Mercurial > hg > xemacs-beta
view src/floatfns.c @ 2720:6fa9919a9a0b
[xemacs-hg @ 2005-04-08 23:10:01 by crestani]
ChangeLog addition:
2005-04-01 Marcus Crestani <crestani@xemacs.org>
The new allocator.
New configure flag: `MC_ALLOC':
* configure.ac (XE_COMPLEX_ARG_ENABLE): Add `--enable-mc-alloc' as
a new configure flag.
* configure.in (AC_INIT_PARSE_ARGS): Add `--mc-alloc' as a new
configure flag.
* configure.usage: Add description for `mc-alloc'.
DUMP_IN_EXEC:
* Makefile.in.in: Condition the installation of a separate dump
file on !DUMP_ON_EXEC.
* configure.ac (XE_COMPLEX_ARG_ENABLE): Add
`--enable-dump-in-exec' as a new configure flag.
* configure.ac: DUMP_IN_EXEC is define as default for PDUMP but
not default for MC_ALLOC.
* configure.in (AC_INIT_PARSE_ARGS): Add `--dump-in-exec' as a
new configure flag.
* configure.in: DUMP_IN_EXEC is define as default for PDUMP but
not default for MC_ALLOC.
* configure.usage: Add description for `dump-in-exec'.
lib-src/ChangeLog addition:
2005-04-01 Marcus Crestani <crestani@xemacs.org>
The new allocator.
DUMP_IN_EXEC:
* Makefile.in.in: Only compile insert-data-in-exec if
DUMP_IN_EXEC is defined.
lisp/ChangeLog addition:
2005-04-01 Marcus Crestani <crestani@xemacs.org>
The new allocator.
MEMORY_USAGE_STATS
* diagnose.el: Add new lisp function to pretty print statistics
about the new allocator.
* diagnose.el (show-mc-alloc-memory-usage): New.
modules/ChangeLog addition:
2005-04-01 Marcus Crestani <crestani@xemacs.org>
The new allocator.
Remove Lcrecords:
* postgresql/postgresql.c (allocate_pgconn): Allocate with new
allocator.
* postgresql/postgresql.c (allocate_pgresult): Allocate PGresult
with new allocator.
* postgresql/postgresql.h (struct Lisp_PGconn): Add
lrecord_header.
* postgresql/postgresql.h (struct Lisp_PGresult): Add
lrecord_header.
* ldap/eldap.c (allocate_ldap): Allocate with new allocator.
* ldap/eldap.h (struct Lisp_LDAP): Add lrecord_header.
nt/ChangeLog addition:
2005-04-01 Marcus Crestani <crestani@xemacs.org>
The new allocator.
New configure flag: `MC_ALLOC':
* config.inc.samp: Add new flag `MC_ALLOC'.
* xemacs.mak: Add flag and configuration output for `MC_ALLOC'.
New files:
* xemacs.dsp: Add source files mc-alloc.c and mc-alloc.h.
* xemacs.mak: Add new object file mc-alloc.obj to dependencies.
src/ChangeLog addition:
2005-04-01 Marcus Crestani <crestani@xemacs.org>
The new allocator.
New configure flag: `MC_ALLOC':
* config.h.in: Add new flag `MC_ALLOC'.
New files:
* Makefile.in.in: Add new object file mc-alloc.o.
* depend: Add new files to dependencies.
* mc-alloc.c: New.
* mc-alloc.h: New.
Running the new allocator from XEmacs:
* alloc.c (deadbeef_memory): Moved to mc-alloc.c.
* emacs.c (main_1): Initialize the new allocator and add
syms_of_mc_alloc.
* symsinit.h: Add syms_of_mc_alloc.
New lrecord allocation and free functions:
* alloc.c (alloc_lrecord): New. Allocates an lrecord, includes
type checking and initializing of the lrecord_header.
* alloc.c (noseeum_alloc_lrecord): Same as above, but increments
the NOSEEUM cons counter.
* alloc.c (free_lrecord): New. Calls the finalizer and frees the
lrecord.
* lrecord.h: Add lrecord allocation prototypes and comments.
Remove old lrecord FROB block allocation:
* alloc.c (allocate_lisp_storage): Former function to expand
heap. Not needed anymore, remove.
* alloc.c: Completely remove `Fixed-size type macros'
* alloc.c (release_breathing_space): Remove.
* alloc.c (memory_full): Remove release_breathing_space.
* alloc.c (refill_memory_reserve): Remove.
* alloc.c (TYPE_ALLOC_SIZE): Remove.
* alloc.c (DECLARE_FIXED_TYPE_ALLOC): Remove.
* alloc.c (ALLOCATE_FIXED_TYPE_FROM_BLOCK): Remove.
* alloc.c (ALLOCATE_FIXED_TYPE_1): Remove.
* alloc.c (ALLOCATE_FIXED_TYPE): Remove.
* alloc.c (NOSEEUM_ALLOCATE_FIXED_TYPE): Remove.
* alloc.c (struct Lisp_Free): Remove.
* alloc.c (LRECORD_FREE_P): Remove.
* alloc.c (MARK_LRECORD_AS_FREE): Remove.
* alloc.c (MARK_LRECORD_AS_NOT_FREE): Remove.
* alloc.c (PUT_FIXED_TYPE_ON_FREE_LIST): Remove.
* alloc.c (FREE_FIXED_TYPE): Remove.
* alloc.c (FREE_FIXED_TYPE_WHEN_NOT_IN_GC): Remove.
Allocate old lrecords with new allocator:
* alloc.c: DECLARE_FIXED_TYPE_ALLOC removed for all lrecords
defined in alloc.c.
* alloc.c (Fcons): Allocate with new allocator.
* alloc.c (noseeum_cons): Allocate with new allocator.
* alloc.c (make_float): Allocate with new allocator.
* alloc.c (make_bignum): Allocate with new allocator.
* alloc.c (make_bignum_bg): Allocate with new allocator.
* alloc.c (make_ratio): Allocate with new allocator.
* alloc.c (make_ratio_bg): Allocate with new allocator.
* alloc.c (make_ratio_rt): Allocate with new allocator.
* alloc.c (make_bigfloat): Allocate with new allocator.
* alloc.c (make_bigfloat_bf): Allocate with new allocator.
* alloc.c (make_compiled_function): Allocate with new allocator.
* alloc.c (Fmake_symbol): Allocate with new allocator.
* alloc.c (allocate_extent): Allocate with new allocator.
* alloc.c (allocate_event): Allocate with new allocator.
* alloc.c (make_key_data): Allocate with new allocator.
* alloc.c (make_button_data): Allocate with new allocator.
* alloc.c (make_motion_data): Allocate with new allocator.
* alloc.c (make_process_data): Allocate with new allocator.
* alloc.c (make_timeout_data): Allocate with new allocator.
* alloc.c (make_magic_data): Allocate with new allocator.
* alloc.c (make_magic_eval_data): Allocate with new allocator.
* alloc.c (make_eval_data): Allocate with new allocator.
* alloc.c (make_misc_user_data): Allocate with new allocator.
* alloc.c (Fmake_marker): Allocate with new allocator.
* alloc.c (noseeum_make_marker): Allocate with new allocator.
* alloc.c (make_uninit_string): Allocate with new allocator.
* alloc.c (resize_string): Allocate with new allocator.
