view src/dynarr.c @ 3767:6b2ef948e140

[xemacs-hg @ 2006-12-29 18:09:38 by aidan] etc/ChangeLog addition: 2006-12-21 Aidan Kehoe <kehoea@parhasard.net> * unicode/unicode-consortium/8859-7.TXT: Update the mapping to the 2003 version of ISO 8859-7. lisp/ChangeLog addition: 2006-12-21 Aidan Kehoe <kehoea@parhasard.net> * mule/cyrillic.el: * mule/cyrillic.el (iso-8859-5): * mule/cyrillic.el (cyrillic-koi8-r-encode-table): Add syntax, case support for Cyrillic; make some parentheses more Lispy. * mule/european.el: Content moved to latin.el, file deleted. * mule/general-late.el: If Unicode tables are to be loaded at dump time, do it here, not in loadup.el. * mule/greek.el: Add syntax, case support for Greek. * mule/latin.el: Move the content of european.el here. Change the case table mappings to use hexadecimal codes, to make cross reference to the standards easier. In all cases, take character syntax from similar characters in Latin-1 , rather than deciding separately what syntax they should take. Add (incomplete) support for case with Turkish. Remove description of the character sets used from the language environments' doc strings, since now that we create variant language environments on the fly, such descriptions will often be inaccurate. Set the native-coding-system language info property while setting the other coding-system properties of the language. * mule/misc-lang.el (ipa): Remove the language environment. The International Phonetic _Alphabet_ is not a language, it's inane to have a corresponding language environment in XEmacs. * mule/mule-cmds.el (create-variant-language-environment): Also modify the coding-priority when creating a new language environment; document that. * mule/mule-cmds.el (get-language-environment-from-locale): Recognise that the 'native-coding-system language-info property can be a list, interpret it correctly when it is one. 2006-12-21 Aidan Kehoe <kehoea@parhasard.net> * coding.el (coding-system-category): Use the new 'unicode-type property for finding what sort of Unicode coding system subtype a coding system is, instead of the overshadowed 'type property. * dumped-lisp.el (preloaded-file-list): mule/european.el has been removed. * loadup.el (really-early-error-handler): Unicode tables loaded at dump time are now in mule/general-late.el. * simple.el (count-lines): Add some backslashes to to parentheses in docstrings to help fontification along. * simple.el (what-cursor-position): Wrap a line to fit in 80 characters. * unicode.el: Use the 'unicode-type property, not 'type, for setting the Unicode coding-system subtype. src/ChangeLog addition: 2006-12-21 Aidan Kehoe <kehoea@parhasard.net> * file-coding.c: Update the make-coding-system docstring to reflect unicode-type * general-slots.h: New symbol, unicode-type, since 'type was being overridden when accessing a coding system's Unicode subtype. * intl-win32.c: Backslash a few parentheses, to help fontification along. * intl-win32.c (complex_vars_of_intl_win32): Use the 'unicode-type symbol, not 'type, when creating the Microsoft Unicode coding system. * unicode.c (unicode_putprop): * unicode.c (unicode_getprop): * unicode.c (unicode_print): Using 'type as the property name when working out what Unicode subtype a given coding system is was broken, since there's a general coding system property called 'type. Change the former to use 'unicode-type instead.
author aidan
date Fri, 29 Dec 2006 18:09:51 +0000
parents 168191f9515f
children 229bd619740a
line wrap: on
line source

/* Support for dynamic arrays.
   Copyright (C) 1993 Sun Microsystems, Inc.
   Copyright (C) 2002, 2003, 2004 Ben Wing.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with:  Not in FSF. */

/* Written by Ben Wing, December 1993. */

/*

A "dynamic array" is a contiguous array of fixed-size elements where there
is no upper limit (except available memory) on the number of elements in the
array.  Because the elements are maintained contiguously, space is used
efficiently (no per-element pointers necessary) and random access to a
particular element is in constant time.  At any one point, the block of memory
that holds the array has an upper limit; if this limit is exceeded, the
memory is realloc()ed into a new array that is twice as big.  Assuming that
the time to grow the array is on the order of the new size of the array
block, this scheme has a provably constant amortized time (i.e. average
time over all additions).

