view src/imgproc.c @ 5169:6c6d78781d59

cleanup of code related to xfree(), better KKCC backtrace capabilities, document XD_INLINE_LISP_OBJECT_BLOCK_PTR, fix some memory leaks, other code cleanup -------------------- ChangeLog entries follow: -------------------- src/ChangeLog addition: 2010-03-24 Ben Wing <ben@xemacs.org> * array.h: * array.h (XD_LISP_DYNARR_DESC): * dumper.c (pdump_register_sub): * dumper.c (pdump_store_new_pointer_offsets): * dumper.c (pdump_reloc_one_mc): * elhash.c: * gc.c (lispdesc_one_description_line_size): * gc.c (kkcc_marking): * lrecord.h: * lrecord.h (IF_NEW_GC): * lrecord.h (enum memory_description_type): * lrecord.h (enum data_description_entry_flags): * lrecord.h (struct opaque_convert_functions): Rename XD_LISP_OBJECT_BLOCK_PTR to XD_INLINE_LISP_OBJECT_BLOCK_PTR and document it in lrecord.h. * data.c: * data.c (finish_marking_weak_lists): * data.c (continue_marking_ephemerons): * data.c (finish_marking_ephemerons): * elhash.c (MARK_OBJ): * gc.c: * gc.c (lispdesc_indirect_count_1): * gc.c (struct): * gc.c (kkcc_bt_push): * gc.c (kkcc_gc_stack_push): * gc.c (kkcc_gc_stack_push_lisp_object): * gc.c (kkcc_gc_stack_repush_dirty_object): * gc.c (KKCC_DO_CHECK_FREE): * gc.c (mark_object_maybe_checking_free): * gc.c (mark_struct_contents): * gc.c (mark_lisp_object_block_contents): * gc.c (register_for_finalization): * gc.c (mark_object): * gc.h: * lisp.h: * profile.c: * profile.c (mark_profiling_info_maphash): Clean up KKCC code related to DEBUG_XEMACS. Rename kkcc_backtrace() to kkcc_backtrace_1() and add two params: a `size' arg to control how many stack elements to print and a `detailed' arg to control whether Lisp objects are printed using `debug_print()'. Create front-ends to kkcc_backtrace_1() -- kkcc_detailed_backtrace(), kkcc_short_backtrace(), kkcc_detailed_backtrace_full(), kkcc_short_backtrace_full(), as well as shortened versions kbt(), kbts(), kbtf(), kbtsf() -- to call it with various parameter values. Add an `is_lisp' field to the stack and backtrace structures and use it to keep track of whether an object pushed onto the stack is a Lisp object or a non-Lisp structure; in kkcc_backtrace_1(), don't try to print a non-Lisp structure as a Lisp object. * elhash.c: * extents.c: * file-coding.c: * lrecord.h: * lrecord.h (IF_NEW_GC): * marker.c: * marker.c (Fmarker_buffer): * mule-coding.c: * number.c: * rangetab.c: * specifier.c: New macros IF_OLD_GC(), IF_NEW_GC() to simplify declaration of Lisp objects when a finalizer may exist in one but not the other. Use them appropriately. * extents.c (finalize_extent_info): Don't zero out data->soe and data->extents before trying to free, else we get memory leaks. * lrecord.h (enum lrecord_type): Make the first lrecord type have value 1 not 0 so that 0 remains without implementation and attempts to interpret zeroed memory as a Lisp object will be more obvious. * array.c (Dynarr_free): * device-msw.c (msprinter_delete_device): * device-tty.c (free_tty_device_struct): * device-tty.c (tty_delete_device): * dialog-msw.c (handle_directory_dialog_box): * dialog-x.c: * emacs.c (free_argc_argv): * emodules.c (attempt_module_delete): * file-coding.c (chain_finalize_coding_stream_1): * file-coding.c (chain_finalize_coding_stream): * glyphs-eimage.c: * glyphs-eimage.c (jpeg_instantiate_unwind): * glyphs-eimage.c (gif_instantiate_unwind): * glyphs-eimage.c (png_instantiate_unwind): * glyphs-eimage.c (tiff_instantiate_unwind): * imgproc.c: * imgproc.c (build_EImage_quantable): * insdel.c (uninit_buffer_text): * mule-coding.c (iso2022_finalize_detection_state): * objects-tty.c (tty_finalize_color_instance): * objects-tty.c (tty_finalize_font_instance): * objects-tty.c (tty_font_list): * process.c: * process.c (finalize_process): * redisplay.c (add_propagation_runes): * scrollbar-gtk.c: * scrollbar-gtk.c (gtk_free_scrollbar_instance): * scrollbar-gtk.c (gtk_release_scrollbar_instance): * scrollbar-msw.c: * scrollbar-msw.c (mswindows_free_scrollbar_instance): * scrollbar-msw.c (unshow_that_mofo): * scrollbar-x.c (x_free_scrollbar_instance): * scrollbar-x.c (x_release_scrollbar_instance): * select-x.c: * select-x.c (x_handle_selection_request): * syntax.c: * syntax.c (uninit_buffer_syntax_cache): * text.h (eifree): If possible, whenever we call xfree() on a field in a structure, set the field to 0 afterwards. A lot of code is written so that it checks the value being freed to see if it is non-zero before freeing it -- doing this and setting the value to 0 afterwards ensures (a) we won't try to free twice if the cleanup code is called twice; (b) if the object itself stays around, KKCC won't crash when attempting to mark the freed field. * rangetab.c: Add a finalization method when not NEW_GC to avoid memory leaks. (#### We still get memory leaks when NEW_GC; need to convert gap array to Lisp object).
author Ben Wing <ben@xemacs.org>
date Wed, 24 Mar 2010 01:22:51 -0500
parents 16112448d484
children 2aa9cd456ae7
line wrap: on
line source