* alloc.c (make_string_nocopy): Allocate with new allocator.
Garbage Collection:
* alloc.c (GC_CHECK_NOT_FREE): Remove obsolete assertions.
* alloc.c (SWEEP_FIXED_TYPE_BLOCK): Remove.
* alloc.c (SWEEP_FIXED_TYPE_BLOCK_1): Remove.
* alloc.c (sweep_conses): Remove.
* alloc.c (free_cons): Use new allocator to free.
* alloc.c (sweep_compiled_functions): Remove.
* alloc.c (sweep_floats): Remove.
* alloc.c (sweep_bignums): Remove.
* alloc.c (sweep_ratios): Remove.
* alloc.c (sweep_bigfloats): Remove.
* alloc.c (sweep_symbols): Remove.
* alloc.c (sweep_extents): Remove.
* alloc.c (sweep_events): Remove.
* alloc.c (sweep_key_data): Remove.
* alloc.c (free_key_data): Use new allocator to free.
* alloc.c (sweep_button_data): Remove.
* alloc.c (free_button_data): Use new allocator to free.
* alloc.c (sweep_motion_data): Remove.
* alloc.c (free_motion_data): Use new allocator to free.
* alloc.c (sweep_process_data): Remove.
* alloc.c (free_process_data): Use new allocator to free.
* alloc.c (sweep_timeout_data): Remove.
* alloc.c (free_timeout_data): Use new allocator to free.
* alloc.c (sweep_magic_data): Remove.
* alloc.c (free_magic_data): Use new allocator to free.
* alloc.c (sweep_magic_eval_data): Remove.
* alloc.c (free_magic_eval_data): Use new allocator to free.
* alloc.c (sweep_eval_data): Remove.
* alloc.c (free_eval_data): Use new allocator to free.
* alloc.c (sweep_misc_user_data): Remove.
* alloc.c (free_misc_user_data): Use new allocator to free.
* alloc.c (sweep_markers): Remove.
* alloc.c (free_marker): Use new allocator to free.
* alloc.c (garbage_collect_1): Remove release_breathing_space.
* alloc.c (gc_sweep): Remove all the old lcrecord and lrecord
related stuff. Sweeping now works like this: compact string
chars, finalize, sweep.
* alloc.c (common_init_alloc_early): Remove old lrecord
initializations, remove breathing_space.
* emacs.c (Fdump_emacs): Remove release_breathing_space.
* lisp.h: Remove prototype for release_breathing_space.
* lisp.h: Adjust the special cons mark makros.
Lrecord Finalizer:
* alloc.c: Add finalizer to lrecord definition.
* alloc.c (finalize_string): Add finalizer for string.
* bytecode.c: Add finalizer to lrecord definition.
* bytecode.c (finalize_compiled_function): Add finalizer for
compiled function.
* marker.c: Add finalizer to lrecord definition.
* marker.c (finalize_marker): Add finalizer for marker.
These changes build the interface to mc-alloc:
* lrecord.h (MC_ALLOC_CALL_FINALIZER): Tell mc-alloc how to
finalize lrecords.
* lrecord.h (MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE): Tell
mc-alloc how to finalize for disksave.
Unify lrecords and lcrecords:
* lisp.h (struct Lisp_String): Adjust string union hack to
new lrecord header.
* lrecord.h: Adjust comments.
* lrecord.h (struct lrecord_header): The new lrecord header
includes type, lisp-readonly, free, and uid.
* lrecord.h (set_lheader_implementation): Adjust to new
lrecord_header.
* lrecord.h (struct lrecord_implementation): The field basic_p
for indication of an old lrecord is not needed anymore, remove.
* lrecord.h (MAKE_LRECORD_IMPLEMENTATION): Remove basic_p.
* lrecord.h (MAKE_EXTERNAL_LRECORD_IMPLEMENTATION): Remove
basic_p.
* lrecord.h (copy_sized_lrecord): Remove distinction between
old lrecords and lcrecords.
* lrecord.h (copy_lrecord): Remove distinction between old
lrecords and lcrecords.
* lrecord.h (zero_sized_lrecord): Remove distinction between
old lrecords and lcrecords.
* lrecord.h (zero_lrecord): Remove distinction between old
lrecords and lcrecords.
Remove lcrecords and lcrecord lists:
* alloc.c (basic_alloc_lcrecord): Not needed anymore, remove.
* alloc.c (very_old_free_lcrecord): Not needed anymore, remove.
* alloc.c (copy_lisp_object): No more distinction between
lrecords and lcrecords.
* alloc.c (all_lcrecords): Not needed anymore, remove.
* alloc.c (make_vector_internal): Allocate as lrecord.
* alloc.c (make_bit_vector_internal): Allocate as lrecord.
* alloc.c: Completely remove `lcrecord lists'.
* alloc.c (free_description): Remove.
* alloc.c (lcrecord_list_description): Remove.
* alloc.c (mark_lcrecord_list): Remove.
* alloc.c (make_lcrecord_list): Remove.
* alloc.c (alloc_managed_lcrecord): Remove.
* alloc.c (free_managed_lcrecord): Remove.
* alloc.c (alloc_automanaged_lcrecord): Remove.
* alloc.c (free_lcrecord): Remove.
* alloc.c (lcrecord_stats): Remove.
* alloc.c (tick_lcrecord_stats): Remove.
* alloc.c (disksave_object_finalization_1): Add call to
mc_finalize_for_disksave. Remove the lcrecord way to visit all
objects.
* alloc.c (kkcc_marking): Remove XD_FLAG_FREE_LISP_OBJECT
* alloc.c (sweep_lcrecords_1): Remove.
* alloc.c (common_init_alloc_early): Remove everything related
to lcrecords, remove old lrecord initializations,
* alloc.c (init_lcrecord_lists): Not needed anymore, remove.
* alloc.c (reinit_alloc_early): Remove everything related to
lcrecords.
* alloc.c (init_alloc_once_early): Remove everything related to
lcrecords.
* buffer.c (allocate_buffer): Allocate as lrecord.
* buffer.c (nuke_all_buffer_slots): Use lrecord functions.
* buffer.c (common_init_complex_vars_of_buffer): Allocate as
lrecord.
* buffer.h (struct buffer): Add lrecord_header.
* casetab.c (allocate_case_table): Allocate as lrecord.
* casetab.h (struct Lisp_Case_Table): Add lrecord_header.
* charset.h (struct Lisp_Charset): Add lrecord_header.
* chartab.c (fill_char_table): Use lrecord functions.
* chartab.c (Fmake_char_table): Allocate as lrecord.
* chartab.c (make_char_table_entry): Allocate as lrecord.
* chartab.c (copy_char_table_entry): Allocate as lrecord.
* chartab.c (Fcopy_char_table): Allocate as lrecord.
* chartab.c (put_char_table): Use lrecord functions.
* chartab.h (struct Lisp_Char_Table_Entry): Add lrecord_header.
* chartab.h (struct Lisp_Char_Table): Add lrecord_header.
* console-impl.h (struct console): Add lrecord_header.
* console-msw-impl.h (struct Lisp_Devmode): Add lrecord_header.
* console-msw-impl.h (struct mswindows_dialog_id): Add
lrecord_header.
* console.c (allocate_console): Allocate as lrecord.
* console.c (nuke_all_console_slots): Use lrecord functions.