When you add elements or retrieve elements, pointers are used.  Note that
the element itself (of whatever size it is), and not the pointer to it,
is stored in the array; thus you do not have to allocate any heap memory
on your own.  Also, returned pointers are only guaranteed to be valid
until the next operation that changes the length of the array.

This is a container object.  Declare a dynamic array of a specific type
as follows:

  typedef struct
  {
    Dynarr_declare (mytype);
  } mytype_dynarr;

Use the following functions/macros:

   void *Dynarr_new(type)
      [MACRO] Create a new dynamic-array object, with each element of the
      specified type.  The return value is cast to (type##_dynarr).
      This requires following the convention that types are declared in
      such a way that this type concatenation works.  In particular, TYPE
      must be a symbol, not an arbitrary C type.

   Dynarr_add(d, el)
      [MACRO] Add an element to the end of a dynamic array.  EL is a pointer
      to the element; the element itself is stored in the array, however.
      No function call is performed unless the array needs to be resized.

   Dynarr_add_many(d, base, len)
      [MACRO] Add LEN elements to the end of the dynamic array.  The elements
      should be contiguous in memory, starting at BASE.  If BASE if NULL,
      just make space for the elements; don't actually add them.

   Dynarr_insert_many_at_start(d, base, len)
      [MACRO] Append LEN elements to the beginning of the dynamic array.
      The elements should be contiguous in memory, starting at BASE.
      If BASE if NULL, just make space for the elements; don't actually
      add them.

   Dynarr_insert_many(d, base, len, start)
      Insert LEN elements to the dynamic array starting at position
      START.  The elements should be contiguous in memory, starting at BASE.
      If BASE if NULL, just make space for the elements; don't actually
      add them.

   Dynarr_delete(d, i)
      [MACRO] Delete an element from the dynamic array at position I.

   Dynarr_delete_many(d, start, len)
      Delete LEN elements from the dynamic array starting at position
      START.

   Dynarr_delete_by_pointer(d, p)
      [MACRO] Delete an element from the dynamic array at pointer P,
      which must point within the block of memory that stores the data.
      P should be obtained using Dynarr_atp().

   int Dynarr_length(d)
      [MACRO] Return the number of elements currently in a dynamic array.

   int Dynarr_largest(d)
      [MACRO] Return the maximum value that Dynarr_length(d) would
      ever have returned.

   type Dynarr_at(d, i)
      [MACRO] Return the element at the specified index (no bounds checking
      done on the index).  The element itself is returned, not a pointer
      to it.

   type *Dynarr_atp(d, i)
      [MACRO] Return a pointer to the element at the specified index (no
      bounds checking done on the index).  The pointer may not be valid
      after an element is added to or removed from the array.

   Dynarr_reset(d)
      [MACRO] Reset the length of a dynamic array to 0.

   Dynarr_free(d)
      Destroy a dynamic array and the memory allocated to it.

Use the following global variable:

   Dynarr_min_size
      Minimum allowable size for a dynamic array when it is resized.

*/

#include <config.h>
#include "lisp.h"

static int Dynarr_min_size = 8;

static void
Dynarr_realloc (Dynarr *dy, int new_size)
{
  if (DUMPEDP (dy->base))
    {
      void *new_base = malloc (new_size * dy->elsize);
      memcpy (new_base, dy->base, 
	      (dy->max < new_size ? dy->max : new_size) * dy->elsize);
      dy->base = new_base;
    }
  else
    dy->base = xrealloc (dy->base, new_size * dy->elsize);
}

void *
Dynarr_newf (int elsize)
{
  Dynarr *d = xnew_and_zero (Dynarr);
  d->elsize = elsize;