/* Image processing functions
   Copyright (C) 1998 Jareth Hein

This file is a part of XEmacs

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

/* Original author: Jareth Hein */

/* Parts of this file are based on code from Sam Leffler's tiff library,
   with the original copyright displayed here:

   Copyright (c) 1988-1997 Sam Leffler
   Copyright (c) 1991-1997 Silicon Graphics, Inc.
   Copyright (C) 2010 Ben Wing.
   
   Permission to use, copy, modify, distribute, and sell this software and 
   its documentation for any purpose is hereby granted without fee, provided
   that (i) the above copyright notices and this permission notice appear in
   all copies of the software and related documentation, and (ii) the names of
   Sam Leffler and Silicon Graphics may not be used in any advertising or
   publicity relating to the software without the specific, prior written
   permission of Sam Leffler and Silicon Graphics. */

/* Quantizing code based off of the paper 
   Color Image Quantization for Frame Buffer Display, Paul Heckbert,
   Siggraph '82 proceedings, pp. 297-307 */

#include <config.h>
#include "lisp.h"
#include "imgproc.h"

static void
get_histogram(quant_table *qt, Binbyte *pic,
	      int width, int height, Colorbox* box)
{
  register Binbyte *inptr;
  register int red, green, blue;
  register int j, i;

  box->rmin = box->gmin = box->bmin = 999;
  box->rmax = box->gmax = box->bmax = -1;
  box->total = width * height;

  inptr = pic;
  for (i = 0; i < height; i++)
    {
      for (j = width; j-- > 0;)
	{
	  red = *inptr++ >> COLOR_SHIFT;
	  green = *inptr++ >> COLOR_SHIFT;
	  blue = *inptr++ >> COLOR_SHIFT;
	  if (red < box->rmin)
	    box->rmin = red;
	  if (red > box->rmax)
	    box->rmax = red;
	  if (green < box->gmin)
	    box->gmin = green;
	  if (green > box->gmax)
	    box->gmax = green;
	  if (blue < box->bmin)
	    box->bmin = blue;
	  if (blue > box->bmax)
	    box->bmax = blue;
	  qt->histogram[red][green][blue]++;
	}
    }
}

static Colorbox *
largest_box(quant_table *qt)
{
  register Colorbox *p, *b;
  register int size;

  b = NULL;
  size = -1;
  for (p = qt->usedboxes; p != NULL; p = p->next)
    if ((p->rmax > p->rmin || p->gmax > p->gmin ||
	 p->bmax > p->bmin) &&  p->total > size)
      size = (b = p)->total;
  return (b);
}

