecount len1, const Ibyte *s2, Bytecount len2, Charcount *matching) { *matching = 0; while (len1 > 0 && len2 > 0) { const Ibyte *old_s1 = s1; const Ibyte *old_s2 = s2; int diff = itext_ichar (s1) - itext_ichar (s2); if (diff != 0) return diff; INC_IBYTEPTR (s1); INC_IBYTEPTR (s2); len1 -= s1 - old_s1; len2 -= s2 - old_s2; (*matching)++; } assert (len1 >= 0 && len2 >= 0); return len1 - len2; } /* Do a character-by-character comparison, returning "which is greater" by comparing the Ichar values, case insensitively (by downcasing both first). (#### Should have option to compare Unicode points) In this case, both lengths must be specified becaused downcasing can convert characters from one length in bytes to another; therefore, two blocks of text of different length might be equal. If both compare equal up to the limit in length of one but not the other, the longer one is "greater". */ int qxetextcasecmp (const Ibyte *s1, Bytecount len1, const Ibyte *s2, Bytecount len2) { while (len1 > 0 && len2 > 0) { const Ibyte *old_s1 = s1; const Ibyte *old_s2 = s2; int diff = (CANONCASE (0, itext_ichar (s1)) - CANONCASE (0, itext_ichar (s2))); if (diff != 0) return diff; INC_IBYTEPTR (s1); INC_IBYTEPTR (s2); len1 -= s1 - old_s1; len2 -= s2 - old_s2; } assert (len1 >= 0 && len2 >= 0); return len1 - len2; } /* Like qxetextcasecmp() but also return number of characters at beginning that match. */ int qxetextcasecmp_matching (const Ibyte *s1, Bytecount len1, const Ibyte *s2, Bytecount len2, Charcount *matching) { *matching = 0; while (len1 > 0 && len2 > 0) { const Ibyte *old_s1 = s1; const Ibyte *old_s2 = s2; int diff = (CANONCASE (0, itext_ichar (s1)) - CANONCASE (0, itext_ichar (s2))); if (diff != 0) return diff; INC_IBYTEPTR (s1); INC_IBYTEPTR (s2); len1 -= s1 - old_s1; len2 -= s2 - old_s2; (*matching)++; } assert (len1 >= 0 && len2 >= 0); return len1 - len2; } int lisp_strcasecmp_ascii (Lisp_Object s1, Lisp_Object s2) { Ibyte *cm = strcasecmp_charmap; Ibyte *p1 = XSTRING_DATA (s1); Ibyte *p2 = XSTRING_DATA (s2); Ibyte *e1 = p1 + XSTRING_LENGTH (s1); Ibyte *e2 = p2 + XSTRING_LENGTH (s2); /* again, we use a symmetric algorithm and favor clarity over nanosecond improvements. */ while (1) { /* if we reached the end of either string, compare lengths. do NOT compare the final null byte against anything, in case the other string also has a null byte at that position. */ if (p1 == e1 || p2 == e2) return e1 - e2; if (cm[*p1] != cm[*p2]) return cm[*p1] - cm[*p2]; p1++, p2++; } } int lisp_strcasecmp_i18n (Lisp_Object s1, Lisp_Object s2) { return qxetextcasecmp (XSTRING_DATA (s1), XSTRING_LENGTH (s1), XSTRING_DATA (s2), XSTRING_LENGTH (s2)); } /* Compare a wide string with an ASCII string */ int wcscmp_ascii (const wchar_t *s1, const Ascbyte *s2) { while (*s1 && *s2) { if (*s1 != (wchar_t) *s2) break; s1++, s2++; } return *s1 - *s2; } int wcsncmp_ascii (const wchar_t *s1, const Ascbyte *s2, Charcount len) { while (len--) { int diff = *s1 - *s2; if (diff != 0) return diff; if (!*s1) return 0; s1++, s2++; } return 0; } /************************************************************************/ /* conversion between textual representations */ /************************************************************************/ /* NOTE: Does not reset the Dynarr. */ void convert_ibyte_string_into_ichar_dynarr (const Ibyte *str, Bytecount len, Ichar_dynarr *dyn) { const Ibyte *strend = str + len; while (str < strend) { Ichar ch = itext_ichar (str); Dynarr_add (dyn, ch); INC_IBYTEPTR (str); } } Charcount convert_ibyte_string_into_ichar_string (const Ibyte *str, Bytecount len, Ichar *arr) { const Ibyte *strend = str + len; Charcount newlen = 0; while (str < strend) { Ichar ch = itext_ichar (str); arr[newlen++] = ch; INC_IBYTEPTR (str); } return newlen; } /* Convert an array of Ichars into the equivalent string representation. Store into the given Ibyte dynarr. Does not reset the dynarr. Does not add a terminating zero. */ void convert_ichar_string_into_ibyte_dynarr (Ichar *arr, int nels, Ibyte_dynarr *dyn) { Ibyte str[MAX_ICHAR_LEN]; int i; for (i = 0; i < nels; i++) { Bytecount len = set_itext_ichar (str, arr[i]); Dynarr_add_many (dyn, str, len); } } /* Convert an array of Ichars into the equivalent string representation. Malloc the space needed for this and return it. If LEN_OUT is not a NULL pointer, store into LEN_OUT the number of Ibytes in the malloc()ed string. Note that the actual number of Ibytes allocated is one more than this: the returned string is zero-terminated. */ Ibyte * convert_ichar_string_into_malloced_string (Ichar *arr, int nels, Bytecount *len_out) { /* Damn zero-termination. */ Ibyte *str = alloca_ibytes (nels * MAX_ICHAR_LEN + 1); Ibyte *strorig = str; Bytecount len; int i; for (i = 0; i < nels; i++) str += set_itext_ichar (str, arr[i]); *str = '\0'; len = str - strorig; str = xnew_ibytes (1 + len); memcpy (str, strorig, 1 + len); if (len_out) *len_out = len; return str; } #define COPY_TEXT_BETWEEN_FORMATS(srcfmt, dstfmt) \ do \ { \ if (dst) \ { \ Ibyte *dstend = dst + dstlen; \ Ibyte *dstp = dst; \ const Ibyte *srcend = src + srclen; \ const Ibyte *srcp = src; \ \ while (srcp < srcend) \ { \ Ichar ch = itext_ichar_fmt (srcp, srcfmt, srcobj); \ Bytecount len = ichar_len_fmt (ch, dstfmt); \ \ if (dstp + len <= dstend) \ { \ (void) set_itext_ichar_fmt (dstp, ch, dstfmt, dstobj); \ dstp += len; \ } \ else \ break; \ INC_IBYTEPTR_FMT (srcp, srcfmt); \ } \ text_checking_assert (srcp <= srcend); \ if (src_used) \ *src_used = srcp - src; \ return dstp - dst; \ } \ else \ { \ const Ibyte *srcend = src + srclen; \ const Ibyte *srcp = src; \ Bytecount total = 0; \ \ while (srcp < srcend) \ { \ total += ichar_len_fmt (itext_ichar_fmt (srcp, srcfmt, \ srcobj), dstfmt); \ INC_IBYTEPTR_FMT (srcp, srcfmt); \ } \ text_checking_assert (srcp == srcend); \ if (src_used) \ *src_used = srcp - src; \ return total; \ } \ } \ while (0) /* Copy as much text from SRC/SRCLEN to DST/DSTLEN as will fit, converting from SRCFMT/SRCOBJ to DSTFMT/DSTOBJ. Return number of bytes stored into DST as return value, and number of bytes copied from SRC through SRC_USED (if not NULL). If DST is NULL, don't actually store anything and just return the size needed to store all the text. Will not copy partial characters into DST. */ Bytecount copy_text_between_formats (const Ibyte *src, Bytecount srclen, Internal_Format srcfmt, Lisp_Object USED_IF_MULE (srcobj), Ibyte *dst, Bytecount dstlen, Internal_Format dstfmt, Lisp_Object USED_IF_MULE (dstobj), Bytecount *src_used) { if (srcfmt == dstfmt && objects_have_same_internal_representation (srcobj, dstobj)) { if (dst) { srclen = min (srclen, dstlen); srclen = validate_ibyte_string_backward (src, srclen); memcpy (dst, src, srclen); if (src_used) *src_used = srclen; return srclen; } else return srclen; } /* Everything before the final else statement is an optimization. The inner loops inside COPY_TEXT_BETWEEN_FORMATS() have a number of calls to *_fmt(), each of which has a switch statement in it. By using constants as the FMT argument, these switch statements will be optimized out of existence. */ #define ELSE_FORMATS(fmt1, fmt2) \ else if (srcfmt == fmt1 && dstfmt == fmt2) \ COPY_TEXT_BETWEEN_FORMATS (fmt1, fmt2) ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_8_BIT_FIXED); ELSE_FORMATS (FORMAT_8_BIT_FIXED, FORMAT_DEFAULT); ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_32_BIT_FIXED); ELSE_FORMATS (FORMAT_32_BIT_FIXED, FORMAT_DEFAULT); else COPY_TEXT_BETWEEN_FORMATS (srcfmt, dstfmt); #undef ELSE_FORMATS } /* Copy as much buffer text in BUF, starting at POS, of length LEN, as will fit into DST/DSTLEN, converting to DSTFMT. Return number of bytes stored into DST as return value, and number of bytes copied from BUF through SRC_USED (if not NULL). If DST is NULL, don't actually store anything and just return the size needed to store all the text. */ Bytecount copy_buffer_text_out (struct buffer *buf, Bytebpos pos, Bytecount len, Ibyte *dst, Bytecount dstlen, Internal_Format dstfmt, Lisp_Object dstobj, Bytecount *src_used) { Bytecount dst_used = 0; if (src_used) *src_used = 0; { BUFFER_TEXT_LOOP (buf, pos, len, runptr, runlen) { Bytecount the_src_used, the_dst_used; the_dst_used = copy_text_between_formats (runptr, runlen, BUF_FORMAT (buf), wrap_buffer (buf), dst, dstlen, dstfmt, dstobj, &the_src_used); dst_used += the_dst_used; if (src_used) *src_used += the_src_used; if (dst) { dst += the_dst_used; dstlen -= the_dst_used; /* Stop if we didn't use all of the source text. Also stop if the destination is full. We need the first test because there might be a couple bytes left in the destination, but not enough to fit a full character. The first test will in fact catch the vast majority of cases where the destination is empty, too -- but in case the destination holds *exactly* the run length, we put in the second check. (It shouldn't really matter though -- next time through we'll just get a 0.) */ if (the_src_used < runlen || !dstlen) break; } } } return dst_used; } /************************************************************************/ /* charset properties of strings */ /************************************************************************/ void find_charsets_in_ibyte_string (unsigned char *charsets, const Ibyte *USED_IF_MULE (str), Bytecount USED_IF_MULE (len)) { #ifndef MULE /* Telescope this. */ charsets[0] = 1; #else const Ibyte *strend = str + len; memset (charsets, 0, NUM_LEADING_BYTES); /* #### SJT doesn't like this. */ if (len == 0) { charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - MIN_LEADING_BYTE] = 1; return; } while (str < strend) { charsets[ichar_leading_byte (itext_ichar (str)) - MIN_LEADING_BYTE] = 1; INC_IBYTEPTR (str); } #endif } void find_charsets_in_ichar_string (unsigned char *charsets, const Ichar *USED_IF_MULE (str), Charcount USED_IF_MULE (len)) { #ifndef MULE /* Telescope this. */ charsets[0] = 1; #else int i; memset (charsets, 0, NUM_LEADING_BYTES); /* #### SJT doesn't like this. */ if (len == 0) { charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - MIN_LEADING_BYTE] = 1; return; } for (i = 0; i < len; i++) { charsets[ichar_leading_byte (str[i]) - MIN_LEADING_BYTE] = 1; } #endif } /* A couple of these functions should only be called on a non-Mule build. */ #ifdef MULE #define ASSERT_BUILT_WITH_MULE() assert(1) #else /* MULE */ #define ASSERT_BUILT_WITH_MULE() assert(0) #endif /* MULE */ int ibyte_string_displayed_columns (const Ibyte *str, Bytecount len) { int cols = 0; const Ibyte *end = str + len; Ichar ch; ASSERT_BUILT_WITH_MULE(); while (str < end) { ch = itext_ichar (str); cols += XCHARSET_COLUMNS (ichar_charset (ch)); INC_IBYTEPTR (str); } return cols; } int ichar_string_displayed_columns (const Ichar * USED_IF_MULE(str), Charcount len) { int cols = 0; int i; ASSERT_BUILT_WITH_MULE(); for (i = 0; i < len; i++) cols += XCHARSET_COLUMNS (ichar_charset (str[i])); return cols; } Charcount ibyte_string_nonascii_chars (const Ibyte *USED_IF_MULE (str), Bytecount USED_IF_MULE (len)) { #ifdef MULE const Ibyte *end = str + len; Charcount retval = 0; while (str < end) { if (!byte_ascii_p (*str)) retval++; INC_IBYTEPTR (str); } return retval; #else return 0; #endif } /***************************************************************************/ /* Eistring helper functions */ /***************************************************************************/ int eistr_casefiddle_1 (Ibyte *olddata, Bytecount len, Ibyte *newdata, int downp) { Ibyte *endp = olddata + len; Ibyte *newp = newdata; int changedp = 0; while (olddata < endp) { Ichar c = itext_ichar (olddata); Ichar newc; if (downp) newc = DOWNCASE (0, c); else newc = UPCASE (0, c); if (c != newc) changedp = 1; newp += set_itext_ichar (newp, newc); INC_IBYTEPTR (olddata); } *newp = '\0'; return changedp ? newp - newdata : 0; } int eifind_large_enough_buffer (int oldbufsize, int needed_size) { while (oldbufsize < needed_size) { oldbufsize = oldbufsize * 3 / 2; oldbufsize = max (oldbufsize, 32); } return oldbufsize; } void eito_malloc_1 (Eistring *ei) { if (ei->mallocp_) return; ei->mallocp_ = 1; if (ei->data_) { Ibyte *newdata; ei->max_size_allocated_ = eifind_large_enough_buffer (0, ei->bytelen_ + 1); newdata = xnew_ibytes (ei->max_size_allocated_); memcpy (newdata, ei->data_, ei->bytelen_ + 1); ei->data_ = newdata; } if (ei->extdata_) { Extbyte *newdata = xnew_extbytes (ei->extlen_ + 2); memcpy (newdata, ei->extdata_, ei->extlen_); /* Double null-terminate in case of Unicode data */ newdata[ei->extlen_] = '\0'; newdata[ei->extlen_ + 1] = '\0'; ei->extdata_ = newdata; } } int eicmp_1 (Eistring *ei, Bytecount off, Charcount charoff, Bytecount len, Charcount charlen, const Ibyte *data, const Eistring *ei2, int is_ascii, int fold_case) { assert ((data == 0) != (ei == 0)); assert ((is_ascii != 0) == (data != 0)); assert (fold_case >= 0 && fold_case <= 2); assert ((off < 0) != (charoff < 0)); if (off < 0) { off = charcount_to_bytecount (ei->data_, charoff); if (charlen < 0) len = -1; else len = charcount_to_bytecount (ei->data_ + off, charlen); } if (len < 0) len = ei->bytelen_ - off; assert (off >= 0 && off <= ei->bytelen_); assert (len >= 0 && off + len <= ei->bytelen_); { Bytecount dstlen; const Ibyte *src = ei->data_, *dst; if (data) { dst = data; dstlen = qxestrlen (data); } else { dst = ei2->data_; dstlen = ei2->bytelen_; } if (is_ascii) ASSERT_ASCTEXT_ASCII_LEN ((Ascbyte *) dst, dstlen); return (fold_case == 0 ? qxememcmp4 (src, len, dst, dstlen) : fold_case == 1 ? qxememcasecmp4 (src, len, dst, dstlen) : qxetextcasecmp (src, len, dst, dstlen)); } } Ibyte * eicpyout_malloc_fmt (Eistring *eistr, Bytecount *len_out, Internal_Format fmt, Lisp_Object UNUSED (object)) { Ibyte *ptr; assert (fmt == FORMAT_DEFAULT); ptr = xnew_array (Ibyte, eistr->bytelen_ + 1); if (len_out) *len_out = eistr->bytelen_; memcpy (ptr, eistr->data_, eistr->bytelen_ + 1); return ptr; } /************************************************************************/ /* Charcount/Bytecount conversion */ /************************************************************************/ /* Optimization. Do it. Live it. Love it. */ #ifdef MULE #ifdef EFFICIENT_INT_128_BIT # define STRIDE_TYPE INT_128_BIT # define HIGH_BIT_MASK \ MAKE_128_BIT_UNSIGNED_CONSTANT (0x80808080808080808080808080808080) #elif defined (EFFICIENT_INT_64_BIT) # define STRIDE_TYPE INT_64_BIT # define HIGH_BIT_MASK MAKE_64_BIT_UNSIGNED_CONSTANT (0x8080808080808080) #else # define STRIDE_TYPE INT_32_BIT # define HIGH_BIT_MASK MAKE_32_BIT_UNSIGNED_CONSTANT (0x80808080) #endif #define ALIGN_BITS ((EMACS_UINT) (ALIGNOF (STRIDE_TYPE) - 1)) #define ALIGN_MASK (~ ALIGN_BITS) #define ALIGNED(ptr) ((((EMACS_UINT) ptr) & ALIGN_BITS) == 0) #define STRIDE sizeof (STRIDE_TYPE) /* Skip as many ASCII bytes as possible in the memory block [PTR, END). Return pointer to the first non-ASCII byte. optimized for long stretches of ASCII. */ inline static const Ibyte * skip_ascii (const Ibyte *ptr, const Ibyte *end) { const unsigned STRIDE_TYPE *ascii_end; /* Need to do in 3 sections -- before alignment start, aligned chunk, after alignment end. */ while (!ALIGNED (ptr)) { if (ptr == end || !byte_ascii_p (*ptr)) return ptr; ptr++; } ascii_end = (const unsigned STRIDE_TYPE *) ptr; /* This loop screams, because we can detect ASCII characters 4 or 8 at a time. */ while ((const Ibyte *) ascii_end + STRIDE <= end && !(*ascii_end & HIGH_BIT_MASK)) ascii_end++; ptr = (Ibyte *) ascii_end; while (ptr < end && byte_ascii_p (*ptr)) ptr++; return ptr; } /* Skip as many ASCII bytes as possible in the memory block [END, PTR), going downwards. Return pointer to the location above the first non-ASCII byte. Optimized for long stretches of ASCII. */ inline static const Ibyte * skip_ascii_down (const Ibyte *ptr, const Ibyte *end) { const unsigned STRIDE_TYPE *ascii_end; /* Need to do in 3 sections -- before alignment start, aligned chunk, after alignment end. */ while (!ALIGNED (ptr)) { if (ptr == end || !byte_ascii_p (*(ptr - 1))) return ptr; ptr--; } ascii_end = (const unsigned STRIDE_TYPE *) ptr - 1; /* This loop screams, because we can detect ASCII characters 4 or 8 at a time. */ while ((const Ibyte *) ascii_end >= end && !(*ascii_end & HIGH_BIT_MASK)) ascii_end--; ptr = (Ibyte *) (ascii_end + 1); while (ptr > end && byte_ascii_p (*(ptr - 1))) ptr--; return ptr; } /* Function equivalents of bytecount_to_charcount/charcount_to_bytecount. These work on strings of all sizes but are more efficient than a simple loop on large strings and probably less efficient on sufficiently small strings. */ Charcount bytecount_to_charcount_fun (const Ibyte *ptr, Bytecount len) { Charcount count = 0; const Ibyte *end = ptr + len; while (1) { const Ibyte *newptr = skip_ascii (ptr, end); count += newptr - ptr; ptr = newptr; if (ptr == end) break; { /* Optimize for successive characters from the same charset */ Ibyte leading_byte = *ptr; int bytes = rep_bytes_by_first_byte (leading_byte); while (ptr < end && *ptr == leading_byte) ptr += bytes, count++; } } /* Bomb out if the specified substring ends in the middle of a character. Note that we might have already gotten a core dump above from an invalid reference, but at least we will get no farther than here. This also catches len < 0. */ text_checking_assert (ptr == end); return count; } Bytecount charcount_to_bytecount_fun (const Ibyte *ptr, Charcount len) { const Ibyte *newptr = ptr; while (1) { const Ibyte *newnewptr = skip_ascii (newptr, newptr + len); len -= newnewptr - newptr; newptr = newnewptr; if (!len) break; { /* Optimize for successive characters from the same charset */ Ibyte leading_byte = *newptr; int bytes = rep_bytes_by_first_byte (leading_byte); while (len > 0 && *newptr == leading_byte) newptr += bytes, len--; } } return newptr - ptr; } /* Function equivalent of charcount_to_bytecount_down. This works on strings of all sizes but is more efficient than a simple loop on large strings and probably less efficient on sufficiently small strings. */ Bytecount charcount_to_bytecount_down_fun (const Ibyte *ptr, Charcount len) { const Ibyte *newptr = ptr; while (1) { const Ibyte *newnewptr = skip_ascii_down (newptr, newptr - len); len -= newptr - newnewptr; newptr = newnewptr; /* Skip over all non-ASCII chars, counting the length and stopping if it's zero */ while (len && !byte_ascii_p (*(newptr - 1))) if (ibyte_first_byte_p (*--newptr)) len--; if (!len) break; } text_checking_assert (ptr - newptr >= 0); return ptr - newptr; } /* The next two functions are the actual meat behind the charbpos-to-bytebpos and bytebpos-to-charbpos conversions. Currently the method they use is fairly unsophisticated; see buffer.h. Note that charbpos_to_bytebpos_func() is probably the most-called function in all of XEmacs. Therefore, it must be FAST FAST FAST. This is the reason why so much of the code is duplicated. Similar considerations apply to bytebpos_to_charbpos_func(), although less so because the function is not called so often. */ /* Info on Byte-Char conversion: (Info-goto-node "(internals)Byte-Char Position Conversion") */ #ifdef OLD_BYTE_CHAR static int not_very_random_number; #endif /* OLD_BYTE_CHAR */ #define OLD_LOOP /* If we are this many characters away from any known position, cache the new position in the buffer's char-byte cache. */ #define FAR_AWAY_DISTANCE 5000 /* Converting between character positions and byte positions. */ /* There are several places in the buffer where we know the correspondence: BEG, BEGV, PT, GPT, ZV and Z, and everywhere there is a marker. So we find the one of these places that is closest to the specified position, and scan from there. */ /* This macro is a subroutine of charbpos_to_bytebpos_func. Note that it is desirable that BYTEPOS is not evaluated except when we really want its value. */ #define CONSIDER(CHARPOS, BYTEPOS) \ do \ { \ Charbpos this_charpos = (CHARPOS); \ int changed = 0; \ \ if (this_charpos == x) \ { \ retval = (BYTEPOS); \ goto done; \ } \ else if (this_charpos > x) \ { \ if (this_charpos < best_above) \ { \ best_above = this_charpos; \ best_above_byte = (BYTEPOS); \ changed = 1; \ } \ } \ else if (this_charpos > best_below) \ { \ best_below = this_charpos; \ best_below_byte = (BYTEPOS); \ changed = 1; \ } \ \ if (changed) \ { \ if (best_above - best_below == best_above_byte - best_below_byte) \ { \ retval = best_below_byte + (x - best_below); \ goto done; \ } \ } \ } \ while (0) Bytebpos charbpos_to_bytebpos_func (struct buffer *buf, Charbpos x) { #ifdef OLD_BYTE_CHAR Charbpos bufmin; Charbpos bufmax; Bytebpos bytmin; Bytebpos bytmax; int size; int forward_p; int diff_so_far; int add_to_cache = 0; #endif /* OLD_BYTE_CHAR */ Charbpos best_above, best_below; Bytebpos best_above_byte, best_below_byte; int i; struct buffer_text *t; Bytebpos retval; PROFILE_DECLARE (); PROFILE_RECORD_ENTERING_SECTION (QSin_char_byte_conversion); best_above = BUF_Z (buf); best_above_byte = BYTE_BUF_Z (buf); /* In this case, we simply have all one-byte characters. But this should have been intercepted before, in charbpos_to_bytebpos(). */ text_checking_assert (best_above != best_above_byte); best_below = BUF_BEG (buf); best_below_byte = BYTE_BUF_BEG (buf); /* We find in best_above and best_above_byte the closest known point above CHARPOS, and in best_below and best_below_byte the closest known point below CHARPOS, If at any point we can tell that the space between those two best approximations is all single-byte, we interpolate the result immediately. */ CONSIDER (BUF_PT (buf), BYTE_BUF_PT (buf)); CONSIDER (BUF_GPT (buf), BYTE_BUF_GPT (buf)); CONSIDER (BUF_BEGV (buf), BYTE_BUF_BEGV (buf)); CONSIDER (BUF_ZV (buf), BYTE_BUF_ZV (buf)); t = buf->text; CONSIDER (t->cached_charpos, t->cached_bytepos); /* Check the most recently entered positions first */ for (i = t->next_cache_pos - 1; i >= 0; i--) { CONSIDER (t->mule_charbpos_cache[i], t->mule_bytebpos_cache[i]); /* If we are down to a range of 50 chars, don't bother checking any other markers; scan the intervening chars directly now. */ if (best_above - best_below < 50) break; } /* We get here if we did not exactly hit one of the known places. We have one known above and one known below. Scan, counting characters, from whichever one is closer. */ if (x - best_below < best_above - x) { int record = x - best_below > FAR_AWAY_DISTANCE; #ifdef OLD_LOOP /* old code */ while (best_below != x) { best_below++; INC_BYTEBPOS (buf, best_below_byte); } #else text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); /* The gap should not occur between best_below and x, or we will be screwed in using charcount_to_bytecount(). It should not be exactly at x either, because