  return d;
}

#ifdef NEW_GC
DEFINE_LRECORD_IMPLEMENTATION ("dynarr", dynarr,
			       1, /*dumpable-flag*/
                               0, 0, 0, 0, 0,
			       0,
			       Dynarr);

static void
Dynarr_lisp_realloc (Dynarr *dy, int new_size)
{
  void *new_base = alloc_lrecord_array (dy->elsize, new_size, dy->lisp_imp);
  void *old_base = dy->base;
  if (dy->base)
    memcpy (new_base, dy->base, 
	    (dy->max < new_size ? dy->max : new_size) * dy->elsize);
  dy->base = new_base;
  if (old_base)
    mc_free (old_base);
}

void *
Dynarr_lisp_newf (int elsize, 
		  const struct lrecord_implementation *dynarr_imp, 
		  const struct lrecord_implementation *imp)
{
  Dynarr *d = (Dynarr *) alloc_lrecord (sizeof (Dynarr), dynarr_imp);
  d->elsize = elsize;
  d->lisp_imp = imp;

  return d;
}
#endif /* not NEW_GC */

void
Dynarr_resize (void *d, Elemcount size)
{
  int newsize;
  double multiplier;
  Dynarr *dy = (Dynarr *) Dynarr_verify (d);

  if (dy->max <= 8)
    multiplier = 2;
  else
    multiplier = 1.5;

  for (newsize = dy->max; newsize < size;)
    newsize = max (Dynarr_min_size, (int) (multiplier * newsize));

  /* Don't do anything if the array is already big enough. */
  if (newsize > dy->max)
    {
#ifdef NEW_GC
      if (dy->lisp_imp)
	Dynarr_lisp_realloc (dy, newsize);
      else
	Dynarr_realloc (dy, newsize);
#else /* not NEW_GC */
      Dynarr_realloc (dy, newsize);
#endif /* not NEW_GC */
      dy->max = newsize;
    }
}

/* Add a number of contiguous elements to the array starting at START. */
void
Dynarr_insert_many (void *d, const void *el, int len, int start)
{
  Dynarr *dy = (Dynarr *) Dynarr_verify (d);
  
  Dynarr_resize (dy, dy->cur+len);
#if 0
  /* WTF? We should be catching these problems. */
  /* Silently adjust start to be valid. */
  if (start > dy->cur)
    start = dy->cur;
  else if (start < 0)
    start = 0;
#else
  assert (start >= 0 && start <= dy->cur);
#endif

  if (start != dy->cur)
    {
      memmove ((char *) dy->base + (start + len)*dy->elsize,
	       (char *) dy->base + start*dy->elsize,
	       (dy->cur - start)*dy->elsize);
    }
  if (el)
    memcpy ((char *) dy->base + start*dy->elsize, el, len*dy->elsize);
  dy->cur += len;

  if (dy->cur > dy->largest)
    dy->largest = dy->cur;
}

void
Dynarr_delete_many (void *d, int start, int len)
{
  Dynarr *dy = (Dynarr *) Dynarr_verify (d);

  assert (start >= 0 && len >= 0 && start + len <= dy->cur);
  memmove ((char *) dy->base + start*dy->elsize,
	   (char *) dy->base + (start + len)*dy->elsize,
	   (dy->cur - start - len)*dy->elsize);
  dy->cur -= len;
}

void
Dynarr_free (void *d)
{
  Dynarr *dy = (Dynarr *) d;

#ifdef NEW_GC
  if (dy->base && !DUMPEDP (dy->base))
    {
      if (dy->lisp_imp)
	mc_free (dy->base);
      else
	xfree (dy->base, void *);
    }
  if(!DUMPEDP (dy))
    {
      if (dy->lisp_imp)
	mc_free (dy);
      else
	xfree (dy, Dynarr *);
    }
#else /* not NEW_GC */
  if (dy->base && !DUMPEDP (dy->base))
    xfree (dy->base, void *);
  if(!DUMPEDP (dy))
    xfree (dy, Dynarr *);
#endif /* not NEW_GC */
}