static void
shrinkbox(quant_table *qt, Colorbox* box)
{
  register int *histp, ir, ig, ib;

  if (box->rmax > box->rmin)
    {
      for (ir = box->rmin; ir <= box->rmax; ++ir)
	for (ig = box->gmin; ig <= box->gmax; ++ig)
	  {
	    histp = &(qt->histogram[ir][ig][box->bmin]);
	    for (ib = box->bmin; ib <= box->bmax; ++ib)
	      if (*histp++ != 0)
		{
		  box->rmin = ir;
		  goto have_rmin;
		}
	  }
    have_rmin:
      if (box->rmax > box->rmin)
	for (ir = box->rmax; ir >= box->rmin; --ir)
	  for (ig = box->gmin; ig <= box->gmax; ++ig)
	    {
	      histp = &(qt->histogram[ir][ig][box->bmin]);
	      ib = box->bmin;
	      for (; ib <= box->bmax; ++ib)
		if (*histp++ != 0)
		  {
		    box->rmax = ir;
		    goto have_rmax;
		  }
	    }
    }
 have_rmax:
  if (box->gmax > box->gmin)
    {
      for (ig = box->gmin; ig <= box->gmax; ++ig)
	for (ir = box->rmin; ir <= box->rmax; ++ir)
	  {
	    histp = &(qt->histogram[ir][ig][box->bmin]);
	    for (ib = box->bmin; ib <= box->bmax; ++ib)
	      if (*histp++ != 0)
		{
		  box->gmin = ig;
		  goto have_gmin;
		}
	  }
    have_gmin:
      if (box->gmax > box->gmin)
	for (ig = box->gmax; ig >= box->gmin; --ig)
	  for (ir = box->rmin; ir <= box->rmax; ++ir)
	    {
	      histp = &(qt->histogram[ir][ig][box->bmin]);
	      ib = box->bmin;
	      for (; ib <= box->bmax; ++ib)
		if (*histp++ != 0)
		  {
		    box->gmax = ig;
		    goto have_gmax;
		  }
	    }
    }
 have_gmax:
  if (box->bmax > box->bmin)
    {
      for (ib = box->bmin; ib <= box->bmax; ++ib)
	for (ir = box->rmin; ir <= box->rmax; ++ir)
	  {
	    histp = &(qt->histogram[ir][box->gmin][ib]);
	    for (ig = box->gmin; ig <= box->gmax; ++ig)
	      {
		if (*histp != 0)
		  {
		    box->bmin = ib;
		    goto have_bmin;
		  }
		histp += B_LEN;
	      }
	  }
    have_bmin:
      if (box->bmax > box->bmin)
	for (ib = box->bmax; ib >= box->bmin; --ib)
	  for (ir = box->rmin; ir <= box->rmax; ++ir)
	    {
	      histp = &(qt->histogram[ir][box->gmin][ib]);
	      ig = box->gmin;
	      for (; ig <= box->gmax; ++ig)
		{
		  if (*histp != 0)
		    {
		      box->bmax = ib;
		      goto have_bmax;
		    }
		  histp += B_LEN;
		}
	    }
    }
 have_bmax:
  ;
}

static void
splitbox(quant_table *qt, Colorbox* ptr)
{
  int		hist2[B_LEN];
  int		first = 0, last = 0;
  register Colorbox	*new_;
  register int	*iptr, *histp;
  register int	i, j;
  register int	ir,ig,ib;
  register int sum, sum1, sum2;
  enum { RED, GREEN, BLUE } axis;