* console.c (common_init_complex_vars_of_console): Allocate as
lrecord.
* data.c (make_weak_list): Allocate as lrecord.
* data.c (make_weak_box): Allocate as lrecord.
* data.c (make_ephemeron): Allocate as lrecord.
* database.c (struct Lisp_Database): Add lrecord_header.
* database.c (allocate_database): Allocate as lrecord.
* device-impl.h (struct device): Add lrecord_header.
* device-msw.c (allocate_devmode): Allocate as lrecord.
* device.c (nuke_all_device_slots): Use lrecord functions.
* device.c (allocate_device): Allocate as lrecord.
* dialog-msw.c (handle_question_dialog_box): Allocate as lrecord.
* elhash.c (struct Lisp_Hash_Table): Add lrecord_header.
* elhash.c (make_general_lisp_hash_table): Allocate as lrecord.
* elhash.c (Fcopy_hash_table): Allocate as lrecord.
* event-stream.c: Lcrecord lists Vcommand_builder_free_list and
Vtimeout_free_list are no longer needed. Remove.
* event-stream.c (allocate_command_builder): Allocate as lrecord.
* event-stream.c (free_command_builder): Use lrecord functions.
* event-stream.c (event_stream_generate_wakeup): Allocate as
lrecord.
* event-stream.c (event_stream_resignal_wakeup): Use lrecord
functions.
* event-stream.c (event_stream_disable_wakeup): Use lrecord
functions.
* event-stream.c (reinit_vars_of_event_stream): Lcrecord lists
remove.
* events.h (struct Lisp_Timeout): Add lrecord_header.
* events.h (struct command_builder): Add lrecord_header.
* extents-impl.h (struct extent_auxiliary): Add lrecord_header.
* extents-impl.h (struct extent_info): Add lrecord_header.
* extents.c (allocate_extent_auxiliary): Allocate as lrecord.
* extents.c (allocate_extent_info): Allocate as lrecord.
* extents.c (copy_extent): Allocate as lrecord.
* faces.c (allocate_face): Allocate as lrecord.
* faces.h (struct Lisp_Face): Add lrecord_header.
* file-coding.c (allocate_coding_system): Allocate as lrecord.
* file-coding.c (Fcopy_coding_system): Allocate as lrecord.
* file-coding.h (struct Lisp_Coding_System): Add lrecord_header.
* fns.c (Ffillarray): Allocate as lrecord.
* frame-impl.h (struct frame): Add lrecord_header.
* frame.c (nuke_all_frame_slots): Use lrecord functions.
* frame.c (allocate_frame_core): Allocate as lrecord.
* glyphs.c (allocate_image_instance): Allocate as lrecord.
* glyphs.c (Fcolorize_image_instance): Allocate as lrecord.
* glyphs.c (allocate_glyph): Allocate as lrecord.
* glyphs.h (struct Lisp_Image_Instance): Add lrecord_header.
* glyphs.h (struct Lisp_Glyph): Add lrecord_header.
* gui.c (allocate_gui_item): Allocate as lrecord.
* gui.h (struct Lisp_Gui_Item): Add lrecord_header.
* keymap.c (struct Lisp_Keymap): Add lrecord_header.
* keymap.c (make_keymap): Allocate as lrecord.
* lisp.h (struct Lisp_Vector): Add lrecord_header.
* lisp.h (struct Lisp_Bit_Vector): Add lrecord_header.
* lisp.h (struct weak_box): Add lrecord_header.
* lisp.h (struct ephemeron): Add lrecord_header.
* lisp.h (struct weak_list): Add lrecord_header.
* lrecord.h (struct lcrecord_header): Not used, remove.
* lrecord.h (struct free_lcrecord_header): Not used, remove.
* lrecord.h (struct lcrecord_list): Not needed anymore, remove.
* lrecord.h (lcrecord_list): Not needed anymore, remove.
* lrecord.h: (enum data_description_entry_flags): Remove
XD_FLAG_FREE_LISP_OBJECT.
* lstream.c: Lrecord list Vlstream_free_list remove.
* lstream.c (Lstream_new): Allocate as lrecord.
* lstream.c (Lstream_delete): Use lrecod functions.
* lstream.c (reinit_vars_of_lstream): Vlstream_free_list
initialization remove.
* lstream.h (struct lstream): Add lrecord_header.
* emacs.c (main_1): Remove lstream initialization.
* mule-charset.c (make_charset): Allocate as lrecord.
* objects-impl.h (struct Lisp_Color_Instance): Add
lrecord_header.
* objects-impl.h (struct Lisp_Font_Instance): Add lrecord_header.
* objects.c (Fmake_color_instance): Allocate as lrecord.
* objects.c (Fmake_font_instance): Allocate as lrecord.
* objects.c (reinit_vars_of_objects): Allocate as lrecord.
* opaque.c: Lcreord list Vopaque_ptr_list remove.
* opaque.c (make_opaque): Allocate as lrecord.
* opaque.c (make_opaque_ptr): Allocate as lrecord.
* opaque.c (free_opaque_ptr): Use lrecord functions.
* opaque.c (reinit_opaque_early):
* opaque.c (init_opaque_once_early): Vopaque_ptr_list
initialization remove.
* opaque.h (Lisp_Opaque): Add lrecord_header.
* opaque.h (Lisp_Opaque_Ptr): Add lrecord_header.
* emacs.c (main_1): Remove opaque variable initialization.
* print.c (default_object_printer): Use new lrecord_header.
* print.c (print_internal): Use new lrecord_header.
* print.c (debug_p4): Use new lrecord_header.
* process.c (make_process_internal): Allocate as lrecord.
* procimpl.h (struct Lisp_Process): Add lrecord_header.
* rangetab.c (Fmake_range_table): Allocate as lrecord.
* rangetab.c (Fcopy_range_table): Allocate as lrecord.
* rangetab.h (struct Lisp_Range_Table): Add lrecord_header.
* scrollbar.c (create_scrollbar_instance): Allocate as lrecord.
* scrollbar.h (struct scrollbar_instance): Add lrecord_header.
* specifier.c (make_specifier_internal): Allocate as lrecord.
* specifier.h (struct Lisp_Specifier): Add lrecord_header.
* symbols.c:
* symbols.c (Fmake_variable_buffer_local): Allocate as lrecord.
* symbols.c (Fdontusethis_set_symbol_value_handler): Allocate
as lrecord.
* symbols.c (Fdefvaralias): Allocate as lrecord.
* symeval.h (struct symbol_value_magic): Add lrecord_header.
* toolbar.c (update_toolbar_button): Allocate as lrecord.
* toolbar.h (struct toolbar_button): Add lrecord_header.
* tooltalk.c (struct Lisp_Tooltalk_Message): Add lrecord_header.
* tooltalk.c (make_tooltalk_message): Allocate as lrecord.
* tooltalk.c (struct Lisp_Tooltalk_Pattern): Add lrecord_header.
* tooltalk.c (make_tooltalk_pattern): Allocate as lrecord.
* ui-gtk.c (allocate_ffi_data): Allocate as lrecord.
* ui-gtk.c (allocate_emacs_gtk_object_data): Allocate as lrecord.
* ui-gtk.c (allocate_emacs_gtk_boxed_data): Allocate as lrecord.
* ui-gtk.h (structs): Add lrecord_header.