#ifdef MEMORY_USAGE_STATS

/* Return memory usage for Dynarr D.  The returned value is the total
   amount of bytes actually being used for the Dynarr, including all
   overhead.  The extra amount of space in the Dynarr that is
   allocated beyond what was requested is returned in DYNARR_OVERHEAD
   in STATS.  The extra amount of space that malloc() allocates beyond
   what was requested of it is returned in MALLOC_OVERHEAD in STATS.
   See the comment above the definition of this structure. */

Bytecount
Dynarr_memory_usage (void *d, struct overhead_stats *stats)
{
  Bytecount total = 0;
  Dynarr *dy = (Dynarr *) d;

  /* We have to be a bit tricky here because not all of the
     memory that malloc() will claim as "requested" was actually
     requested. */

  if (dy->base)
    {
      Bytecount malloc_used = malloced_storage_size (dy->base,
						     dy->elsize * dy->max, 0);
      /* #### This may or may not be correct.  Some Dynarrs would
	 prefer that we use dy->cur instead of dy->largest here. */
      Bytecount was_requested = dy->elsize * dy->largest;
      Bytecount dynarr_overhead = dy->elsize * (dy->max - dy->largest);

      total += malloc_used;
      stats->was_requested += was_requested;
      stats->dynarr_overhead += dynarr_overhead;
      /* And the remainder must be malloc overhead. */
      stats->malloc_overhead +=
	malloc_used - was_requested - dynarr_overhead;
    }

  total += malloced_storage_size (d, sizeof (*dy), stats);

  return total;
}

#endif /* MEMORY_USAGE_STATS */

/* Version of malloc() that will be extremely efficient when allocation
   nearly always occurs in LIFO (stack) order.

   #### Perhaps shouldn't be in this file, but where else? */

typedef struct
{
  Dynarr_declare (char_dynarr *);
} char_dynarr_dynarr;

char_dynarr_dynarr *stack_like_free_list;
char_dynarr_dynarr *stack_like_in_use_list;

void *
stack_like_malloc (Bytecount size)
{
  char_dynarr *this_one;
  if (!stack_like_free_list)
    {
      stack_like_free_list = Dynarr_new2 (char_dynarr_dynarr,
					  char_dynarr *);
      stack_like_in_use_list = Dynarr_new2 (char_dynarr_dynarr,
					    char_dynarr *);
    }

  if (Dynarr_length (stack_like_free_list) > 0)
    this_one = Dynarr_pop (stack_like_free_list);
  else
    this_one = Dynarr_new (char);
  Dynarr_add (stack_like_in_use_list, this_one);
  Dynarr_resize (this_one, size);
  return Dynarr_atp (this_one, 0);
}

void
stack_like_free (void *val)
{
  int len = Dynarr_length (stack_like_in_use_list);
  assert (len > 0);
  /* The vast majority of times, we will be called in a last-in first-out
     order, and the item at the end of the list will be the one we're
     looking for, so just check for this first and avoid any function
     calls. */
  if (Dynarr_atp (Dynarr_at (stack_like_in_use_list, len - 1), 0) == val)
    {
      char_dynarr *this_one = Dynarr_pop (stack_like_in_use_list);
      Dynarr_add (stack_like_free_list, this_one);
    }
  else
    {
      /* Find the item and delete it. */
      int i;
      assert (len >= 2);
      for (i = len - 2; i >= 0; i--)
	if (Dynarr_atp (Dynarr_at (stack_like_in_use_list, i), 0) ==
	    val)
	  {
	    char_dynarr *this_one = Dynarr_at (stack_like_in_use_list, i);
	    Dynarr_add (stack_like_free_list, this_one);
	    Dynarr_delete (stack_like_in_use_list, i);
	    return;
	  }

      ABORT ();
    }
}