view dynodump/ppc/_relocate.c @ 3767:6b2ef948e140

[xemacs-hg @ 2006-12-29 18:09:38 by aidan] etc/ChangeLog addition: 2006-12-21 Aidan Kehoe <kehoea@parhasard.net> * unicode/unicode-consortium/8859-7.TXT: Update the mapping to the 2003 version of ISO 8859-7. lisp/ChangeLog addition: 2006-12-21 Aidan Kehoe <kehoea@parhasard.net> * mule/cyrillic.el: * mule/cyrillic.el (iso-8859-5): * mule/cyrillic.el (cyrillic-koi8-r-encode-table): Add syntax, case support for Cyrillic; make some parentheses more Lispy. * mule/european.el: Content moved to latin.el, file deleted. * mule/general-late.el: If Unicode tables are to be loaded at dump time, do it here, not in loadup.el. * mule/greek.el: Add syntax, case support for Greek. * mule/latin.el: Move the content of european.el here. Change the case table mappings to use hexadecimal codes, to make cross reference to the standards easier. In all cases, take character syntax from similar characters in Latin-1 , rather than deciding separately what syntax they should take. Add (incomplete) support for case with Turkish. Remove description of the character sets used from the language environments' doc strings, since now that we create variant language environments on the fly, such descriptions will often be inaccurate. Set the native-coding-system language info property while setting the other coding-system properties of the language. * mule/misc-lang.el (ipa): Remove the language environment. The International Phonetic _Alphabet_ is not a language, it's inane to have a corresponding language environment in XEmacs. * mule/mule-cmds.el (create-variant-language-environment): Also modify the coding-priority when creating a new language environment; document that. * mule/mule-cmds.el (get-language-environment-from-locale): Recognise that the 'native-coding-system language-info property can be a list, interpret it correctly when it is one. 2006-12-21 Aidan Kehoe <kehoea@parhasard.net> * coding.el (coding-system-category): Use the new 'unicode-type property for finding what sort of Unicode coding system subtype a coding system is, instead of the overshadowed 'type property. * dumped-lisp.el (preloaded-file-list): mule/european.el has been removed. * loadup.el (really-early-error-handler): Unicode tables loaded at dump time are now in mule/general-late.el. * simple.el (count-lines): Add some backslashes to to parentheses in docstrings to help fontification along. * simple.el (what-cursor-position): Wrap a line to fit in 80 characters. * unicode.el: Use the 'unicode-type property, not 'type, for setting the Unicode coding-system subtype. src/ChangeLog addition: 2006-12-21 Aidan Kehoe <kehoea@parhasard.net> * file-coding.c: Update the make-coding-system docstring to reflect unicode-type * general-slots.h: New symbol, unicode-type, since 'type was being overridden when accessing a coding system's Unicode subtype. * intl-win32.c: Backslash a few parentheses, to help fontification along. * intl-win32.c (complex_vars_of_intl_win32): Use the 'unicode-type symbol, not 'type, when creating the Microsoft Unicode coding system. * unicode.c (unicode_putprop): * unicode.c (unicode_getprop): * unicode.c (unicode_print): Using 'type as the property name when working out what Unicode subtype a given coding system is was broken, since there's a general coding system property called 'type. Change the former to use 'unicode-type instead.
author aidan
date Fri, 29 Dec 2006 18:09:51 +0000
parents 3ecd8885ac67
children
line wrap: on
line source

/*
 *	Copyright (c) 1995 by Sun Microsystems, Inc.
 *	All rights reserved.
 *
 * This source code is a product of Sun Microsystems, Inc. and is provided
 * for unrestricted use provided that this legend is included on all tape
 * media and as a part of the software program in whole or part.  Users
 * may copy or modify this source code without charge, but are not authorized
 * to license or distribute it to anyone else except as part of a product or
 * program developed by the user.
 *
 * THIS PROGRAM CONTAINS SOURCE CODE COPYRIGHTED BY SUN MICROSYSTEMS, INC.
 * SUN MICROSYSTEMS, INC., MAKES NO REPRESENTATIONS ABOUT THE SUITABLITY
 * OF SUCH SOURCE CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT
 * EXPRESS OR IMPLIED WARRANTY OF ANY KIND.  SUN MICROSYSTEMS, INC. DISCLAIMS
 * ALL WARRANTIES WITH REGARD TO SUCH SOURCE CODE, INCLUDING ALL IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  IN
 * NO EVENT SHALL SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY SPECIAL, INDIRECT,
 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
 * FROM USE OF SUCH SOURCE CODE, REGARDLESS OF THE THEORY OF LIABILITY.
 *
 * This source code is provided with no support and without any obligation on
 * the part of Sun Microsystems, Inc. to assist in its use, correction,
 * modification or enhancement.
 *
 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS
 * SOURCE CODE OR ANY PART THEREOF.
 *
 * Sun Microsystems, Inc.
 * 2550 Garcia Avenue
 * Mountain View, California 94043
 */