we already should have caught that. */ text_checking_assert (BUF_CEILING_OF_IGNORE_ACCESSIBLE (buf, best_below) > x); /* Using charcount_to_bytecount() is potentially a lot faster than a simple loop using INC_BYTEBPOS() because (a) the checks for gap and buffer format are factored out instead of getting checked every time; (b) the checking goes 4 or 8 bytes at a time in ASCII text. */ best_below_byte += charcount_to_bytecount (BYTE_BUF_BYTE_ADDRESS (buf, best_below_byte), x - best_below); best_below = x; #endif /* 0 */ /* If this position is quite far from the nearest known position, cache the correspondence. NB FSF does this: "... by creating a marker here. It will last until the next GC." */ if (record) { /* If we have run out of positions to record, discard some of the old ones. I used to use a circular buffer, which avoids the need to block-move any memory. But it makes it more difficult to keep track of which positions haven't been used -- commonly we haven't yet filled out anywhere near the whole set of positions and don't want to check them all. We should not be recording that often, and block-moving is extremely fast in any case. --ben */ if (t->next_cache_pos == NUM_CACHED_POSITIONS) { memmove (t->mule_charbpos_cache, t->mule_charbpos_cache + NUM_MOVED_POSITIONS, sizeof (Charbpos) * (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); memmove (t->mule_bytebpos_cache, t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, sizeof (Bytebpos) * (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); t->next_cache_pos -= NUM_MOVED_POSITIONS; } t->mule_charbpos_cache[t->next_cache_pos] = best_below; t->mule_bytebpos_cache[t->next_cache_pos] = best_below_byte; t->next_cache_pos++; } t->cached_charpos = best_below; t->cached_bytepos = best_below_byte; retval = best_below_byte; text_checking_assert (best_below_byte >= best_below); goto done; } else { int record = best_above - x > FAR_AWAY_DISTANCE; #ifdef OLD_LOOP while (best_above != x) { best_above--; DEC_BYTEBPOS (buf, best_above_byte); } #else text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); /* The gap should not occur between best_above and x, or we will be screwed in using charcount_to_bytecount_down(). It should not be exactly at x either, because we already should have caught that. */ text_checking_assert (BUF_FLOOR_OF_IGNORE_ACCESSIBLE (buf, best_above) < x); /* Using charcount_to_bytecount_down() is potentially a lot faster than a simple loop using DEC_BYTEBPOS(); see above. */ best_above_byte -= charcount_to_bytecount_down /* BYTE_BUF_BYTE_ADDRESS will return a value on the high side of the gap if we are at the gap, which is the wrong side. So do the following trick instead. */ (BYTE_BUF_BYTE_ADDRESS_BEFORE (buf, best_above_byte) + 1, best_above - x); best_above = x; #endif /* SLEDGEHAMMER_CHECK_TEXT */ /* If this position is quite far from the nearest known position, cache the correspondence. NB FSF does this: "... by creating a marker here. It will last until the next GC." */ if (record) { if (t->next_cache_pos == NUM_CACHED_POSITIONS) { memmove (t->mule_charbpos_cache, t->mule_charbpos_cache + NUM_MOVED_POSITIONS, sizeof (Charbpos) * (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); memmove (t->mule_bytebpos_cache, t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, sizeof (Bytebpos) * (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); t->next_cache_pos -= NUM_MOVED_POSITIONS; } t->mule_charbpos_cache[t->next_cache_pos] = best_above; t->mule_bytebpos_cache[t->next_cache_pos] = best_above_byte; t->next_cache_pos++; } t->cached_charpos = best_above; t->cached_bytepos = best_above_byte; retval = best_above_byte; text_checking_assert (best_above_byte >= best_above); goto done; } #ifdef OLD_BYTE_CHAR bufmin = buf->text->mule_bufmin; bufmax = buf->text->mule_bufmax; bytmin = buf->text->mule_bytmin; bytmax = buf->text->mule_bytmax; size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p; /* The basic idea here is that we shift the "known region" up or down until it overlaps the specified position. We do this by moving the upper bound of the known region up one character at a time, and moving the lower bound of the known region up as necessary when the size of the character just seen changes. We optimize this, however, by first shifting the known region to one of the cached points if it's close by. (We don't check BEG or Z, even though they're cached; most of the time these will be the same as BEGV and ZV, and when they're not, they're not likely to be used.) */ if (x > bufmax) { Charbpos diffmax = x - bufmax; Charbpos diffpt = x - BUF_PT (buf); Charbpos diffzv = BUF_ZV (buf) - x; /* #### This value could stand some more exploration. */ Charcount heuristic_hack = (bufmax - bufmin) >> 2; /* Check if the position is closer to PT or ZV than to the end of the known region. */ if (diffpt < 0) diffpt = -diffpt; if (diffzv < 0) diffzv = -diffzv; /* But also implement a heuristic that favors the known region over PT or ZV. The reason for this is that switching to PT or ZV will wipe out the knowledge in the known region, which might be annoying if the known region is large and PT or ZV is not that much closer than the end of the known region. */ diffzv += heuristic_hack; diffpt += heuristic_hack; if (diffpt < diffmax && diffpt <= diffzv) { bufmax = bufmin = BUF_PT (buf); bytmax = bytmin = BYTE_BUF_PT (buf); /* We set the size to 1 even though it doesn't really matter because the new known region contains no characters. We do this because this is the most likely size of the characters around the new known region, and we avoid potential yuckiness that is done when size == 3. */ size = 1; } if (diffzv < diffmax) { bufmax = bufmin = BUF_ZV (buf); bytmax = bytmin = BYTE_BUF_ZV (buf); size = 1; } } #ifdef ERROR_CHECK_TEXT else if (x >= bufmin) ABORT (); #endif else { Charbpos diffmin = bufmin - x; Charbpos diffpt = BUF_PT (buf) - x; Charbpos diffbegv = x - BUF_BEGV (buf); /* #### This value could stand some more exploration. */ Charcount heuristic_hack = (bufmax - bufmin) >> 2; if (diffpt < 0) diffpt = -diffpt; if (diffbegv < 0) diffbegv = -diffbegv; /* But also implement a heuristic that favors the known region -- see above. */ diffbegv += heuristic_hack; diffpt += heuristic_hack; if (diffpt < diffmin && diffpt <= diffbegv) { bufmax = bufmin = BUF_PT (buf); bytmax = bytmin = BYTE_BUF_PT (buf); /* We set the size to 1 even though it doesn't really matter because the new known region contains no characters. We do this because this is the most likely size of the characters around the new known region, and we avoid potential yuckiness that is done when size == 3. */ size = 1; } if (diffbegv < diffmin) { bufmax = bufmin = BUF_BEGV (buf); bytmax = bytmin = BYTE_BUF_BEGV (buf); size = 1; } } diff_so_far = x > bufmax ? x - bufmax : bufmin - x; if (diff_so_far > 50) { /* If we have to move more than a certain amount, then look into our cache. */ int minval = INT_MAX; int found = 0; int i; add_to_cache = 1; /* I considered keeping the positions ordered. This would speed up this loop, but updating the cache would take longer, so it doesn't seem like it would really matter. */ for (i = 0; i < NUM_CACHED_POSITIONS; i++) { int diff = buf->text->mule_charbpos_cache[i] - x; if (diff < 0) diff = -diff; if (diff < minval) { minval = diff; found = i; } } if (minval < diff_so_far) { bufmax = bufmin = buf->text->mule_charbpos_cache[found]; bytmax = bytmin = buf->text->mule_bytebpos_cache[found]; size = 1; } } /* It's conceivable that the caching above could lead to X being the same as one of the range edges. */ if (x >= bufmax) { Bytebpos newmax; Bytecount newsize; forward_p = 1; while (x > bufmax) { newmax = bytmax; INC_BYTEBPOS (buf, newmax); newsize = newmax - bytmax; if (newsize != size) { bufmin = bufmax; bytmin = bytmax; size = newsize; } bytmax = newmax; bufmax++; } retval = bytmax; /* #### Should go past the found location to reduce the number of times that this function is called */ } else /* x < bufmin */ { Bytebpos newmin; Bytecount newsize; forward_p = 0; while (x < bufmin) { newmin = bytmin; DEC_BYTEBPOS (buf, newmin); newsize = bytmin - newmin; if (newsize != size) { bufmax = bufmin; bytmax = bytmin; size = newsize; } bytmin = newmin; bufmin--; } retval = bytmin; /* #### Should go past the found location to reduce the number of times that this function is called */ } /* If size is three, than we have to max sure that the range we discovered isn't too large, because we use a fixed-length table to divide by 3. */ if (size == 3) { int gap = bytmax - bytmin; buf->text->mule_three_p = 1; buf->text->mule_shifter = 1; if (gap > MAX_BYTEBPOS_GAP_SIZE_3) { if (forward_p) { bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3; bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3; } else { bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3; bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3; } } } else { buf->text->mule_three_p = 0; if (size == 4) buf->text->mule_shifter = 2; else buf->text->mule_shifter = size - 1; } buf->text->mule_bufmin = bufmin; buf->text->mule_bufmax = bufmax; buf->text->mule_bytmin = bytmin; buf->text->mule_bytmax = bytmax; if (add_to_cache) { int replace_loc; /* We throw away a "random" cached value and replace it with the new value. It doesn't actually have to be very random at all, just evenly distributed. #### It would be better to use a least-recently-used algorithm or something that tries to space things out, but I'm not sure it's worth it to go to the trouble of maintaining that. */ not_very_random_number += 621; replace_loc = not_very_random_number & 15; buf->text->mule_charbpos_cache[replace_loc] = x; buf->text->mule_bytebpos_cache[replace_loc] = retval; } #endif /* OLD_BYTE_CHAR */ done: PROFILE_RECORD_EXITING_SECTION (QSin_char_byte_conversion); return retval; } #undef CONSIDER /* bytepos_to_charpos returns the char position corresponding to BYTEPOS. */ /* This macro is a subroutine of bytebpos_to_charbpos_func. It is used when BYTEPOS is actually the byte position. */ #define CONSIDER(BYTEPOS, CHARPOS) \ do \ { \ Bytebpos this_bytepos = (BYTEPOS); \ int changed = 0; \ \ if (this_bytepos == x) \ { \ retval = (CHARPOS); \ goto done; \ } \ else if (this_bytepos > x) \ { \ if (this_bytepos < best_above_byte) \ { \ best_above = (CHARPOS); \ best_above_byte = this_bytepos; \ changed = 1; \ } \ } \ else if (this_bytepos > best_below_byte) \ { \ best_below = (CHARPOS); \ best_below_byte = this_bytepos; \ changed = 1; \ } \ \ if (changed) \ { \ if (best_above - best_below == best_above_byte - best_below_byte) \ { \ retval = best_below + (x - best_below_byte); \ goto done; \ } \ } \ } \ while (0) /* The logic in this function is almost identical to the logic in the previous function. */ Charbpos bytebpos_to_charbpos_func (struct buffer *buf, Bytebpos x) { #ifdef OLD_BYTE_CHAR Charbpos bufmin; Charbpos bufmax; Bytebpos bytmin; Bytebpos bytmax; int size; int forward_p; int diff_so_far; int add_to_cache = 0; #endif /* OLD_BYTE_CHAR */ Charbpos best_above, best_above_byte; Bytebpos best_below, best_below_byte; int i; struct buffer_text *t; Charbpos retval; PROFILE_DECLARE (); PROFILE_RECORD_ENTERING_SECTION (QSin_char_byte_conversion); best_above = BUF_Z (buf); best_above_byte = BYTE_BUF_Z (buf); /* In this case, we