* window-impl.h (struct window): Add lrecord_header.
* window-impl.h (struct window_mirror): Add lrecord_header.
* window.c (allocate_window): Allocate as lrecord.
* window.c (new_window_mirror): Allocate as lrecord.
* window.c (make_dummy_parent): Allocate as lrecord.
MEMORY_USAGE_STATS
* alloc.c (fixed_type_block_overhead): Not used anymore, remove.
* buffer.c (compute_buffer_usage): Get storage size from new
allocator.
* marker.c (compute_buffer_marker_usage): Get storage size from
new allocator.
* mule-charset.c (compute_charset_usage): Get storage size from
new allocator.
* scrollbar-gtk.c (gtk_compute_scrollbar_instance_usage): Get
storage size from new allocator.
* scrollbar-msw.c (mswindows_compute_scrollbar_instance_usage):
Get storage size from new allocator.
* scrollbar-x.c (x_compute_scrollbar_instance_usage): Get
storage size from new allocator.
* scrollbar.c (compute_scrollbar_instance_usage): Get storage
size from new allocator.
* unicode.c (compute_from_unicode_table_size_1): Get storage
size from new allocator.
* unicode.c (compute_to_unicode_table_size_1): Get storage size
from new allocator.
* window.c (compute_window_mirror_usage): Get storage size from
new allocator.
* window.c (compute_window_usage): Get storage size from new
allocator.
MC_ALLOC_TYPE_STATS:
* alloc.c (alloc_lrecord): Bump lrecord count.
* alloc.c (noseeum_alloc_lrecord): Bump lrecord count.
* alloc.c (struct lrecord_stats): Storage for counts.
* alloc.c (init_lrecord_stats): Zero statistics.
* alloc.c (inc_lrecord_stats): Increase the statistic.
* alloc.c (dec_lrecord_stats): Decrease the statistic.
* alloc.c (gc_plist_hack): Used to print the information.
* alloc.c (Fgarbage_collect): Return the collected information.
* mc-alloc.c (remove_cell): Decrease lrecord count.
* mc-alloc.h: Set flag MC_ALLOC_TYPE_STATS.
* emacs.c (main_1): Init lrecord statistics.
* lrecord.h: Add prototypes for *_lrecord_stats.
Strings:
* alloc.c (Fmake_string): Initialize ascii_begin to zero.
* alloc.c (gc_count_num_short_string_in_use): Remove.
* alloc.c (gc_count_string_total_size): Remove.
* alloc.c (gc_count_short_string_total_size): Remove.
* alloc.c (debug_string_purity): Remove.
* alloc.c (debug_string_purity_print): Remove.
* alloc.c (sweep_strings): Remove.
Remove static C-readonly Lisp objects:
* alloc.c (c_readonly): Not needed anymore, remove.
* alloc.c (GC_CHECK_LHEADER_INVARIANTS): Remove some obsolete
lheader invariants assertions.
* buffer.c (DEFVAR_BUFFER_LOCAL_1): Allocate dynamically.
* console.c (DEFVAR_CONSOLE_LOCAL_1): Allocate dynamically.
* gpmevent.c: Indirection via MC_ALLOC_Freceive_gpm_event.
* gpmevent.c (Fgpm_enable): Allocate dynamically.
* gpmevent.c (syms_of_gpmevent): Allocate dynamically.
* lisp.h (C_READONLY): Not needed anymore, remove.
* lisp.h (DEFUN): Allocate dynamically.
* lrecord.h (C_READONLY_RECORD_HEADER_P): Not needed anymore,
remove.
* lrecord.h (SET_C_READONLY_RECORD_HEADER): Not needed anymore,
remove.
* symbols.c (guts_of_unbound_marker):
* symeval.h (defsubr): Allocate dynamically.
* symeval.h (DEFSUBR_MACRO): Allocate dynamically.
* symeval.h (DEFVAR_ SYMVAL_FWD): Allocate dynamically.
* tests.c (TESTS_DEFSUBR): Allocate dynamically.
Definition of mcpro:
* lisp.h: Add mcpro prototypes.
* alloc.c (common_init_alloc_early): Add initialization for
mcpros.
* alloc.c (mcpro_description_1): New.
* alloc.c (mcpro_description): New.
* alloc.c (mcpros_description_1): New.
* alloc.c (mcpros_description): New.
* alloc.c (mcpro_one_name_description_1): New.
* alloc.c (mcpro_one_name_description): New.
* alloc.c (mcpro_names_description_1): New.
* alloc.c (mcpro_names_description): New.
* alloc.c (mcpros): New.
* alloc.c (mcpro_names): New.
* alloc.c (mcpro_1): New.
* alloc.c (mc_pro): New.
* alloc.c (garbage_collect_1): Add mcpros to root set.
Usage of mcpro:
* alloc.c (make_string_nocopy): Add string to root set.
* symbols.c (init_symbols_once_early): Add Qunbound to root set.
Changes to the Portable Dumper:
* alloc.c (FREE_OR_REALLOC_BEGIN): Since dumped objects can be
freed with the new allocator, remove assertion for !DUMPEDP.
* dumper.c: Adjust comments, increase PDUMP_HASHSIZE.
* dumper.c (pdump_make_hash): Shift address only 2 bytes, to
avoid collisions.
* dumper.c (pdump_objects_unmark): No more mark bits within
the object, remove.
* dumper.c (mc_addr_elt): New. Element data structure for mc
hash table.
* dumper.c (pdump_mc_hash): New hash table: `lookup table'.
* dumper.c (pdump_get_mc_addr): New. Lookup for hash table.
* dumper.c (pdump_get_indirect_mc_addr): New. Lookup for
convertibles.
* dumper.c (pdump_put_mc_addr): New. Putter for hash table.
* dumper.c (pdump_dump_mc_data): New. Writes the table for
relocation at load time to the dump file.
* dumper.c (pdump_scan_lisp_objects_by_alignment): New.
Visits all dumped Lisp objects.
* dumper.c (pdump_scan_non_lisp_objects_by_alignment): New.
Visits all other dumped objects.
* dumper.c (pdump_reloc_one_mc): New. Updates all pointers
of an object by using the hash table pdump_mc_hash.
* dumper.c (pdump_reloc_one): Replaced by pdump_reloc_one_mc.
* dumper.c (pdump): Change the structure of the dump file, add
the mc post dump relocation table to dump file.
* dumper.c (pdump_load_finish): Hand all dumped objects to the
new allocator and use the mc post dump relocation table for
relocating the dumped objects at dump file load time, free not
longer used data structures.
* dumper.c (pdump_load): Free the dump file.
* dumper.h: Remove pdump_objects_unmark.
* lrecord.h (DUMPEDP): Dumped objects can be freed, remove.
DUMP_IN_EXEC:
* Makefile.in.in: Linking for and with dump in executable only if
DUMP_IN_EXEC is defined.
* config.h.in: Add new flag `DUMP_IN_EXEC'
* emacs.c: Condition dump-data.h on DUMP_IN_EXEC.
* emacs.c (main_1): Flag `-si' only works if dump image is
written into executable.
Miscellanious
* lrecord.h (enum lrecord_type): Added numbers to all types,
very handy for debugging.