  /*
   * See which axis is the largest, do a histogram along that
   * axis.  Split at median point.  Contract both new boxes to
   * fit points and return
   */
  i = ptr->rmax - ptr->rmin;
  if (i >= ptr->gmax - ptr->gmin  && i >= ptr->bmax - ptr->bmin)
    axis = RED;
  else if (ptr->gmax - ptr->gmin >= ptr->bmax - ptr->bmin)
    axis = GREEN;
  else
    axis = BLUE;
  /* get histogram along longest axis */
  switch (axis)
    {
    case RED:
      histp = &hist2[ptr->rmin];
      for (ir = ptr->rmin; ir <= ptr->rmax; ++ir)
	{
	  *histp = 0;
	  for (ig = ptr->gmin; ig <= ptr->gmax; ++ig)
	    {
	      iptr = &(qt->histogram[ir][ig][ptr->bmin]);
	      for (ib = ptr->bmin; ib <= ptr->bmax; ++ib)
		*histp += *iptr++;
	    }
	  histp++;
	}
      first = ptr->rmin;
      last = ptr->rmax;
      break;
    case GREEN:
      histp = &hist2[ptr->gmin];
      for (ig = ptr->gmin; ig <= ptr->gmax; ++ig)
	{
	  *histp = 0;
	  for (ir = ptr->rmin; ir <= ptr->rmax; ++ir)
	    {
	      iptr = &(qt->histogram[ir][ig][ptr->bmin]);
	      for (ib = ptr->bmin; ib <= ptr->bmax; ++ib)
		*histp += *iptr++;
	    }
	  histp++;
	}
      first = ptr->gmin;
      last = ptr->gmax;
      break;
    case BLUE:
      histp = &hist2[ptr->bmin];
      for (ib = ptr->bmin; ib <= ptr->bmax; ++ib)
	{
	  *histp = 0;
	  for (ir = ptr->rmin; ir <= ptr->rmax; ++ir)
	    {
	      iptr = &(qt->histogram[ir][ptr->gmin][ib]);
	      for (ig = ptr->gmin; ig <= ptr->gmax; ++ig)
		{
		  *histp += *iptr;
		  iptr += B_LEN;
		}
	    }
	  histp++;
	}
      first = ptr->bmin;
      last = ptr->bmax;
      break;
    }
  /* find median point */
  sum2 = ptr->total / 2;
  histp = &hist2[first];
  sum = 0;
  for (i = first; i <= last && (sum += *histp++) < sum2; ++i)
    ;
  if (i == first)
    i++;

  /* Create new box, re-allocate points */
  new_ = qt->freeboxes;
  qt->freeboxes = new_->next;
  if (qt->freeboxes)
    qt->freeboxes->prev = NULL;
  if (qt->usedboxes)
    qt->usedboxes->prev = new_;
  new_->next = qt->usedboxes;
  qt->usedboxes = new_;

  histp = &hist2[first];
  for (sum1 = 0, j = first; j < i; j++)
    sum1 += *histp++;
  for (sum2 = 0, j = i; j <= last; j++)
    sum2 += *histp++;
  new_->total = sum1;
  ptr->total = sum2;

  new_->rmin = ptr->rmin;
  new_->rmax = ptr->rmax;
  new_->gmin = ptr->gmin;
  new_->gmax = ptr->gmax;
  new_->bmin = ptr->bmin;
  new_->bmax = ptr->bmax;
  switch (axis)
    {
    case RED:
      new_->rmax = i-1;
      ptr->rmin = i;
      break;
    case GREEN:
      new_->gmax = i-1;
      ptr->gmin = i;
      break;
    case BLUE:
      new_->bmax = i-1;
      ptr->bmin = i;
      break;
    }
  shrinkbox (qt, new_);
  shrinkbox (qt, ptr);
}


static C_cell *
create_colorcell(quant_table *qt, int num_colors, int red, int green, int blue)
{
  register int ir, ig, ib, i;
  register C_cell *ptr;
  int mindist, next_n;
  register int tmp, dist, n;

  ir = red >> (COLOR_DEPTH-C_DEPTH);
  ig = green >> (COLOR_DEPTH-C_DEPTH);
  ib = blue >> (COLOR_DEPTH-C_DEPTH);
  ptr = xnew (C_cell);
  *(qt->ColorCells + ir*C_LEN*C_LEN + ig*C_LEN + ib) = ptr;
  ptr->num_ents = 0;