simply have all one-byte characters. But this should have been intercepted before, in bytebpos_to_charbpos(). */ text_checking_assert (best_above != best_above_byte); best_below = BUF_BEG (buf); best_below_byte = BYTE_BUF_BEG (buf); CONSIDER (BYTE_BUF_PT (buf), BUF_PT (buf)); CONSIDER (BYTE_BUF_GPT (buf), BUF_GPT (buf)); CONSIDER (BYTE_BUF_BEGV (buf), BUF_BEGV (buf)); CONSIDER (BYTE_BUF_ZV (buf), BUF_ZV (buf)); t = buf->text; CONSIDER (t->cached_bytepos, t->cached_charpos); /* Check the most recently entered positions first */ for (i = t->next_cache_pos - 1; i >= 0; i--) { CONSIDER (t->mule_bytebpos_cache[i], t->mule_charbpos_cache[i]); /* If we are down to a range of 50 chars, don't bother checking any other markers; scan the intervening chars directly now. */ if (best_above - best_below < 50) break; } /* We get here if we did not exactly hit one of the known places. We have one known above and one known below. Scan, counting characters, from whichever one is closer. */ if (x - best_below_byte < best_above_byte - x) { int record = x - best_below_byte > 5000; #ifdef OLD_LOOP /* old code */ while (best_below_byte < x) { best_below++; INC_BYTEBPOS (buf, best_below_byte); } #else text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); /* The gap should not occur between best_below and x, or we will be screwed in using charcount_to_bytecount(). It should not be exactly at x either, because we already should have caught that. */ text_checking_assert (BYTE_BUF_CEILING_OF_IGNORE_ACCESSIBLE (buf, best_below_byte) > x); /* Using bytecount_to_charcount() is potentially a lot faster than a simple loop above using INC_BYTEBPOS(); see above. */ best_below += bytecount_to_charcount (BYTE_BUF_BYTE_ADDRESS (buf, best_below_byte), x - best_below_byte); best_below_byte = x; #endif /* If this position is quite far from the nearest known position, cache the correspondence. NB FSF does this: "... by creating a marker here. It will last until the next GC." */ if (record) { if (t->next_cache_pos == NUM_CACHED_POSITIONS) { memmove (t->mule_charbpos_cache, t->mule_charbpos_cache + NUM_MOVED_POSITIONS, sizeof (Charbpos) * (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); memmove (t->mule_bytebpos_cache, t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, sizeof (Bytebpos) * (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); t->next_cache_pos -= NUM_MOVED_POSITIONS; } t->mule_charbpos_cache[t->next_cache_pos] = best_below; t->mule_bytebpos_cache[t->next_cache_pos] = best_below_byte; t->next_cache_pos++; } t->cached_charpos = best_below; t->cached_bytepos = best_below_byte; retval = best_below; text_checking_assert (best_below_byte >= best_below); goto done; } else { int record = best_above_byte - x > 5000; #ifdef OLD_LOOP /* old code */ while (best_above_byte > x) { best_above--; DEC_BYTEBPOS (buf, best_above_byte); } #else text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); /* The gap should not occur between best_above and x, or we will be screwed in using bytecount_to_charcount_down(). It should not be exactly at x either, because we already should have caught that. */ text_checking_assert (BYTE_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (buf, best_above_byte) < x); /* Using bytecount_to_charcount_down() is potentially a lot faster than a simple loop using INC_BYTEBPOS(); see above. */ best_above -= bytecount_to_charcount_down /* BYTE_BUF_BYTE_ADDRESS will return a value on the high side of the gap if we are at the gap, which is the wrong side. So do the following trick instead. */ (BYTE_BUF_BYTE_ADDRESS_BEFORE (buf, best_above_byte) + 1, best_above_byte - x); best_above_byte = x; #endif /* If this position is quite far from the nearest known position, cache the correspondence. NB FSF does this: "... by creating a marker here. It will last until the next GC." */ if (record) { if (t->next_cache_pos == NUM_CACHED_POSITIONS) { memmove (t->mule_charbpos_cache, t->mule_charbpos_cache + NUM_MOVED_POSITIONS, sizeof (Charbpos) * (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); memmove (t->mule_bytebpos_cache, t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, sizeof (Bytebpos) * (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); t->next_cache_pos -= NUM_MOVED_POSITIONS; } t->mule_charbpos_cache[t->next_cache_pos] = best_above; t->mule_bytebpos_cache[t->next_cache_pos] = best_above_byte; t->next_cache_pos++; } t->cached_charpos = best_above; t->cached_bytepos = best_above_byte; retval = best_above; text_checking_assert (best_above_byte >= best_above); goto done; } #ifdef OLD_BYTE_CHAR bufmin = buf->text->mule_bufmin; bufmax = buf->text->mule_bufmax; bytmin = buf->text->mule_bytmin; bytmax = buf->text->mule_bytmax; size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p; /* The basic idea here is that we shift the "known region" up or down until it overlaps the specified position. We do this by moving the upper bound of the known region up one character at a time, and moving the lower bound of the known region up as necessary when the size of the character just seen changes. We optimize this, however, by first shifting the known region to one of the cached points if it's close by. (We don't check BYTE_BEG or BYTE_Z, even though they're cached; most of the time these will be the same as BYTE_BEGV and BYTE_ZV, and when they're not, they're not likely to be used.) */ if (x > bytmax) { Bytebpos diffmax = x - bytmax; Bytebpos diffpt = x - BYTE_BUF_PT (buf); Bytebpos diffzv = BYTE_BUF_ZV (buf) - x; /* #### This value could stand some more exploration. */ Bytecount heuristic_hack = (bytmax - bytmin) >> 2; /* Check if the position is closer to PT or ZV than to the end of the known region. */ if (diffpt < 0) diffpt = -diffpt; if (diffzv < 0) diffzv = -diffzv; /* But also implement a heuristic that favors the known region over BYTE_PT or BYTE_ZV. The reason for this is that switching to BYTE_PT or BYTE_ZV will wipe out the knowledge in the known region, which might be annoying if the known region is large and BYTE_PT or BYTE_ZV is not that much closer than the end of the known region. */ diffzv += heuristic_hack; diffpt += heuristic_hack; if (diffpt < diffmax && diffpt <= diffzv) { bufmax = bufmin = BUF_PT (buf); bytmax = bytmin = BYTE_BUF_PT (buf); /* We set the size to 1 even though it doesn't really matter because the new known region contains no characters. We do this because this is the most likely size of the characters around the new known region, and we avoid potential yuckiness that is done when size == 3. */ size = 1; } if (diffzv < diffmax) { bufmax = bufmin = BUF_ZV (buf); bytmax = bytmin = BYTE_BUF_ZV (buf); size = 1; } } #ifdef ERROR_CHECK_TEXT else if (x >= bytmin) ABORT (); #endif else { Bytebpos diffmin = bytmin - x; Bytebpos diffpt = BYTE_BUF_PT (buf) - x; Bytebpos diffbegv = x - BYTE_BUF_BEGV (buf); /* #### This value could stand some more exploration. */ Bytecount heuristic_hack = (bytmax - bytmin) >> 2; if (diffpt < 0) diffpt = -diffpt; if (diffbegv < 0) diffbegv = -diffbegv; /* But also implement a heuristic that favors the known region -- see above. */ diffbegv += heuristic_hack; diffpt += heuristic_hack; if (diffpt < diffmin && diffpt <= diffbegv) { bufmax = bufmin = BUF_PT (buf); bytmax = bytmin = BYTE_BUF_PT (buf); /* We set the size to 1 even though it doesn't really matter because the new known region contains no characters. We do this because this is the most likely size of the characters around the new known region, and we avoid potential yuckiness that is done when size == 3. */ size = 1; } if (diffbegv < diffmin) { bufmax = bufmin = BUF_BEGV (buf); bytmax = bytmin = BYTE_BUF_BEGV (buf); size = 1; } } diff_so_far = x > bytmax ? x - bytmax : bytmin - x; if (diff_so_far > 50) { /* If we have to move more than a certain amount, then look into our cache. */ int minval = INT_MAX; int found = 0; int i; add_to_cache = 1; /* I considered keeping the positions ordered. This would speed up this loop, but updating the cache would take longer, so it doesn't seem like it would really matter. */ for (i = 0; i < NUM_CACHED_POSITIONS; i++) { int diff = buf->text->mule_bytebpos_cache[i] - x; if (diff < 0) diff = -diff; if (diff < minval) { minval = diff; found = i; } } if (minval < diff_so_far) { bufmax = bufmin = buf->text->mule_charbpos_cache[found]; bytmax = bytmin = buf->text->mule_bytebpos_cache[found]; size = 1; } } /* It's conceivable that the caching above could lead to X being the same as one of the range edges. */ if (x >= bytmax) { Bytebpos newmax; Bytecount newsize; forward_p = 1; while (x > bytmax) { newmax = bytmax; INC_BYTEBPOS (buf, newmax); newsize = newmax - bytmax; if (newsize != size) { bufmin = bufmax; bytmin = bytmax; size = newsize; } bytmax = newmax; bufmax++; } retval = bufmax; /* #### Should go past the found location to reduce the number of times that this function is called */ } else /* x <= bytmin */ { Bytebpos newmin; Bytecount newsize; forward_p = 0; while (x < bytmin) { newmin = bytmin; DEC_BYTEBPOS (buf, newmin); newsize = bytmin - newmin; if (newsize != size) { bufmax = bufmin; bytmax = bytmin; size = newsize; } bytmin = newmin; bufmin--; } retval = bufmin; /* #### Should go past the found location to reduce the number of times that this function is called */ } /* If size is three, than we have to max sure that the range we discovered isn't too large, because we use a fixed-length table to divide by 3. */ if (size == 3) { int gap = bytmax - bytmin; buf->text->mule_three_p = 1; buf->text->mule_shifter = 1; if (gap > MAX_BYTEBPOS_GAP_SIZE_3) { if (forward_p) { bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3; bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3; } else { bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3; bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3; } } } else { buf->text->mule_three_p = 0; if (size == 4) buf->text->mule_shifter = 2; else buf->text->mule_shifter = size - 1; } buf->text->mule_bufmin = bufmin; buf->text->mule_bufmax = bufmax; buf->text->mule_bytmin = bytmin; buf->text->mule_bytmax = bytmax; if (add_to_cache) { int replace_loc; /* We throw away a "random" cached value and replace it with the new value. It doesn't actually have to be very random at all, just evenly distributed. #### It would be better to use a least-recently-used algorithm or something that tries to space things out, but I'm not sure it's worth it to go to the trouble of maintaining that. */ not_very_random_number += 621; replace_loc = not_very_random_number & 15; buf->text->mule_charbpos_cache[replace_loc] = retval; buf->text->mule_bytebpos_cache[replace_loc] = x; } #endif /* OLD_BYTE_CHAR */ done: PROFILE_RECORD_EXITING_SECTION (QSin_char_byte_conversion); return retval; } /* Text of length BYTELENGTH and CHARLENGTH (in different units) was inserted at charbpos START. */ void buffer_mule_signal_inserted_region (struct buffer *buf, Charbpos start, Bytecount bytelength, Charcount charlength) { #ifdef OLD_BYTE_CHAR int size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p; #endif /* OLD_BYTE_CHAR */ int i; /* Adjust the cache of known positions. */ for (i = 0; i < buf->text->next_cache_pos; i++) { if (buf->text->mule_charbpos_cache[i] > start) { buf->text->mule_charbpos_cache[i] += charlength; buf->text->mule_bytebpos_cache[i] += bytelength; } } /* Adjust