* xemacs.def.in.in: Add mc-alloc functions to make them visible
to the modules.
| author | crestani |
|---|---|
| date | Fri, 08 Apr 2005 23:11:35 +0000 |
| parents | 04bc9d2f42c7 |
| children | b5e1d4f6b66f 3742ea8250b5 |
line wrap: on
line source
/* Primitive operations on floating point for XEmacs Lisp interpreter. Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. */ /* ANSI C requires only these float functions: acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh. Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh. Define HAVE_CBRT if you have cbrt(). Define HAVE_RINT if you have rint(). If you don't define these, then the appropriate routines will be simulated. Define HAVE_MATHERR if on a system supporting the SysV matherr() callback. (This should happen automatically.) Define FLOAT_CHECK_ERRNO if the float library routines set errno. This has no effect if HAVE_MATHERR is defined. Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL. (What systems actually do this? Let me know. -jwz) Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and range checking will happen before calling the float routines. This has no effect if HAVE_MATHERR is defined (since matherr will be called when a domain error occurs). */ #include <config.h> #include "lisp.h" #include "syssignal.h" #include "sysfloat.h" /* The code uses emacs_rint, so that it works to undefine HAVE_RINT if `rint' exists but does not work right. */ #ifdef HAVE_RINT #define emacs_rint rint #else static double emacs_rint (double x) { double r = floor (x + 0.5); double diff = fabs (r - x); /* Round to even and correct for any roundoff errors. */ if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0))) r += r < x ? 1.0 : -1.0; return r; } #endif /* Nonzero while executing in floating point. This tells float_error what to do. */ static int in_float; /* If an argument is out of range for a mathematical function, here is the actual argument value to use in the error message. */ static Lisp_Object float_error_arg, float_error_arg2; static const char *float_error_fn_name; /* Evaluate the floating point expression D, recording NUM as the original argument for error messages. D is normally an assignment expression. Handle errors which may result in signals or may set errno. Note that float_error may be declared to return void, so you can't just cast the zero after the colon to (SIGTYPE) to make the types check properly. */ #ifdef FLOAT_CHECK_ERRNO #define IN_FLOAT(d, name, num) \ do { \ float_error_arg = num; \ float_error_fn_name = name; \ in_float = 1; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #define IN_FLOAT2(d, name, num, num2) \ do { \ float_error_arg = num; \ float_error_arg2 = num2; \ float_error_fn_name = name; \ in_float = 2; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #else #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0) #define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0) #endif #define arith_error(op,arg) \ Fsignal (Qarith_error, list2 (build_msg_string (op), arg)) #define range_error(op,arg) \ Fsignal (Qrange_error, list2 (build_msg_string (op), arg)) #define range_error2(op,a1,a2) \ Fsignal (Qrange_error, list3 (build_msg_string (op), a1, a2)) #define domain_error(op,arg) \ Fsignal (Qdomain_error, list2 (build_msg_string (op), arg)) #define domain_error2(op,a1,a2) \ Fsignal (Qdomain_error, list3 (build_msg_string (op), a1, a2)) /* Convert float to Lisp Integer if it fits, else signal a range error using the given arguments. If bignums are available, range errors are never signaled. */ static Lisp_Object float_to_int (double x, #ifdef HAVE_BIGNUM const char *UNUSED (name), Lisp_Object UNUSED (num), Lisp_Object UNUSED (num2) #else const char *name, Lisp_Object num, Lisp_Object num2 #endif ) { #ifdef HAVE_BIGNUM bignum_set_double (scratch_bignum, x); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #else REGISTER EMACS_INT result = (EMACS_INT) x; if (result > EMACS_INT_MAX || result < EMACS_INT_MIN) { if (!UNBOUNDP (num2)) range_error2 (name, num, num2); else range_error (name, num); } return make_int (result); #endif /* HAVE_BIGNUM */ } static void in_float_error (void) { switch (errno) { case 0: break; case EDOM: if (in_float == 2) domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2); else domain_error (float_error_fn_name, float_error_arg); break; case ERANGE: range_error (float_error_fn_name, float_error_arg); break; default: arith_error (float_error_fn_name, float_error_arg); break; } } static Lisp_Object mark_float (Lisp_Object UNUSED (obj)) { return Qnil; } static int float_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth)) { return (extract_float (obj1) == extract_float (obj2)); } static Hashcode float_hash (Lisp_Object obj, int UNUSED (depth)) { /* mod the value down to 32-bit range */ /* #### change for 64-bit machines */ return (unsigned long) fmod (extract_float (obj), 4e9); } static const struct memory_description float_description[] = { { XD_END } }; DEFINE_BASIC_LRECORD_IMPLEMENTATION ("float", float, 1, /*dumpable-flag*/ mark_float, print_float, 0, float_equal, float_hash, float_description, Lisp_Float); /* Extract a Lisp number as a `double', or signal an error. */ double extract_float (Lisp_Object num) { if (FLOATP (num)) return XFLOAT_DATA (num); if (INTP (num)) return (double) XINT (num); #ifdef HAVE_BIGNUM if (BIGNUMP (num)) return bignum_to_double (XBIGNUM_DATA (num)); #endif #ifdef HAVE_RATIO if (RATIOP (num)) return ratio_to_double (XRATIO_DATA (num)); #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (num)) return bigfloat_to_double (XBIGFLOAT_DATA (num)); #endif return extract_float (wrong_type_argument (Qnumberp, num)); } /* Trig functions. */ DEFUN ("acos", Facos, 1, 1, 0, /* Return the inverse cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("acos", number); #endif IN_FLOAT (d = acos (d), "acos", number); return make_float (d); } DEFUN ("asin", Fasin, 1, 1, 0, /* Return the inverse sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("asin", number); #endif IN_FLOAT (d = asin (d), "asin", number); return make_float (d); } DEFUN ("atan", Fatan, 1, 2, 0, /* Return the inverse tangent of NUMBER. If optional second argument NUMBER2 is provided, return atan2 (NUMBER, NUMBER2). */ (number, number2)) { double d = extract_float (number); if (NILP (number2)) IN_FLOAT (d = atan (d), "atan", number); else { double d2 = extract_float (number2); #ifdef FLOAT_CHECK_DOMAIN if (d == 0.0 && d2 == 0.0) domain_error2 ("atan", number, number2); #endif IN_FLOAT2 (d = atan2 (d, d2), "atan", number, number2); } return make_float (d); } DEFUN ("cos", Fcos, 1, 1, 0, /* Return the cosine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = cos (d), "cos", number); return make_float (d); } DEFUN ("sin", Fsin, 1, 1, 0, /* Return the sine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = sin (d), "sin", number); return make_float (d); } DEFUN ("tan", Ftan, 1, 1, 0, /* Return the tangent of NUMBER. */ (number)) { double d = extract_float (number); double c = cos (d); #ifdef FLOAT_CHECK_DOMAIN if (c == 0.0) domain_error ("tan", number); #endif IN_FLOAT (d = (sin (d) / c), "tan", number); return make_float (d); } /* Bessel functions */ #if 0 /* Leave these out unless we find there's a reason for them. */ DEFUN ("bessel-j0", Fbessel_j0, 1, 1, 0, /* Return the bessel function j0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j0 (d), "bessel-j0", number); return make_float (d); } DEFUN ("bessel-j1", Fbessel_j1, 1, 1, 0, /* Return the bessel function j1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j1 (d), "bessel-j1", number); return make_float (d); } DEFUN ("bessel-jn", Fbessel_jn, 2, 2, 0, /* Return the order N bessel function output jn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", number1); return make_float (f2); } DEFUN ("bessel-y0", Fbessel_y0, 1, 1, 0, /* Return the bessel function y0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y0 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-y1", Fbessel_y1, 1, 1, 0, /* Return the bessel function y1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y1 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-yn", Fbessel_yn, 2, 2, 0, /* Return the order N bessel function output yn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", number1); return make_float (f2); } #endif /* 0 (bessel functions) */ /* Error functions. */ #if 0 /* Leave these out unless we see they are worth having. */ DEFUN ("erf", Ferf, 1, 1, 0, /* Return the mathematical error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erf (d), "erf", number); return make_float (d); } DEFUN ("erfc", Ferfc, 1, 1, 0, /* Return the complementary error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erfc (d), "erfc", number); return make_float (d); } DEFUN ("log-gamma", Flog_gamma, 1, 1, 0, /* Return the log gamma of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = lgamma (d), "log-gamma", number); return make_float (d); } #endif /* 0 (error functions) */ /* Root and Log functions. */ DEFUN ("exp", Fexp, 1, 1, 0, /* Return the exponential base e of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 709.7827) /* Assume IEEE doubles here */ range_error ("exp", number); else if (d < -709.0) return make_float (0.0); else #endif IN_FLOAT (d = exp (d), "exp", number); return make_float (d); } DEFUN ("expt", Fexpt, 2, 2, 0, /* Return the exponential NUMBER1 ** NUMBER2. */ (number1, number2)) { #ifdef HAVE_BIGNUM if (INTEGERP (number1) && INTP (number2)) { if (INTP (number1)) { bignum_set_long (scratch_bignum2, XREALINT (number1)); bignum_pow (scratch_bignum, scratch_bignum2, XREALINT (number2)); } else bignum_pow (scratch_bignum, XBIGNUM_DATA (number1), XREALINT (number2)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif if (INTP (number1) && /* common lisp spec */ INTP (number2)) /* don't promote, if both are ints */ { EMACS_INT retval; EMACS_INT x = XINT (number1); EMACS_INT y = XINT (number2); if (y < 0) { if (x == 1) retval = 1; else if (x == -1) retval = (y & 1) ? -1 : 1; else retval = 0; } else { retval = 1; while (y > 0) { if (y & 1) retval *= x; x *= x; y = (EMACS_UINT) y >> 1; } } return make_int (retval); } #if defined(HAVE_BIGFLOAT) && defined(bigfloat_pow) if (BIGFLOATP (number1) && INTEGERP (number2)) { unsigned long exponent; #ifdef HAVE_BIGNUM if (BIGNUMP (number2)) exponent = bignum_to_ulong (XBIGNUM_DATA (number2)); else #endif exponent = XUINT (number2); bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number1)); bigfloat_pow (scratch_bigfloat, XBIGFLOAT_DATA (number1), exponent); return make_bigfloat_bf (scratch_bigfloat); } #endif { double f1 = extract_float (number1); double f2 = extract_float (number2); /* Really should check for overflow, too */ if (f1 == 0.0 && f2 == 0.0) f1 = 1.0; # ifdef FLOAT_CHECK_DOMAIN else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2))) domain_error2 ("expt", number1, number2); # endif /* FLOAT_CHECK_DOMAIN */ IN_FLOAT2 (f1 = pow (f1, f2), "expt", number1, number2); return make_float (f1); } } DEFUN ("log", Flog, 1, 2, 0, /* Return the natural logarithm of NUMBER. If second optional argument BASE is given, return the logarithm of NUMBER using that base. */ (number, base)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error2 ("log", number, base); #endif if (NILP (base)) IN_FLOAT (d = log (d), "log", number); else { double b = extract_float (base); #ifdef FLOAT_CHECK_DOMAIN if (b <= 0.0 || b == 1.0) domain_error2 ("log", number, base); #endif if (b == 10.0) IN_FLOAT2 (d = log10 (d), "log", number, base); else IN_FLOAT2 (d = (log (d) / log (b)), "log", number, base); } return make_float (d); } DEFUN ("log10", Flog10, 1, 1, 0, /* Return the logarithm base 10 of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error ("log10", number); #endif IN_FLOAT (d = log10 (d), "log10", number); return make_float (d); } DEFUN ("sqrt", Fsqrt, 1, 1, 0, /* Return the square root of NUMBER. */ (number)) { double d; #if defined(HAVE_BIGFLOAT) && defined(bigfloat_sqrt) if (BIGFLOATP (number)) { bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_sqrt (scratch_bigfloat, XBIGFLOAT_DATA (number)); return make_bigfloat_bf (scratch_bigfloat); } #endif /* HAVE_BIGFLOAT */ d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 0.0) domain_error ("sqrt", number); #endif IN_FLOAT (d = sqrt (d), "sqrt", number); return make_float (d); } DEFUN ("cube-root", Fcube_root, 1, 1, 0, /* Return the cube root of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_CBRT IN_FLOAT (d = cbrt (d), "cube-root", number); #else if (d >= 0.0) IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", number); else IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", number); #endif return make_float (d); } /* Inverse trig functions. */ DEFUN ("acosh", Facosh, 1, 1, 0, /* Return the inverse hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 1.0) domain_error ("acosh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = acosh (d), "acosh", number); #else IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", number); #endif return make_float (d); } DEFUN ("asinh", Fasinh, 1, 1, 0, /* Return the inverse hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = asinh (d), "asinh", number); #else IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", number); #endif return make_float (d); } DEFUN ("atanh", Fatanh, 1, 1, 0, /* Return the inverse hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d >= 1.0 || d <= -1.0) domain_error ("atanh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = atanh (d), "atanh", number); #else IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", number); #endif return make_float (d); } DEFUN ("cosh", Fcosh, 1, 