#pragma ident "@(#) $Id: _relocate.c,v 1.4 1998/03/31 20:10:55 steve Exp $ - SMI"

/* LINTLIBRARY */

#include	<string.h>
#include	<sys/elf_ppc.h>
#include	"_dynodump.h"


/*
 *	NOTE: These macros will work reliably only on 32-bit 2's
 *	complement machines. The type of P in all cases should
 *	by unsigned char *
 */
#if defined(_BIG_ENDIAN)

#define	GET4(P)	((long)(((unsigned long)(P)[0] << 24) | \
			((unsigned long)(P)[1] << 16) | \
			((unsigned long)(P)[2] << 8) | \
			(unsigned long)(P)[3]))
#define	PUT4(V, P)	{ \
				(P)[0] = (unsigned char)((V) >> 24); \
				(P)[1] = (unsigned char)((V) >> 16); \
				(P)[2] = (unsigned char)((V) >> 8); \
				(P)[3] = (unsigned char)(V); \
			}
#define	GEThalf(P)	((long)	(((unsigned long) (P)[0] << 8) | \
				((unsigned long) (P)[1])))
#define	GETword(P)	GET4(P)
#define	PUThalf(V, P)	{ \
				(P)[0] = ((V) >> 8); \
				(P)[1] = ((V)); \
			}
#define	PUTword(V, P)	PUT4(V, P)

#elif defined(_LITTLE_ENDIAN)

#define	GET4(P)	((long)(((unsigned long)(P)[0]) | \
			((unsigned long)(P)[1] << 8) | \
			((unsigned long)(P)[2] << 16) | \
			((unsigned long)(P)[3]) << 24))
#define	PUT4(V, P)	{ \
				(P)[0] = (unsigned char)(V); \
				(P)[1] = (unsigned char)((V) >> 8); \
				(P)[2] = (unsigned char)((V) >> 16); \
				(P)[3] = (unsigned char)((V) >> 24); \
			}
#define	GEThalf(P)	((long)	(((unsigned long) (P)[0]) | \
				((unsigned long) (P)[1] << 8)))
#define	GETword(P)	GET4(P)
#define	PUThalf(V, P)	{ \
				(P)[0] = (V); \
				(P)[1] = ((V) >> 8); \
			}
#define	PUTword(V, P)	PUT4(V, P)

#endif /* defined(_LITTLE_ENDIAN) */

/*
 * NAME			VALUE	FIELD		CALCULATION
 *
 * R_PPC_NONE			0	none		none
 * R_PPC_ADDR32			1	word32		S + A
 * R_PPC_ADDR24			2	low24		(S + A) >> 2
 * R_PPC_ADDR16			3	half16		S + A
 * R_PPC_ADDR16_LO		4	half16		#lo(S + A)
 * R_PPC_ADDR16_HI		5	half16		#hi(S + A)
 * R_PPC_ADDR16_HA		6	half16		#ha(S + A)
 * R_PPC_ADDR14			7	low14		(S + A) >> 2
 * R_PPC_ADDR14_BRTAKEN		8	low14		(S + A) >> 2
 * R_PPC_ADDR14_BRNTAKEN	9	low14		(S + A) >> 2
 * R_PPC_REL24			10	low24		(S + A - P) >> 2
 * R_PPC_REL14			11	low14		(S + A - P) >> 2
 * R_PPC_REL14_BRTAKEN		12	low14		(S + A - P) >> 2
 * R_PPC_REL14_BRNTAKEN		13	low14		(S + A - P) >> 2
 * R_PPC_GOT16			14	half16		G + A
 * R_PPC_GOT16_LO		15	half16		#lo(G + A)
 * R_PPC_GOT16_HI		16	half16		#hi(G + A)
 * R_PPC_GOT16_HA		17	half16		#ha(G + A)
 * R_PPC_PLT24			18	low24		(L + A - P) >> 2
 * R_PPC_COPY			19	none		none
 * R_PPC_GLOB_DAT		20	word32		S + A
 * R_PPC_JMP_SLOT		21	none		see below
 * R_PPC_RELATIVE		22	word32		B + A
 * R_PPC_LOCAL24PC		23	low24		see below
 * R_PPC_UADDR32		24	word32		S + A
 * R_PPC_UADDR16		25	half16		S + A
 *
 *	This is Figure 4-3: Relocation Types from the Draft Copy of
 * the ABI, Printed on 7/25/94.
 *
 *	The field column specifies how much of the data
 * at the reference address is to be used. The data are assumed to be
 * right-justified with the least significant bit at the right.
 *	In the case of plt24 addresses, the reference address is
 * assumed to be that of a 6-word PLT entry. The address is the right-
 * most 24 bits of the third word.
 */
static void
move_reloc(unsigned char *iaddr, unsigned char *oaddr, unsigned char type)
{
    switch(type) {
    case R_PPC_NONE:
	break;