  /*
   * Step 1: find all colors inside this cell, while we're at
   *	   it, find distance of centermost point to furthest corner
   */
  mindist = 99999999;
  for (i = 0; i < num_colors; ++i)
    {
      if (qt->rm[i]>>(COLOR_DEPTH-C_DEPTH) != ir  ||
	  qt->gm[i]>>(COLOR_DEPTH-C_DEPTH) != ig  ||
	  qt->bm[i]>>(COLOR_DEPTH-C_DEPTH) != ib)
	continue;
      ptr->entries[ptr->num_ents][0] = i;
      ptr->entries[ptr->num_ents][1] = 0;
      ++ptr->num_ents;
      tmp = qt->rm[i] - red;
      if (tmp < (MAX_COLOR/C_LEN/2))
	tmp = MAX_COLOR/C_LEN-1 - tmp;
      dist = tmp*tmp;
      tmp = qt->gm[i] - green;
      if (tmp < (MAX_COLOR/C_LEN/2))
	tmp = MAX_COLOR/C_LEN-1 - tmp;
      dist += tmp*tmp;
      tmp = qt->bm[i] - blue;
      if (tmp < (MAX_COLOR/C_LEN/2))
	tmp = MAX_COLOR/C_LEN-1 - tmp;
      dist += tmp*tmp;
      if (dist < mindist)
	mindist = dist;
    }

  /*
   * Step 3: find all points within that distance to cell.
   */
  for (i = 0; i < num_colors; ++i)
    {
      if (qt->rm[i] >> (COLOR_DEPTH-C_DEPTH) == ir  &&
	  qt->gm[i] >> (COLOR_DEPTH-C_DEPTH) == ig  &&
	  qt->bm[i] >> (COLOR_DEPTH-C_DEPTH) == ib)
	continue;
      dist = 0;
      if ((tmp = red - qt->rm[i]) > 0 ||
	  (tmp = qt->rm[i] - (red + MAX_COLOR/C_LEN-1)) > 0 )
	dist += tmp*tmp;
      if ((tmp = green - qt->gm[i]) > 0 ||
	  (tmp = qt->gm[i] - (green + MAX_COLOR/C_LEN-1)) > 0 )
	dist += tmp*tmp;
      if ((tmp = blue - qt->bm[i]) > 0 ||
	  (tmp = qt->bm[i] - (blue + MAX_COLOR/C_LEN-1)) > 0 )
	dist += tmp*tmp;
      if (dist < mindist)
	{
	  ptr->entries[ptr->num_ents][0] = i;
	  ptr->entries[ptr->num_ents][1] = dist;
	  ++ptr->num_ents;
	}
    }

  /*
   * Sort color cells by distance, use cheap exchange sort
   */
  for (n = ptr->num_ents - 1; n > 0; n = next_n)
    {
      next_n = 0;
      for (i = 0; i < n; ++i)
	if (ptr->entries[i][1] > ptr->entries[i+1][1])
	  {
	    tmp = ptr->entries[i][0];
	    ptr->entries[i][0] = ptr->entries[i+1][0];
	    ptr->entries[i+1][0] = tmp;
	    tmp = ptr->entries[i][1];
	    ptr->entries[i][1] = ptr->entries[i+1][1];
	    ptr->entries[i+1][1] = tmp;
	    next_n = i;
	  }
    }
  return (ptr);
}

static int
map_colortable(quant_table *qt, int num_colors)
{
  register int *histp = &(qt->histogram[0][0][0]);
  register C_cell *cell;
  register int j, tmp, d2, dist;
  int ir, ig, ib, i;

  for (ir = 0; ir < B_LEN; ++ir)
    for (ig = 0; ig < B_LEN; ++ig)
      for (ib = 0; ib < B_LEN; ++ib, histp++)
	{
	  if (*histp == 0)
	    {
	      *histp = -1;
	      continue;
	    }
	  cell = *(qt->ColorCells +
		   (((ir>>(B_DEPTH-C_DEPTH)) << C_DEPTH*2) +
		    ((ig>>(B_DEPTH-C_DEPTH)) << C_DEPTH) +
		    (ib>>(B_DEPTH-C_DEPTH))));
	  if (cell == NULL )
	    cell = create_colorcell (qt, num_colors,
				     ir << COLOR_SHIFT,
				     ig << COLOR_SHIFT,
				     ib << COLOR_SHIFT);
	  if (cell == NULL) /* memory exhausted! punt! */
	    return -1;
	  dist = 9999999;
	  for (i = 0; i < cell->num_ents &&
		 dist > cell->entries[i][1]; ++i)
	    {
	      j = cell->entries[i][0];
	      d2 = qt->rm[j] - (ir << COLOR_SHIFT);
	      d2 *= d2;
	      tmp = qt->gm[j] - (ig << COLOR_SHIFT);
	      d2 += tmp*tmp;
	      tmp = qt->bm[j] - (ib << COLOR_SHIFT);
	      d2 += tmp*tmp;
	      if (d2 < dist)
		{
		  dist = d2;
		  *histp = j;
		}
	    }
	}
  return 0;
}