the special cached position. */ if (buf->text->cached_charpos > start) { buf->text->cached_charpos += charlength; buf->text->cached_bytepos += bytelength; } #ifdef OLD_BYTE_CHAR if (start >= buf->text->mule_bufmax) return; /* The insertion is either before the known region, in which case it shoves it forward; or within the known region, in which case it shoves the end forward. (But it may make the known region inconsistent, so we may have to shorten it.) */ if (start <= buf->text->mule_bufmin) { buf->text->mule_bufmin += charlength; buf->text->mule_bufmax += charlength; buf->text->mule_bytmin += bytelength; buf->text->mule_bytmax += bytelength; } else { Charbpos end = start + charlength; /* the insertion point divides the known region in two. Keep the longer half, at least, and expand into the inserted chunk as much as possible. */ if (start - buf->text->mule_bufmin > buf->text->mule_bufmax - start) { Bytebpos bytestart = (buf->text->mule_bytmin + size * (start - buf->text->mule_bufmin)); Bytebpos bytenew; while (start < end) { bytenew = bytestart; INC_BYTEBPOS (buf, bytenew); if (bytenew - bytestart != size) break; start++; bytestart = bytenew; } if (start != end) { buf->text->mule_bufmax = start; buf->text->mule_bytmax = bytestart; } else { buf->text->mule_bufmax += charlength; buf->text->mule_bytmax += bytelength; } } else { Bytebpos byteend = (buf->text->mule_bytmin + size * (start - buf->text->mule_bufmin) + bytelength); Bytebpos bytenew; buf->text->mule_bufmax += charlength; buf->text->mule_bytmax += bytelength; while (end > start) { bytenew = byteend; DEC_BYTEBPOS (buf, bytenew); if (byteend - bytenew != size) break; end--; byteend = bytenew; } if (start != end) { buf->text->mule_bufmin = end; buf->text->mule_bytmin = byteend; } } } #endif /* OLD_BYTE_CHAR */ } /* Text from START to END (equivalent in Bytebpos's: from BYTE_START to BYTE_END) was deleted. */ void buffer_mule_signal_deleted_region (struct buffer *buf, Charbpos start, Charbpos end, Bytebpos byte_start, Bytebpos byte_end) { int i; /* Adjust the cache of known positions. */ for (i = 0; i < buf->text->next_cache_pos; i++) { /* After the end; gets shoved backward */ if (buf->text->mule_charbpos_cache[i] > end) { buf->text->mule_charbpos_cache[i] -= end - start; buf->text->mule_bytebpos_cache[i] -= byte_end - byte_start; } /* In the range; moves to start of range */ else if (buf->text->mule_charbpos_cache[i] > start) { buf->text->mule_charbpos_cache[i] = start; buf->text->mule_bytebpos_cache[i] = byte_start; } } /* Adjust the special cached position. */ /* After the end; gets shoved backward */ if (buf->text->cached_charpos > end) { buf->text->cached_charpos -= end - start; buf->text->cached_bytepos -= byte_end - byte_start; } /* In the range; moves to start of range */ else if (buf->text->cached_charpos > start) { buf->text->cached_charpos = start; buf->text->cached_bytepos = byte_start; } #ifdef OLD_BYTE_CHAR /* We don't care about any text after the end of the known region. */ end = min (end, buf->text->mule_bufmax); byte_end = min (byte_end, buf->text->mule_bytmax); if (start >= end) return; /* The end of the known region offsets by the total amount of deletion, since it's all before it. */ buf->text->mule_bufmax -= end - start; buf->text->mule_bytmax -= byte_end - byte_start; /* Now we don't care about any text after the start of the known region. */ end = min (end, buf->text->mule_bufmin); byte_end = min (byte_end, buf->text->mule_bytmin); if (start < end) { buf->text->mule_bufmin -= end - start; buf->text->mule_bytmin -= byte_end - byte_start; } #endif /* OLD_BYTE_CHAR */ } #endif /* MULE */ /************************************************************************/ /* verifying buffer and string positions */ /************************************************************************/ /* Functions below are tagged with either _byte or _char indicating whether they return byte or character positions. For a buffer, a character position is a "Charbpos" and a byte position is a "Bytebpos". For strings, these are sometimes typed using "Charcount" and "Bytecount". */ /* Flags for the functions below are: GB_ALLOW_PAST_ACCESSIBLE Allow positions to range over the entire buffer (BUF_BEG to BUF_Z), rather than just the accessible portion (BUF_BEGV to BUF_ZV). For strings, this flag has no effect. GB_COERCE_RANGE If the position is outside the allowable range, return the lower or upper bound of the range, whichever is closer to the specified position. GB_NO_ERROR_IF_BAD If the position is outside the allowable range, return -1. GB_NEGATIVE_FROM_END If a value is negative, treat it as an offset from the end. Only applies to strings. The following additional flags apply only to the functions that return ranges: GB_ALLOW_NIL Either or both positions can be nil. If FROM is nil, FROM_OUT will contain the lower bound of the allowed range. If TO is nil, TO_OUT will contain the upper bound of the allowed range. GB_CHECK_ORDER FROM must contain the lower bound and TO the upper bound of the range. If the positions are reversed, an error is signalled. The following is a combination flag: GB_HISTORICAL_STRING_BEHAVIOR Equivalent to (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL). */ /* Return a buffer position stored in a Lisp_Object. Full error-checking is done on the position. Flags can be specified to control the behavior of out-of-range values. The default behavior is to require that the position is within the accessible part of the buffer (BEGV and ZV), and to signal an error if the position is out of range. */ Charbpos get_buffer_pos_char (struct buffer *b, Lisp_Object pos, unsigned int flags) { /* Does not GC */ Charbpos ind; Charbpos min_allowed, max_allowed; CHECK_INT_COERCE_MARKER (pos); ind = XINT (pos); min_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_BEG (b) : BUF_BEGV (b); max_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_Z (b) : BUF_ZV (b); if (ind < min_allowed || ind > max_allowed) { if (flags & GB_COERCE_RANGE) ind = ind < min_allowed ? min_allowed : max_allowed; else if (flags & GB_NO_ERROR_IF_BAD) ind = -1; else { Lisp_Object buffer = wrap_buffer (b); args_out_of_range (buffer, pos); } } return ind; } Bytebpos get_buffer_pos_byte (struct buffer *b, Lisp_Object pos, unsigned int flags) { Charbpos bpos = get_buffer_pos_char (b, pos, flags); if (bpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */ return -1; return charbpos_to_bytebpos (b, bpos); } /* Return a pair of buffer positions representing a range of text, taken from a pair of Lisp_Objects. Full error-checking is done on the positions. Flags can be specified to control the behavior of out-of-range values. The default behavior is to allow the range bounds to be specified in either order (however, FROM_OUT will always be the lower bound of the range and TO_OUT the upper bound),to require that the positions are within the accessible part of the buffer (BEGV and ZV), and to signal an error if the positions are out of range. */ void get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to, Charbpos *from_out, Charbpos *to_out, unsigned int flags) { /* Does not GC */ Charbpos min_allowed, max_allowed; min_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ? BUF_BEG (b) : BUF_BEGV (b); max_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ? BUF_Z (b) : BUF_ZV (b); if (NILP (from) && (flags & GB_ALLOW_NIL)) *from_out = min_allowed; else *from_out = get_buffer_pos_char (b, from, flags | GB_NO_ERROR_IF_BAD); if (NILP (to) && (flags & GB_ALLOW_NIL)) *to_out = max_allowed; else *to_out = get_buffer_pos_char (b, to, flags | GB_NO_ERROR_IF_BAD); if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD)) { Lisp_Object buffer = wrap_buffer (b); args_out_of_range_3 (buffer, from, to); } if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out) { if (flags & GB_CHECK_ORDER) invalid_argument_2 ("start greater than end", from, to); else { Charbpos temp = *from_out; *from_out = *to_out; *to_out = temp; } } } void get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to, Bytebpos *from_out, Bytebpos *to_out, unsigned int flags) { Charbpos s, e; get_buffer_range_char (b, from, to, &s, &e, flags); if (s >= 0) *from_out = charbpos_to_bytebpos (b, s); else /* could happen with GB_NO_ERROR_IF_BAD */ *from_out = -1; if (e >= 0) *to_out = charbpos_to_bytebpos (b, e); else *to_out = -1; } static Charcount get_string_pos_char_1 (Lisp_Object string, Lisp_Object pos, unsigned int flags, Charcount known_length) { Charcount ccpos; Charcount min_allowed = 0; Charcount max_allowed = known_length; /* Computation of KNOWN_LENGTH is potentially expensive so we pass it in. */ CHECK_INT (pos); ccpos = XINT (pos); if (ccpos < 0 && flags & GB_NEGATIVE_FROM_END) ccpos += max_allowed; if (ccpos < min_allowed || ccpos > max_allowed) { if (flags & GB_COERCE_RANGE) ccpos = ccpos < min_allowed ? min_allowed : max_allowed; else if (flags & GB_NO_ERROR_IF_BAD) ccpos = -1; else args_out_of_range (string, pos); } return ccpos; } Charcount get_string_pos_char (Lisp_Object string, Lisp_Object pos, unsigned int flags) { return get_string_pos_char_1 (string, pos, flags, string_char_length (string)); } Bytecount get_string_pos_byte (Lisp_Object string, Lisp_Object pos, unsigned int flags) { Charcount ccpos = get_string_pos_char (string, pos, flags); if (ccpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */ return -1; return string_index_char_to_byte (string, ccpos); } void get_string_range_char (Lisp_Object string, Lisp_Object from, Lisp_Object to, Charcount *from_out, Charcount *to_out, unsigned int flags) { Charcount min_allowed = 0; Charcount max_allowed = string_char_length (string); if (NILP (from) && (flags & GB_ALLOW_NIL)) *from_out = min_allowed; else *from_out = get_string_pos_char_1 (string, from, flags | GB_NO_ERROR_IF_BAD, max_allowed); if (NILP (to) && (flags & GB_ALLOW_NIL)) *to_out = max_allowed; else *to_out = get_string_pos_char_1 (string, to, flags | GB_NO_ERROR_IF_BAD, max_allowed); if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD)) args_out_of_range_3 (string, from, to); if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out) { if (flags & GB_CHECK_ORDER) invalid_argument_2 ("start greater than end", from, to); else { Charbpos temp = *from_out; *from_out = *to_out; *to_out = temp; } } } void get_string_range_byte (Lisp_Object string, Lisp_Object from, Lisp_Object to, Bytecount *from_out, Bytecount *to_out, unsigned int flags) { Charcount s, e; get_string_range_char (string, from, to, &s, &e, flags); if (s >= 0) *from_out = string_index_char_to_byte (string, s); else /* could happen with GB_NO_ERROR_IF_BAD */ *from_out = -1; if (e >= 0) *to_out = string_index_char_to_byte (string, e); else *to_out = -1; } Charxpos get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos, unsigned int flags) { return STRINGP (object) ? get_string_pos_char (object, pos, flags) : get_buffer_pos_char (XBUFFER (object), pos, flags); } Bytexpos get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos, unsigned int flags) { return STRINGP (object) ? get_string_pos_byte (object, pos, flags) : get_buffer_pos_byte (XBUFFER (object), pos, flags); } void get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from, Lisp_Object to, Charxpos *from_out, Charxpos *to_out, unsigned int flags) { if (STRINGP (object)) get_string_range_char (object, from, to, from_out, to_out, flags); else get_buffer_range_char (XBUFFER (object), from, to, from_out, to_out, flags); } void get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from, Lisp_Object to, Bytexpos *from_out, Bytexpos *to_out, unsigned int flags) { if (STRINGP (object)) get_string_range_byte (object, from, to, from_out, to_out, flags); else get_buffer_range_byte (XBUFFER (object), from, to, from_out, to_out, flags); } Charxpos buffer_or_string_accessible_begin_char (Lisp_Object object) { return STRINGP (object) ? 