1, 0, /* Return the hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("cosh", number); #endif IN_FLOAT (d = cosh (d), "cosh", number); return make_float (d); } DEFUN ("sinh", Fsinh, 1, 1, 0, /* Return the hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("sinh", number); #endif IN_FLOAT (d = sinh (d), "sinh", number); return make_float (d); } DEFUN ("tanh", Ftanh, 1, 1, 0, /* Return the hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = tanh (d), "tanh", number); return make_float (d); } /* Rounding functions */ DEFUN ("abs", Fabs, 1, 1, 0, /* Return the absolute value of NUMBER. */ (number)) { if (FLOATP (number)) { IN_FLOAT (number = make_float (fabs (XFLOAT_DATA (number))), "abs", number); return number; } if (INTP (number)) #ifdef HAVE_BIGNUM /* The most negative Lisp fixnum will overflow */ return (XINT (number) >= 0) ? number : make_integer (- XINT (number)); #else return (XINT (number) >= 0) ? number : make_int (- XINT (number)); #endif #ifdef HAVE_BIGNUM if (BIGNUMP (number)) { if (bignum_sign (XBIGNUM_DATA (number)) >= 0) return number; bignum_abs (scratch_bignum, XBIGNUM_DATA (number)); return make_bignum_bg (scratch_bignum); } #endif #ifdef HAVE_RATIO if (RATIOP (number)) { if (ratio_sign (XRATIO_DATA (number)) >= 0) return number; ratio_abs (scratch_ratio, XRATIO_DATA (number)); return make_ratio_rt (scratch_ratio); } #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (number)) { if (bigfloat_sign (XBIGFLOAT_DATA (number)) >= 0) return number; bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_abs (scratch_bigfloat, XBIGFLOAT_DATA (number)); return make_bigfloat_bf (scratch_bigfloat); } #endif return Fabs (wrong_type_argument (Qnumberp, number)); } DEFUN ("float", Ffloat, 1, 1, 0, /* Return the floating point number numerically equal to NUMBER. */ (number)) { if (INTP (number)) return make_float ((double) XINT (number)); #ifdef HAVE_BIGNUM if (BIGFLOATP (number)) { #ifdef HAVE_BIGFLOAT if (ZEROP (Vdefault_float_precision)) #endif return make_float (bignum_to_double (XBIGNUM_DATA (number))); #ifdef HAVE_BIGFLOAT else { bigfloat_set_prec (scratch_bigfloat, bigfloat_get_default_prec ()); bigfloat_set_bignum (scratch_bigfloat, XBIGNUM_DATA (number)); return make_bigfloat_bf (scratch_bigfloat); } #endif /* HAVE_BIGFLOAT */ } #endif /* HAVE_BIGNUM */ #ifdef HAVE_RATIO if (RATIOP (number)) return make_float (ratio_to_double (XRATIO_DATA (number))); #endif if (FLOATP (number)) /* give 'em the same float back */ return number; return Ffloat (wrong_type_argument (Qnumberp, number)); } DEFUN ("logb", Flogb, 1, 1, 0, /* Return largest integer <= the base 2 log of the magnitude of NUMBER. This is the same as the exponent of a float. */ (number)) { double f = extract_float (number); if (f == 0.0) return make_int (EMACS_INT_MIN); #ifdef HAVE_LOGB { Lisp_Object val; IN_FLOAT (val = make_int ((EMACS_INT) logb (f)), "logb", number); return val; } #else #ifdef HAVE_FREXP { int exqp; IN_FLOAT (frexp (f, &exqp), "logb", number); return make_int (exqp - 1); } #else { int i; double d; EMACS_INT val; if (f < 0.0) f = -f; val = -1; while (f < 0.5) { for (i = 1, d = 0.5; d * d >= f; i += i) d *= d; f /= d; val -= i; } while (f >= 1.0) { for (i = 1, d = 2.0; d * d <= f; i += i) d *= d; f /= d; val += i; } return make_int (val); } #endif /* ! HAVE_FREXP */ #endif /* ! HAVE_LOGB */ } DEFUN ("ceiling", Fceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER. (Round toward +inf.) */ (number)) { if (FLOATP (number)) { double d; IN_FLOAT ((d = ceil (XFLOAT_DATA (number))), "ceiling", number); return (float_to_int (d, "ceiling", number, Qunbound)); } #ifdef HAVE_BIGNUM if (INTEGERP (number)) #else if (INTP (number)) #endif return number; #ifdef HAVE_RATIO if (RATIOP (number)) { bignum_ceil (scratch_bignum, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (number)) { bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_ceil (scratch_bigfloat, XBIGFLOAT_DATA (number)); #ifdef HAVE_BIGNUM bignum_set_bigfloat (scratch_bignum, scratch_bigfloat); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #else return make_int ((EMACS_INT) bigfloat_to_long (scratch_bigfloat)); #endif /* HAVE_BIGNUM */ } #endif /* HAVE_BIGFLOAT */ return Fceiling (wrong_type_argument (Qnumberp, number)); } DEFUN ("floor", Ffloor, 1, 2, 0, /* Return the largest integer no greater than NUMBER. (Round towards -inf.) With optional second argument DIVISOR, return the largest integer no greater than NUMBER/DIVISOR. */ (number, divisor)) { #ifdef WITH_NUMBER_TYPES CHECK_REAL (number); if (NILP (divisor)) { if (FLOATP (number)) { double d; IN_FLOAT ((d = floor (XFLOAT_DATA (number))), "floor", number); return (float_to_int (d, "floor", number, Qunbound)); } #ifdef HAVE_RATIO else if (RATIOP (number)) { bignum_floor (scratch_bignum, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif #ifdef HAVE_BIGFLOAT else if (BIGFLOATP (number)) { bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_floor (scratch_bigfloat, XBIGFLOAT_DATA (number)); return make_bigfloat_bf (scratch_bigfloat); } #endif return number; } else { CHECK_REAL (divisor); switch (promote_args (&number, &divisor)) { case FIXNUM_T: { EMACS_INT i1 = XREALINT (number); EMACS_INT i2 = XREALINT (divisor); if (i2 == 0) Fsignal (Qarith_error, Qnil); /* With C's /, the result is implementation-defined if either operand is negative, so use only nonnegative operands. */ i1 = (i2 < 0 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); return make_int (i1); } #ifdef HAVE_BIGNUM case BIGNUM_T: if (bignum_sign (XBIGNUM_DATA (divisor)) == 0) Fsignal (Qarith_error, Qnil); bignum_floor (scratch_bignum, XBIGNUM_DATA (number), XBIGNUM_DATA (divisor)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #endif #ifdef HAVE_RATIO case RATIO_T: if (ratio_sign (XRATIO_DATA (divisor)) == 0) Fsignal (Qarith_error, Qnil); ratio_div (scratch_ratio, XRATIO_DATA (number), XRATIO_DATA (divisor)); bignum_floor (scratch_bignum, ratio_numerator (scratch_ratio), ratio_denominator (scratch_ratio)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #endif #ifdef HAVE_BIGFLOAT case BIGFLOAT_T: if (bigfloat_sign (XBIGFLOAT_DATA (divisor)) == 0) Fsignal (Qarith_error, Qnil); bigfloat_set_prec (scratch_bigfloat, max (XBIGFLOAT_GET_PREC (number), XBIGFLOAT_GET_PREC (divisor))); bigfloat_div (scratch_bigfloat, XBIGFLOAT_DATA (number), XBIGFLOAT_DATA (divisor)); bigfloat_floor (scratch_bigfloat, scratch_bigfloat); return make_bigfloat_bf (scratch_bigfloat); #endif default: /* FLOAT_T */ { double f1 = extract_float (number); double f2 = extract_float (divisor); if (f2 == 0.0) Fsignal (Qarith_error, Qnil); IN_FLOAT2 (f1 = floor (f1 / f2), "floor", number, divisor); return float_to_int (f1, "floor", number, divisor); } } } #else /* !WITH_NUMBER_TYPES */ CHECK_INT_OR_FLOAT (number); if (! NILP (divisor)) { EMACS_INT i1, i2; CHECK_INT_OR_FLOAT (divisor); if (FLOATP (number) || FLOATP (divisor)) { double f1 = extract_float (number); double f2 = extract_float (divisor); if (f2 == 0) Fsignal (Qarith_error, Qnil); IN_FLOAT2 (f1 = floor (f1 / f2), "floor", number, divisor); return float_to_int (f1, "floor", number, divisor); } i1 = XINT (number); i2 = XINT (divisor); if (i2 == 0) Fsignal (Qarith_error, Qnil); /* With C's /, the result is implementation-defined if either operand is negative, so use only nonnegative operands. */ i1 = (i2 < 0 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); return (make_int (i1)); } if (FLOATP (number)) { double d; IN_FLOAT ((d = floor (XFLOAT_DATA (number))), "floor", number); return (float_to_int (d, "floor", number, Qunbound)); } return number; #endif /* WITH_NUMBER_TYPES */ } DEFUN ("round", Fround, 1, 1, 0, /* Return the nearest integer to NUMBER. */ (number)) { if (FLOATP (number)) { double d; /* Screw the prevailing rounding mode. */ IN_FLOAT ((d = emacs_rint (XFLOAT_DATA (number))), "round", number); return (float_to_int (d, "round", number, Qunbound)); } #ifdef HAVE_BIGNUM if (INTEGERP (number)) #else if (INTP (number)) #endif return number; #ifdef HAVE_RATIO if (RATIOP (number)) { if (bignum_divisible_p (XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number))) { bignum_div (scratch_bignum, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); } else { bignum_add (scratch_bignum2, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); bignum_div (scratch_bignum, scratch_bignum2, XRATIO_DENOMINATOR (number)); } return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (number)) { unsigned long prec = XBIGFLOAT_GET_PREC (number); bigfloat_set_prec (scratch_bigfloat, prec); bigfloat_set_prec (scratch_bigfloat2, prec); bigfloat_set_double (scratch_bigfloat2, bigfloat_sign (XBIGFLOAT_DATA (number)) * 0.5); bigfloat_floor (scratch_bigfloat, scratch_bigfloat2); #ifdef HAVE_BIGNUM bignum_set_bigfloat (scratch_bignum, scratch_bigfloat); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #else return make_int ((EMACS_INT) bigfloat_to_long (scratch_bigfloat)); #endif /* HAVE_BIGNUM */ } #endif /* HAVE_BIGFLOAT */ return Fround (wrong_type_argument (Qnumberp, number)); } DEFUN ("truncate", Ftruncate, 1, 1, 0, /* Truncate a floating point number to an integer. Rounds the value toward zero. */ (number)) { if (FLOATP (number)) return float_to_int (XFLOAT_DATA (number), "truncate", number, Qunbound); #ifdef HAVE_BIGNUM if (INTEGERP (number)) #else if (INTP (number)) #endif return number; #ifdef HAVE_RATIO if (RATIOP (number)) { bignum_div (scratch_bignum, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (number)) { bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_trunc (scratch_bigfloat, XBIGFLOAT_DATA (number)); #ifdef HAVE_BIGNUM bignum_set_bigfloat (scratch_bignum, scratch_bigfloat); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #else return make_int ((EMACS_INT) bigfloat_to_long (scratch_bigfloat)); #endif /* HAVE_BIGNUM */ } #endif /* HAVE_BIGFLOAT */ return Ftruncate (wrong_type_argument (Qnumberp, number)); } /* Float-rounding functions. */ DEFUN ("fceiling", Ffceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER, as a float. \(Round toward +inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = ceil (d), "fceiling", number); return make_float (d); } DEFUN ("ffloor", Fffloor, 1, 1, 0, /* Return the largest integer no greater than NUMBER, as a float. \(Round towards -inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = floor (d), "ffloor", number); return make_float (d); } DEFUN ("fround", Ffround, 1, 1, 0, /* Return the nearest integer to NUMBER, as a float. */ (number)) { double d = extract_float (number); IN_FLOAT (d = emacs_rint (d), "fround", number); return make_float (d); } DEFUN ("ftruncate", Fftruncate, 1, 1, 0, /* Truncate a floating point number to an integral float value. Rounds the value toward zero. */ (number)) { double d = extract_float (number); if (d >= 0.0) IN_FLOAT (d = floor (d), "ftruncate", number); else IN_FLOAT (d = ceil (d), "ftruncate", number); return make_float (d); } #ifdef FLOAT_CATCH_SIGILL static SIGTYPE float_error (int signo) { if (! in_float) fatal_error_signal (signo); EMACS_REESTABLISH_SIGNAL (signo, arith_error); EMACS_UNBLOCK_SIGNAL (signo); in_float = 0; /* Was Fsignal(), but it just doesn't make sense for an error occurring inside a signal handler to be restartable, considering that anything could happen when the error is signaled and trapped and considering the asynchronous nature of signal handlers. */ signal_error (Qarith_error, 0, float_error_arg); } /* Another idea was to replace the library function `infnan' where SIGILL is signaled. */ #endif /* FLOAT_CATCH_SIGILL */ /* In C++, it is impossible to determine what type matherr expects without some more configure magic. We shouldn't be using matherr anyways - it's a non-standard SYSVism. */ #if defined (HAVE_MATHERR) && !defined(__cplusplus) int matherr (struct exception *x) { Lisp_Object args; if (! in_float) /* Not called from emacs-lisp float routines; do the default thing. */ return 0; /* if (!strcmp (x->name, "pow")) x->name = "expt"; */ args = Fcons (build_string (x->name), Fcons (make_float (x->arg1), ((in_float == 2) ? Fcons (make_float (x->arg2), Qnil) : Qnil))); switch (x->type) { case DOMAIN: Fsignal (Qdomain_error, args); break; case SING: Fsignal (Qsingularity_error, args); break; case OVERFLOW: Fsignal (Qoverflow_error, args); break; case UNDERFLOW: Fsignal (Qunderflow_error, args); break; default: Fsignal (Qarith_error, args); break; } return 1; /* don't set errno or print a message */ } #endif /* HAVE_MATHERR */ void init_floatfns_very_early (void) { # ifdef FLOAT_CATCH_SIGILL EMACS_SIGNAL (SIGILL, float_error); # endif in_float = 0; } void syms_of_floatfns (void) { INIT_LRECORD_IMPLEMENTATION (float); /* Trig functions. */ DEFSUBR (Facos); DEFSUBR (Fasin); DEFSUBR (Fatan); DEFSUBR (Fcos); DEFSUBR (Fsin); DEFSUBR (Ftan); /* Bessel functions */ #if 0 DEFSUBR (Fbessel_y0); DEFSUBR (Fbessel_y1); DEFSUBR (Fbessel_yn); DEFSUBR (Fbessel_j0); DEFSUBR (Fbessel_j1); DEFSUBR (Fbessel_jn); #endif /* 0 */ /* Error functions. */ #if 0 DEFSUBR (Ferf); DEFSUBR (Ferfc); DEFSUBR (Flog_gamma); #endif /* 0 */ /* Root and Log functions. */ DEFSUBR (Fexp); DEFSUBR (Fexpt); DEFSUBR (Flog); DEFSUBR (Flog10); DEFSUBR (Fsqrt); DEFSUBR (Fcube_root); /* Inverse trig functions. */ DEFSUBR (Facosh); DEFSUBR (Fasinh); DEFSUBR (Fatanh); DEFSUBR (Fcosh); DEFSUBR (Fsinh); DEFSUBR (Ftanh); /* Rounding functions */ DEFSUBR (Fabs); DEFSUBR (Ffloat); DEFSUBR (Flogb); DEFSUBR (Fceiling); DEFSUBR (Ffloor); DEFSUBR (Fround); DEFSUBR (Ftruncate); /* Float-rounding functions. */ DEFSUBR (Ffceiling); DEFSUBR (Fffloor); DEFSUBR (Ffround); DEFSUBR (Fftruncate); } void vars_of_floatfns (void) { Fprovide (intern ("lisp-float-type")); }