quant_table *
build_EImage_quantable(Binbyte *eimage, int width, int height, int num_colors)
{
  quant_table *qt;
  Colorbox *box_list, *ptr;
  int i,res;

  qt = (quant_table*)xmalloc_and_zero (sizeof(quant_table));
  if (qt == NULL) return NULL;

  assert (num_colors < 257 && num_colors > 2);
  /*
   * STEP 1:  create empty boxes
   */
  qt->usedboxes = NULL;
  box_list = qt->freeboxes = xnew_array (Colorbox, num_colors);
  qt->freeboxes[0].next = &(qt->freeboxes[1]);
  qt->freeboxes[0].prev = NULL;
  for (i = 1; i < num_colors-1; ++i)
    {
      qt->freeboxes[i].next = &(qt->freeboxes[i+1]);
      qt->freeboxes[i].prev = &(qt->freeboxes[i-1]);
    }
  qt->freeboxes[num_colors-1].next = NULL;
  qt->freeboxes[num_colors-1].prev = &(qt->freeboxes[num_colors-2]);

  /*
   * STEP 2: get histogram, initialize first box
   */
  ptr = qt->freeboxes;
  qt->freeboxes = ptr->next;
  if (qt->freeboxes)
    qt->freeboxes->prev = NULL;
  ptr->next = qt->usedboxes;
  qt->usedboxes = ptr;
  if (ptr->next)
    ptr->next->prev = ptr;
  get_histogram (qt, eimage, width, height, ptr);

  /*
   * STEP 3: continually subdivide boxes until no more free
   * boxes remain or until all colors assigned.
   */
  while (qt->freeboxes != NULL)
    {
      ptr = largest_box(qt);
      if (ptr != NULL)
	splitbox (qt, ptr);
      else
	qt->freeboxes = NULL;
    }

  /*
   * STEP 4: assign colors to all boxes
   */
  for (i = 0, ptr = qt->usedboxes; ptr != NULL; ++i, ptr = ptr->next)
    {
      qt->rm[i] = ((ptr->rmin + ptr->rmax) << COLOR_SHIFT) / 2;
      qt->gm[i] = ((ptr->gmin + ptr->gmax) << COLOR_SHIFT) / 2;
      qt->bm[i] = ((ptr->bmin + ptr->bmax) << COLOR_SHIFT) / 2;
      qt->um[i] = ptr->total;
    }
  qt->num_active_colors = i;

  /* We're done with the boxes now */
  xfree (box_list);
  qt->freeboxes = qt->usedboxes = NULL;

  /*
   * STEP 5: scan histogram and map all values to closest color
   */
  /* 5a: create cell list as described in Heckbert */
  qt->ColorCells = (C_cell **)xmalloc_and_zero (C_LEN*C_LEN*C_LEN*sizeof (C_cell*));
  /* 5b: create mapping from truncated pixel space to color
     table entries */
  res = map_colortable (qt, num_colors);

  /* 5c: done with ColorCells */
  for (i = 0; i < C_LEN*C_LEN*C_LEN; i++)
    if (qt->ColorCells[i])
      {
	xfree (qt->ColorCells[i]);
	qt->ColorCells[i] = 0;
      }
  xfree (qt->ColorCells);
  qt->ColorCells = 0;
  
  if (res)
    {
      /* we failed in memory allocation, so clean up and leave */
      xfree (qt);
      return NULL;
    }
  
  return qt;
}