0 : BUF_BEGV (XBUFFER (object)); } Charxpos buffer_or_string_accessible_end_char (Lisp_Object object) { return STRINGP (object) ? string_char_length (object) : BUF_ZV (XBUFFER (object)); } Bytexpos buffer_or_string_accessible_begin_byte (Lisp_Object object) { return STRINGP (object) ? 0 : BYTE_BUF_BEGV (XBUFFER (object)); } Bytexpos buffer_or_string_accessible_end_byte (Lisp_Object object) { return STRINGP (object) ? XSTRING_LENGTH (object) : BYTE_BUF_ZV (XBUFFER (object)); } Charxpos buffer_or_string_absolute_begin_char (Lisp_Object object) { return STRINGP (object) ? 0 : BUF_BEG (XBUFFER (object)); } Charxpos buffer_or_string_absolute_end_char (Lisp_Object object) { return STRINGP (object) ? string_char_length (object) : BUF_Z (XBUFFER (object)); } Bytexpos buffer_or_string_absolute_begin_byte (Lisp_Object object) { return STRINGP (object) ? 0 : BYTE_BUF_BEG (XBUFFER (object)); } Bytexpos buffer_or_string_absolute_end_byte (Lisp_Object object) { return STRINGP (object) ? XSTRING_LENGTH (object) : BYTE_BUF_Z (XBUFFER (object)); } Charbpos charbpos_clip_to_bounds (Charbpos lower, Charbpos num, Charbpos upper) { return (num < lower ? lower : num > upper ? upper : num); } Bytebpos bytebpos_clip_to_bounds (Bytebpos lower, Bytebpos num, Bytebpos upper) { return (num < lower ? lower : num > upper ? upper : num); } Charxpos charxpos_clip_to_bounds (Charxpos lower, Charxpos num, Charxpos upper) { return (num < lower ? lower : num > upper ? upper : num); } Bytexpos bytexpos_clip_to_bounds (Bytexpos lower, Bytexpos num, Bytexpos upper) { return (num < lower ? lower : num > upper ? upper : num); } /* These could be implemented in terms of the get_buffer_or_string() functions above, but those are complicated and handle lots of weird cases stemming from uncertain external input. */ Charxpos buffer_or_string_clip_to_accessible_char (Lisp_Object object, Charxpos pos) { return (charxpos_clip_to_bounds (pos, buffer_or_string_accessible_begin_char (object), buffer_or_string_accessible_end_char (object))); } Bytexpos buffer_or_string_clip_to_accessible_byte (Lisp_Object object, Bytexpos pos) { return (bytexpos_clip_to_bounds (pos, buffer_or_string_accessible_begin_byte (object), buffer_or_string_accessible_end_byte (object))); } Charxpos buffer_or_string_clip_to_absolute_char (Lisp_Object object, Charxpos pos) { return (charxpos_clip_to_bounds (pos, buffer_or_string_absolute_begin_char (object), buffer_or_string_absolute_end_char (object))); } Bytexpos buffer_or_string_clip_to_absolute_byte (Lisp_Object object, Bytexpos pos) { return (bytexpos_clip_to_bounds (pos, buffer_or_string_absolute_begin_byte (object), buffer_or_string_absolute_end_byte (object))); } /************************************************************************/ /* Implement TO_EXTERNAL_FORMAT, TO_INTERNAL_FORMAT */ /************************************************************************/ typedef struct { Dynarr_declare (Ibyte_dynarr *); } Ibyte_dynarr_dynarr; typedef struct { Dynarr_declare (Extbyte_dynarr *); } Extbyte_dynarr_dynarr; static Extbyte_dynarr_dynarr *conversion_out_dynarr_list; static Ibyte_dynarr_dynarr *conversion_in_dynarr_list; static int dfc_convert_to_external_format_in_use; static int dfc_convert_to_internal_format_in_use; void dfc_convert_to_external_format (dfc_conversion_type source_type, dfc_conversion_data *source, Lisp_Object coding_system, dfc_conversion_type sink_type, dfc_conversion_data *sink) { /* It's guaranteed that many callers are not prepared for GC here, esp. given that this code conversion occurs in many very hidden places. */ int count; Extbyte_dynarr *conversion_out_dynarr; PROFILE_DECLARE (); assert (!inhibit_non_essential_conversion_operations); PROFILE_RECORD_ENTERING_SECTION (QSin_internal_external_conversion); count = begin_gc_forbidden (); type_checking_assert (((source_type == DFC_TYPE_DATA) || (source_type == DFC_TYPE_LISP_LSTREAM && LSTREAMP (source->lisp_object)) || (source_type == DFC_TYPE_LISP_STRING && STRINGP (source->lisp_object))) && ((sink_type == DFC_TYPE_DATA) || (sink_type == DFC_TYPE_LISP_LSTREAM && LSTREAMP (source->lisp_object)))); if (Dynarr_length (conversion_out_dynarr_list) <= dfc_convert_to_external_format_in_use) Dynarr_add (conversion_out_dynarr_list, Dynarr_new (Extbyte)); conversion_out_dynarr = Dynarr_at (conversion_out_dynarr_list, dfc_convert_to_external_format_in_use); Dynarr_reset (conversion_out_dynarr); internal_bind_int (&dfc_convert_to_external_format_in_use, dfc_convert_to_external_format_in_use + 1); coding_system = get_coding_system_for_text_file (coding_system, 0); /* Here we optimize in the case where the coding system does no conversion. However, we don't want to optimize in case the source or sink is an lstream, since writing to an lstream can cause a garbage collection, and this could be problematic if the source is a lisp string. */ if (source_type != DFC_TYPE_LISP_LSTREAM && sink_type != DFC_TYPE_LISP_LSTREAM && coding_system_is_binary (coding_system)) { const Ibyte *ptr; Bytecount len; if (source_type == DFC_TYPE_LISP_STRING) { ptr = XSTRING_DATA (source->lisp_object); len = XSTRING_LENGTH (source->lisp_object); } else { ptr = (Ibyte *) source->data.ptr; len = source->data.len; } #ifdef MULE { const Ibyte *end; for (end = ptr + len; ptr < end;) { Ibyte c = (byte_ascii_p (*ptr)) ? *ptr : (*ptr == LEADING_BYTE_CONTROL_1) ? (*(ptr+1) - 0x20) : (*ptr == LEADING_BYTE_LATIN_ISO8859_1) ? (*(ptr+1)) : '~'; Dynarr_add (conversion_out_dynarr, (Extbyte) c); INC_IBYTEPTR (ptr); } text_checking_assert (ptr == end); } #else Dynarr_add_many (conversion_out_dynarr, ptr, len); #endif } #ifdef WIN32_ANY /* Optimize the common case involving Unicode where only ASCII is involved */ else if (source_type != DFC_TYPE_LISP_LSTREAM && sink_type != DFC_TYPE_LISP_LSTREAM && dfc_coding_system_is_unicode (coding_system)) { const Ibyte *ptr, *p; Bytecount len; const Ibyte *end; if (source_type == DFC_TYPE_LISP_STRING) { ptr = XSTRING_DATA (source->lisp_object); len = XSTRING_LENGTH (source->lisp_object); } else { ptr = (Ibyte *) source->data.ptr; len = source->data.len; } end = ptr + len; for (p = ptr; p < end; p++) { if (!byte_ascii_p (*p)) goto the_hard_way; } for (p = ptr; p < end; p++) { Dynarr_add (conversion_out_dynarr, (Extbyte) (*p)); Dynarr_add (conversion_out_dynarr, (Extbyte) '\0'); } } #endif /* WIN32_ANY */ else { Lisp_Object streams_to_delete[3]; int delete_count; Lisp_Object instream, outstream; Lstream *reader, *writer; #ifdef WIN32_ANY the_hard_way: #endif /* WIN32_ANY */ delete_count = 0; if (source_type == DFC_TYPE_LISP_LSTREAM) instream = source->lisp_object; else if (source_type == DFC_TYPE_DATA) streams_to_delete[delete_count++] = instream = make_fixed_buffer_input_stream (source->data.ptr, source->data.len); else { type_checking_assert (source_type == DFC_TYPE_LISP_STRING); streams_to_delete[delete_count++] = instream = /* This will GCPRO the Lisp string */ make_lisp_string_input_stream (source->lisp_object, 0, -1); } if (sink_type == DFC_TYPE_LISP_LSTREAM) outstream = sink->lisp_object; else { type_checking_assert (sink_type == DFC_TYPE_DATA); streams_to_delete[delete_count++] = outstream = make_dynarr_output_stream ((unsigned_char_dynarr *) conversion_out_dynarr); } streams_to_delete[delete_count++] = outstream = make_coding_output_stream (XLSTREAM (outstream), coding_system, CODING_ENCODE, 0); reader = XLSTREAM (instream); writer = XLSTREAM (outstream); /* decoding_stream will gc-protect outstream */ { struct gcpro gcpro1, gcpro2; GCPRO2 (instream, outstream); while (1) { Bytecount size_in_bytes; char tempbuf[1024]; /* some random amount */ size_in_bytes = Lstream_read (reader, tempbuf, sizeof (tempbuf)); if (size_in_bytes == 0) break; else if (size_in_bytes < 0) signal_error (Qtext_conversion_error, "Error converting to external format", Qunbound); if (Lstream_write (writer, tempbuf, size_in_bytes) < 0) signal_error (Qtext_conversion_error, "Error converting to external format", Qunbound); } /* Closing writer will close any stream at the other end of writer. */ Lstream_close (writer); Lstream_close (reader); UNGCPRO; } /* The idea is that this function will create no garbage. */ while (delete_count) Lstream_delete (XLSTREAM (streams_to_delete [--delete_count])); } unbind_to (count); if (sink_type != DFC_TYPE_LISP_LSTREAM) { sink->data.len = Dynarr_length (conversion_out_dynarr); /* double zero-extend because we may be dealing with Unicode data */ Dynarr_add (conversion_out_dynarr, '\0'); Dynarr_add (conversion_out_dynarr, '\0'); sink->data.ptr = Dynarr_begin (conversion_out_dynarr); } PROFILE_RECORD_EXITING_SECTION (QSin_internal_external_conversion); } void dfc_convert_to_internal_format (dfc_conversion_type source_type, dfc_conversion_data *source, Lisp_Object coding_system, dfc_conversion_type sink_type, dfc_conversion_data *sink) { /* It's guaranteed that many callers are not prepared for GC here, esp. given that this code conversion occurs in many very hidden places. */ int count; Ibyte_dynarr *conversion_in_dynarr; Lisp_Object underlying_cs; PROFILE_DECLARE (); assert (!inhibit_non_essential_conversion_operations); PROFILE_RECORD_ENTERING_SECTION (QSin_internal_external_conversion); count = begin_gc_forbidden (); type_checking_assert ((source_type == DFC_TYPE_DATA || source_type == DFC_TYPE_LISP_LSTREAM) && (sink_type == DFC_TYPE_DATA || sink_type == DFC_TYPE_LISP_LSTREAM)); if (Dynarr_length (conversion_in_dynarr_list) <= dfc_convert_to_internal_format_in_use) Dynarr_add (conversion_in_dynarr_list, Dynarr_new (Ibyte)); conversion_in_dynarr = Dynarr_at (conversion_in_dynarr_list, dfc_convert_to_internal_format_in_use); Dynarr_reset (conversion_in_dynarr); internal_bind_int (&dfc_convert_to_internal_format_in_use, dfc_convert_to_internal_format_in_use + 1); /* The second call does the equivalent of both calls, but we need the result after the first call (which wraps just a to-text converter) as well as the result after the second call (which also wraps an EOL-detection converter). */ underlying_cs = get_coding_system_for_text_file (coding_system, 0); coding_system = get_coding_system_for_text_file (underlying_cs, 1); if (source_type != DFC_TYPE_LISP_LSTREAM && sink_type != DFC_TYPE_LISP_LSTREAM && coding_system_is_binary (underlying_cs)) { #ifdef MULE const Ibyte *ptr; Bytecount len = source->data.len; const Ibyte *end; /* Make sure no EOL conversion is needed. With a little work we could handle EOL conversion as well but it may not be needed as an optimization. */ if (!EQ (coding_system, underlying_cs)) { for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; ptr < end; ptr++) { if (*ptr == '\r' || *ptr == '\n') goto the_hard_way; } } for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; ptr < end; ptr++) { Ibyte c = *ptr; if (byte_ascii_p (c)) Dynarr_add (conversion_in_dynarr, c); else if (byte_c1_p (c)) { Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1); Dynarr_add (conversion_in_dynarr, c + 0x20); } else { Dynarr_add (conversion_in_dynarr, LEADING_BYTE_LATIN_ISO8859_1); Dynarr_add (conversion_in_dynarr, c); } } #else Dynarr_add_many (conversion_in_dynarr, source->data.ptr, source->data.len); #endif } #ifdef WIN32_ANY /* Optimize the common case involving Unicode where only ASCII/Latin-1 is involved */ else if (source_type != DFC_TYPE_LISP_LSTREAM && sink_type != DFC_TYPE_LISP_LSTREAM && dfc_coding_system_is_unicode (underlying_cs)) { const Ibyte *ptr; Bytecount len = source->data.len; const Ibyte *end; if (len & 1) goto the_hard_way; /* Make sure only ASCII/Latin-1 is involved */ for (ptr = (const Ibyte *) source->data.ptr + 1, end = ptr + len; ptr < end; ptr += 2) { if (*ptr) goto the_hard_way; } /* Make sure no EOL conversion is needed. With a little work we could handle EOL conversion as well but it may not be needed as an optimization. */ if (!EQ (coding_system, underlying_cs)) { for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; ptr < end; ptr += 2) { if (*ptr == '\r' || *ptr == '\n') goto the_hard_way; } } for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; ptr < end; ptr += 2) { Ibyte c = *ptr; if (byte_ascii_p (c)) Dynarr_add (conversion_in_dynarr, c); #ifdef MULE else if (byte_c1_p (c)) { Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1); Dynarr_add (conversion_in_dynarr, c + 0x20); } else { Dynarr_add (conversion_in_dynarr, LEADING_BYTE_LATIN_ISO8859_1); Dynarr_add (conversion_in_dynarr, c); } #endif /* MULE */ } } #endif /* WIN32_ANY */ else { Lisp_Object streams_to_delete[3]; int delete_count; Lisp_Object instream, outstream; Lstream *reader, *writer; #if defined (WIN32_ANY) || defined (MULE) the_hard_way: #endif delete_count = 0; if (source_type == DFC_TYPE_LISP_LSTREAM) instream = source->lisp_object; else { type_checking_assert (source_type == DFC_TYPE_DATA); streams_to_delete[delete_count++] = instream = make_fixed_buffer_input_stream (source->data.ptr, source->data.len); } if (sink_type == DFC_TYPE_LISP_LSTREAM) outstream = sink->lisp_object; else { type_checking_assert (sink_type == DFC_TYPE_DATA); streams_to_delete[delete_count++] = outstream = make_dynarr_output_stream ((unsigned_char_dynarr *) conversion_in_dynarr); } streams_to_delete[delete_count++] = outstream = make_coding_output_stream (XLSTREAM (outstream), coding_system, CODING_DECODE, 0); reader = XLSTREAM (instream); writer = XLSTREAM (outstream); { struct gcpro gcpro1, gcpro2; /* outstream will gc-protect its sink stream, if necessary */ GCPRO2 (instream, outstream); while (1) { Bytecount size_in_bytes; char tempbuf[1024]; /* some random amount */ size_in_bytes = Lstream_read (reader, tempbuf, sizeof (tempbuf)); if (size_in_bytes == 0) break; else if (size_in_bytes < 0) signal_error (Qtext_conversion_error, "Error converting to internal format", Qunbound); if (Lstream_write (writer, tempbuf, size_in_bytes) < 0) signal_error (Qtext_conversion_error, "Error converting to internal format", Qunbound); } /* Closing writer will close any stream at the other end of writer. */ Lstream_close (writer); Lstream_close (reader); UNGCPRO; } /* The idea is that this function will create no garbage. */ while (delete_count) Lstream_delete (XLSTREAM (streams_to_delete [--delete_count])); } unbind_to (count); if (sink_type != DFC_TYPE_LISP_LSTREAM) { sink->data.len = Dynarr_length (conversion_in_dynarr); Dynarr_add (conversion_in_dynarr, '\0'); /* remember to NUL-terminate! */ /* The macros don't currently distinguish between internal and external sinks, and allocate and copy two extra bytes in both cases. So we add a second zero, just like for external data (in that case, because we may be converting to Unicode). */ Dynarr_add (conversion_in_dynarr, '\0'); sink->data.ptr = Dynarr_begin (conversion_in_dynarr); } PROFILE_RECORD_EXITING_SECTION (QSin_internal_external_conversion); } /* ----------------------------------------------------------------------- */ /* Alloca-conversion helpers */ /* ----------------------------------------------------------------------- */ /* For alloca(), things are trickier because the calling function needs to allocate. This means that the caller needs to do the following: (a) invoke us to do the conversion, remember the data and return the size. (b) alloca() the proper size. (c) invoke us again to copy the data. We need to handle the possibility of two or more invocations of the converter in the same expression. In such cases it's conceivable that the evaluation of the sub-expressions will be overlapping (e.g. one size function called, then the other one called, then the copy functions called). To handle this, we keep a list of active data, indexed by the src expression. (We use the stringize operator to avoid evaluating the expression multiple times.) If the caller uses the exact same src expression twice in two converter calls in the same subexpression, we will lose, but at least we can check for this and ABORT(). We could conceivably try to index on other parameters as well, but there is not really any point. */ alloca_convert_vals_dynarr *active_alloca_convert; int find_pos_of_existing_active_alloca_convert (const char *srctext) { alloca_convert_vals *vals = NULL; int i; if (!active_alloca_convert) active_alloca_convert = Dynarr_new (alloca_convert_vals); for (i = 0; i < Dynarr_length (active_alloca_convert); i++) { vals = Dynarr_atp (active_alloca_convert, i); /* On my system, two different occurrences of the same stringized argument always point to the same string. However, on someone else's system, that wasn't the case. We check for equality first, since it seems systems work my way more than the other way. */ if (vals->srctext == srctext || !strcmp (vals->srctext, srctext)) return i; } return -1; } /* ----------------------------------------------------------------------- */ /* New-style DFC converters (data is returned rather than stored into var) */ /* ----------------------------------------------------------------------- */ /* We handle here the cases where SRC is a Lisp_Object, internal data (sized or unsized), or external data (sized or unsized), and return type is unsized alloca() or malloc() data. If the return type is a Lisp_Object, use build_extstring() for unsized external data, make_extstring() for sized external data. If the return type needs to be sized data, use the *_TO_SIZED_*() macros, and for other more complicated cases, use the original TO_*_FORMAT() macros. */ static void new_dfc_convert_now_damn_it (const void *src, Bytecount src_size, enum new_dfc_src_type type, void **dst, Bytecount *dst_size, Lisp_Object codesys) { /* #### In the case of alloca(), it would be a bit more efficient, for small strings, to use static Dynarr's like are used internally in TO_*_FORMAT(), or some other way of avoiding malloc() followed by free(). I doubt it really matters, though. */ switch (type) { case DFC_EXTERNAL: TO_INTERNAL_FORMAT (C_STRING, src, MALLOC, (*dst, *dst_size), codesys); break; case DFC_SIZED_EXTERNAL: TO_INTERNAL_FORMAT (DATA, (src, src_size), MALLOC, (*dst, *dst_size), codesys); break; case DFC_INTERNAL: TO_EXTERNAL_FORMAT (C_STRING, src, MALLOC, (*dst, *dst_size), codesys); break; case DFC_SIZED_INTERNAL: TO_EXTERNAL_FORMAT (DATA, (src, src_size), MALLOC, (*dst, *dst_size), codesys); break; case DFC_LISP_STRING: TO_EXTERNAL_FORMAT (LISP_STRING, VOID_TO_LISP (src), MALLOC, (*dst, *dst_size), codesys); break; default: ABORT (); } /* The size is always + 2 because we have double zero-termination at the end of all data (for Unicode-correctness). */ *dst_size += 2; } Bytecount new_dfc_convert_size (const char *srctext, const void *src, Bytecount src_size, enum new_dfc_src_type type, Lisp_Object codesys) { alloca_convert_vals vals; int i = find_pos_of_existing_active_alloca_convert (srctext); assert (i < 0); vals.srctext = srctext; new_dfc_convert_now_damn_it (src, src_size, type, &vals.dst, &vals.dst_size, codesys); Dynarr_add (active_alloca_convert, vals); return vals.dst_size; } void * new_dfc_convert_copy_data (const char *srctext, void *alloca_data) { alloca_convert_vals *vals; int i = find_pos_of_existing_active_alloca_convert (srctext); assert (i >= 0); vals = Dynarr_atp (active_alloca_convert, i); assert (alloca_data); memcpy (alloca_data, vals->dst, vals->dst_size); xfree (vals->dst); Dynarr_delete (active_alloca_convert, i); return alloca_data; } void * new_dfc_convert_malloc (const void *src, Bytecount src_size, enum new_dfc_src_type type, Lisp_Object codesys) { void *dst; Bytecount dst_size; new_dfc_convert_now_damn_it (src, src_size, type, &dst, &dst_size, codesys); return dst; } /************************************************************************/ /* Basic Ichar functions */ /************************************************************************/ #ifdef MULE /* Convert a non-ASCII Mule character C into a one-character Mule-encoded string in STR. Returns the number of bytes stored. Do not call this directly. Use the macro set_itext_ichar() instead. */ Bytecount non_ascii_set_itext_ichar (Ibyte *str, Ichar c) { Ibyte *p; Ibyte lb; int c1, c2; Lisp_Object charset; p = str; BREAKUP_ICHAR (c, charset, c1, c2); lb = ichar_leading_byte (c); if (leading_byte_private_p (lb)) *p++ = private_leading_byte_prefix (lb); *p++ = lb; if (EQ (charset, Vcharset_control_1)) c1 += 0x20; *p++ = c1 | 0x80; if (c2) *p++ = c2 | 0x80; return (p - str); } /* Return the first character from a Mule-encoded string in STR, assuming it's non-ASCII. Do not call this directly. Use the macro itext_ichar() instead. */ Ichar non_ascii_itext_ichar (const Ibyte *str) { Ibyte i0 = *str, i1, i2 = 0; Lisp_Object charset; if (i0 == LEADING_BYTE_CONTROL_1) return (Ichar) (*++str - 0x20); if (leading_byte_prefix_p (i0)) i0 = *++str; i1 = *++str & 0x7F; charset = charset_by_leading_byte (i0); if (XCHARSET_DIMENSION (charset) == 2) i2 = *++str & 0x7F; return make_ichar (charset, i1, i2); } /* Return whether CH is a valid Ichar, assuming it's non-ASCII. Do not call this directly. Use the macro valid_ichar_p() instead. */ int non_ascii_valid_ichar_p (Ichar ch) { int f1, f2, f3; /* Must have only lowest 21 bits set */ if (ch & ~0x1FFFFF) return 0; f1 = ichar_field1 (ch); f2 = ichar_field2 (ch); f3 = ichar_field3 (ch); if (f1 == 0) { /* dimension-1 char */ Lisp_Object charset; /* leading byte must be correct */ if (f2 < MIN_ICHAR_FIELD2_OFFICIAL || (f2 > MAX_ICHAR_FIELD2_OFFICIAL && f2 < MIN_ICHAR_FIELD2_PRIVATE) || f2 > MAX_ICHAR_FIELD2_PRIVATE) return 0; /* octet not out of range */ if (f3 < 0x20) return 0; /* charset exists */ /* NOTE: This takes advantage of the fact that FIELD2_TO_OFFICIAL_LEADING_BYTE and FIELD2_TO_PRIVATE_LEADING_BYTE are the same. */ charset = charset_by_leading_byte (f2 + FIELD2_TO_OFFICIAL_LEADING_BYTE); if (EQ (charset, Qnil)) return 0; /* check range as per size (94 or 96) of charset */ return ((f3 > 0x20 && f3 < 0x7f) || XCHARSET_CHARS (charset) == 96); } else { /* dimension-2 char */ Lisp_Object charset; /* leading byte must be correct */ if (f1 < MIN_ICHAR_FIELD1_OFFICIAL || (f1 > MAX_ICHAR_FIELD1_OFFICIAL && f1 < MIN_ICHAR_FIELD1_PRIVATE) || f1 > MAX_ICHAR_FIELD1_PRIVATE) return 0; /* octets not out of range */ if (f2 < 0x20 || f3 < 0x20) return 0; #ifdef ENABLE_COMPOSITE_CHARS if (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE == LEADING_BYTE_COMPOSITE) { if (UNBOUNDP (Fgethash (make_int (ch), Vcomposite_char_char2string_hash_table, Qunbound))) return 0; return 1; } #endif /* ENABLE_COMPOSITE_CHARS */ /* charset exists */ if (f1 <= MAX_ICHAR_FIELD1_OFFICIAL) charset = charset_by_leading_byte (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE); else charset = charset_by_leading_byte (f1 + FIELD1_TO_PRIVATE_LEADING_BYTE); if (EQ (charset, Qnil)) return 0; /* check range as per size (94x94 or 96x96) of charset */ return ((f2 != 0x20 && f2 != 0x7F && f3 != 0x20 && f3 != 0x7F) || XCHARSET_CHARS (charset) == 96); } } /* Copy the character pointed to by SRC into DST. Do not call this directly. Use the macro itext_copy_ichar() instead. Return the number of bytes copied. */ Bytecount non_ascii_itext_copy_ichar (const Ibyte *src, Ibyte *dst) { Bytecount bytes = rep_bytes_by_first_byte (*src); Bytecount i; for (i = bytes; i; i--, dst++, src++) *dst = *src; return bytes; } #endif /* MULE */ /************************************************************************/ /* streams of Ichars */ /************************************************************************/ #ifdef MULE /* Treat a stream as a stream of Ichar's rather than a stream of bytes. The functions below are not meant to be called directly; use the macros in insdel.h. */ Ichar Lstream_get_ichar_1 (Lstream *stream, int ch) { Ibyte str[MAX_ICHAR_LEN]; Ibyte *strptr = str; Bytecount bytes; str[0] = (Ibyte) ch; for (bytes = rep_bytes_by_first_byte (ch) - 1; bytes; bytes--) { int c = Lstream_getc (stream); text_checking_assert (c >= 0); *++strptr = (Ibyte) c; } return itext_ichar (str); } int Lstream_fput_ichar (Lstream *stream, Ichar ch) { Ibyte str[MAX_ICHAR_LEN]; Bytecount len = set_itext_ichar (str, ch); return Lstream_write (stream, str, len); } void Lstream_funget_ichar (Lstream *stream, Ichar ch) { Ibyte str[MAX_ICHAR_LEN]; Bytecount len = set_itext_ichar (str, ch); Lstream_unread (stream, str, len); } #endif /* MULE */ /************************************************************************/ /* Lisp primitives for working with characters */ /************************************************************************/ DEFUN ("make-char", Fmake_char, 2, 3, 0, /* Make a character from CHARSET and octets ARG1 and ARG2. ARG2 is required only for characters from two-dimensional charsets. Each octet should be in the range 32 through 127 for a 96 or 96x96 charset and 33 through 126 for a 94 or 94x94 charset. (Most charsets are either 96 or 94x94.) Note that this is 32 more than the values typically given for 94x94 charsets. When two octets are required, the order is "standard" -- the same as appears in ISO-2022 encodings, reference tables, etc. \(Note the following non-obvious result: Computerized translation tables often encode the two octets as the high and low bytes, respectively, of a hex short, while when there's only one octet, it goes in the low byte. When decoding such a value, you need to treat the two cases differently when calling make-char: One is (make-char CHARSET HIGH LOW), the other is (make-char CHARSET LOW).) For example, (make-char 'latin-iso8859-2 185) or (make-char 'latin-iso8859-2 57) will return the Latin 2 character s with caron. As another example, the Japanese character for "kawa" (stream), which looks something like this: | | | | | | | | | | | / | appears in the Unicode Standard (version 2.0) on page 7-287 with the following values (see also page 7-4): U 5DDD (Unicode) G 0-2008 (GB 2312-80) J 0-3278 (JIS X 0208-1990) K 0-8425 (KS C 5601-1987) B A474 (Big Five) C 1-4455 (CNS 11643-1986 (1st plane)) A 213C34 (ANSI Z39.64-1989) These are equivalent to: \(make-char 'chinese-gb2312 52 40) \(make-char 'japanese-jisx0208 64 110) \(make-char 'korean-ksc5601 116 57) \(make-char 'chinese-cns11643-1 76 87) \(decode-big5-char '(164 . 116)) \(All codes above are two decimal numbers except for Big Five and ANSI Z39.64, which we don't support. We add 32 to each of the decimal numbers. Big Five is split in a rather hackish fashion into two charsets, `big5-1' and `big5-2', due to its excessive size -- 94x157, with the first codepoint in the range 0xA1 to 0xFE and the second in the range 0x40 to 0x7E or 0xA1 to 0xFE. `decode-big5-char' is used to generate the char from its codes, and `encode-big5-char' extracts the codes.) When compiled without MULE, this function does not do much, but it's provided for compatibility. In this case, the following CHARSET symbols are allowed: `ascii' -- ARG1 should be in the range 0 through 127. `control-1' -- ARG1 should be in the range 128 through 159. else -- ARG1 is coerced to be between 0 and 255, and then the high bit is set. `int-to-char of the resulting ARG1' is returned, and ARG2 is always ignored. */ (charset, arg1, USED_IF_MULE (arg2))) { #ifdef MULE Lisp_Charset *cs; int a1, a2; int lowlim, highlim; charset = Fget_charset (charset); cs = XCHARSET (charset); get_charset_limits (charset, &lowlim, &highlim); CHECK_INT (arg1); /* It is useful (and safe, according to Olivier Galibert) to strip the 8th bit off ARG1 and ARG2 because it allows programmers to write (make-char 'latin-iso8859-2 CODE) where code is the actual Latin 2 code of the character. */ a1 = XINT (arg1) & 0x7f; if (a1 < lowlim || a1 > highlim) args_out_of_range_3 (arg1, make_int (lowlim), make_int (highlim)); if (CHARSET_DIMENSION (cs) == 1) { if (!NILP (arg2)) invalid_argument ("Charset is of dimension one; second octet must be nil", arg2); return make_char (make_ichar (charset, a1, 0)); } CHECK_INT (arg2); a2 = XINT (arg2) & 0x7f; if (a2 < lowlim || a2 > highlim) args_out_of_range_3 (arg2, make_int (lowlim), make_int (highlim)); return make_char (make_ichar (charset, a1, a2)); #else int a1; int lowlim, highlim; if (EQ (charset, Qascii)) lowlim = 0, highlim = 127; else if (EQ (charset, Qcontrol_1)) lowlim = 0, highlim = 31; else lowlim = 0, highlim = 127; CHECK_INT (arg1); /* It is useful (and safe, according to Olivier Galibert) to strip the 8th bit off ARG1 and ARG2 because it allows programmers to write (make-char 'latin-iso8859-2 CODE) where code is the actual Latin 2 code of the character. */ a1 = XINT (arg1) & 0x7f; if (a1 < lowlim || a1 > highlim) args_out_of_range_3 (arg1, make_int (lowlim), make_int (highlim)); if (EQ (charset, Qascii)) return make_char (a1); return make_char (a1 + 128); #endif /* MULE */ } #ifdef MULE DEFUN ("char-charset", Fchar_charset, 1, 1, 0, /* Return the character set of char CH. */ (ch)) { CHECK_CHAR_COERCE_INT (ch); return XCHARSET_NAME (charset_by_leading_byte (ichar_leading_byte (XCHAR (ch)))); } DEFUN ("char-octet", Fchar_octet, 1, 2, 0, /* Return the octet numbered N (should be 0 or 1) of char CH. N defaults to 0 if omitted. */ (ch, n)) { Lisp_Object charset; int octet0, octet1; CHECK_CHAR_COERCE_INT (ch); BREAKUP_ICHAR (XCHAR (ch), charset, octet0, octet1); if (NILP (n) || EQ (n, Qzero)) return make_int (octet0); else if (EQ (n, make_int (1))) return make_int (octet1); else invalid_constant ("Octet number must be 0 or 1", n); } #endif /* MULE */ DEFUN ("split-char", Fsplit_char, 1, 1, 0, /* Return list of charset and one or two position-codes of CHAR. */ (character)) { /* This function can GC */ struct gcpro gcpro1, gcpro2; Lisp_Object charset = Qnil; Lisp_Object rc = Qnil; int c1, c2; GCPRO2 (charset, rc); CHECK_CHAR_COERCE_INT (character); BREAKUP_ICHAR (XCHAR (character), charset, c1, c2); if (XCHARSET_DIMENSION (charset) == 2) { rc = list3 (XCHARSET_NAME (charset), make_int (c1), make_int (c2)); } else { rc = list2 (XCHARSET_NAME (charset), make_int (c1)); } UNGCPRO; return rc; } /************************************************************************/ /* composite character functions */ /************************************************************************/ #ifdef ENABLE_COMPOSITE_CHARS Ichar lookup_composite_char (Ibyte *str, int len) { Lisp_Object lispstr = make_string (str, len); Lisp_Object ch = Fgethash (lispstr, Vcomposite_char_string2char_hash_table, Qunbound); Ichar emch; if (UNBOUNDP (ch)) { if (composite_char_row_next >= 128) invalid_operation ("No more composite chars available", lispstr); emch = make_ichar (Vcharset_composite, composite_char_row_next, composite_char_col_next); Fputhash (make_char (emch), lispstr, Vcomposite_char_char2string_hash_table); Fputhash (lispstr, make_char (emch), Vcomposite_char_string2char_hash_table); composite_char_col_next++; if (composite_char_col_next >= 128) { composite_char_col_next = 32; composite_char_row_next++; } } else emch = XCHAR (ch); return emch; } Lisp_Object composite_char_string (Ichar ch) { Lisp_Object str = Fgethash (make_char (ch), Vcomposite_char_char2string_hash_table, Qunbound); assert (!UNBOUNDP (str)); return str; } DEFUN ("make-composite-char", Fmake_composite_char, 1, 1, 0, /* Convert a string into a single composite character. The character is the result of overstriking all the characters in the string. */ (string)) { CHECK_STRING (string); return make_char (lookup_composite_char (XSTRING_DATA (string), XSTRING_LENGTH (string))); } DEFUN ("composite-char-string", Fcomposite_char_string, 1, 1, 0, /* Return a string of the characters comprising a composite character. */ (ch)) { Ichar emch; CHECK_CHAR (ch); emch = XCHAR (ch); if (ichar_leading_byte (emch) != LEADING_BYTE_COMPOSITE) invalid_argument ("Must be composite char", ch); return composite_char_string (emch); } #endif /* ENABLE_COMPOSITE_CHARS */ /************************************************************************/ /* initialization */ /************************************************************************/ void reinit_eistring_early (void) { the_eistring_malloc_zero_init = the_eistring_zero_init; the_eistring_malloc_zero_init.mallocp_ = 1; } void init_eistring_once_early (void) { reinit_eistring_early (); } void syms_of_text (void) { DEFSUBR (Fmake_char); DEFSUBR (Fsplit_char); #ifdef MULE DEFSUBR (Fchar_charset); DEFSUBR (Fchar_octet); #ifdef ENABLE_COMPOSITE_CHARS DEFSUBR (Fmake_composite_char); DEFSUBR (Fcomposite_char_string); #endif #endif /* MULE */ } void reinit_vars_of_text (void) { int i; conversion_in_dynarr_list = Dynarr_new2 (Ibyte_dynarr_dynarr, Ibyte_dynarr *); conversion_out_dynarr_list = Dynarr_new2 (Extbyte_dynarr_dynarr, Extbyte_dynarr *); for (i = 0; i <= MAX_BYTEBPOS_GAP_SIZE_3; i++) three_to_one_table[i] = i / 3; } void vars_of_text (void) { QSin_char_byte_conversion = build_defer_string ("(in char-byte conversion)"); staticpro (&QSin_char_byte_conversion); QSin_internal_external_conversion = build_defer_string ("(in internal-external conversion)"); staticpro (&QSin_internal_external_conversion); #ifdef ENABLE_COMPOSITE_CHARS /* #### not dumped properly */ composite_char_row_next = 32; composite_char_col_next = 32; Vcomposite_char_string2char_hash_table = make_lisp_hash_table (500, HASH_TABLE_NON_WEAK, HASH_TABLE_EQUAL); Vcomposite_char_char2string_hash_table = make_lisp_hash_table (500, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ); staticpro (&Vcomposite_char_string2char_hash_table); staticpro (&Vcomposite_char_char2string_hash_table); #endif /* ENABLE_COMPOSITE_CHARS */ }