    case R_PPC_ADDR32:
    case R_PPC_UADDR32:
	PUTword(GETword(iaddr), oaddr);
	break;

    case R_PPC_ADDR24:
    case R_PPC_REL24:
    case R_PPC_PLT24:
    case R_PPC_LOCAL24PC:
	/* XXX - big assumption here that the original contents were masked
	 * properly.  If this assumption proves correct, then these 24bit
	 * cases can be folded into the above 32bit cases.
	 */
	PUTword(GETword(iaddr), oaddr);
	break;

    case R_PPC_ADDR16:
    case R_PPC_UADDR16:
    case R_PPC_GOT16:
	PUThalf(GEThalf(iaddr), oaddr);
	break;

    case R_PPC_ADDR16_LO:
    case R_PPC_GOT16_LO:
	/* XXX - more assumptions which if proved correct, we can
	 * do some folding with above cases
	 */
	PUThalf(GEThalf(iaddr), oaddr);
	break;

    case R_PPC_ADDR16_HI:
    case R_PPC_GOT16_HI:
	/* XXX - more assumptions which if proved correct, we can
	 * do some folding with above cases
	 */
	PUThalf(GEThalf(iaddr), oaddr);
	break;

    case R_PPC_ADDR16_HA:
    case R_PPC_GOT16_HA:
	/* XXX - more assumptions which if proved correct, we can
	 * do some folding with above cases
	 */
	PUThalf(GEThalf(iaddr), oaddr);
	break;

    case R_PPC_ADDR14:
    case R_PPC_ADDR14_BRTAKEN:
    case R_PPC_ADDR14_BRNTAKEN:
    case R_PPC_REL14:
    case R_PPC_REL14_BRTAKEN:
    case R_PPC_REL14_BRNTAKEN:
	/* XXX - big assumption here that the original contents were masked
	 * properly.  If this assumption proves correct, then these 14bit
	 * cases can be folded into the above 32bit cases.
	 */
	PUTword(GETword(iaddr), oaddr);
	break;

    case R_PPC_COPY:
	break;

    case R_PPC_GLOB_DAT:
    case R_PPC_RELATIVE:
	PUTword(GETword(iaddr), oaddr);
	break;

    case R_PPC_JMP_SLOT:
	break;

    default:
	break;
    }
}

void
update_reloc(Cache *ocache, Cache *_ocache, Cache *icache, Cache *_icache, Half shnum)
{
    Shdr *shdr;
    Rel *rels;
    int	reln, cnt;
    Cache *orcache, * ircache;

    /*
     * Set up to read the output relocation table.
     */
    shdr = _ocache->c_shdr;
    rels = (Rel *)_ocache->c_data->d_buf;
    reln = shdr->sh_size / shdr->sh_entsize;

    /*
     * Determine the section that is being relocated.
     */
    orcache = &ocache[shdr->sh_info];
    shdr = _icache->c_shdr;
    ircache = &icache[shdr->sh_info];

    /*
     * Loop through the relocation table.
     */
    for (cnt = 0; cnt < reln; cnt++, rels++) {
	unsigned char	type = ELF_R_TYPE(rels->r_info);

	/*
	 * Ignore some relocations as these can safely be carried out
	 * twice (they simply override any existing data).  In fact,
	 * some relocations like __iob's copy relocation must be carried
	 * out each time the process restarts otherwise stdio blows up.
	 */
	if ((type == R_PPC_COPY) || (type == R_PPC_JMP_SLOT) ||
	    (type == R_PPC_NONE))
	    continue;

	{
	    unsigned char *iaddr, *oaddr;
	    Addr off;

	    /*
	     * If we are required to restore the relocation location
	     * to its value prior to relocation, then read the
	     * locations original contents from the input image and
	     * copy it to the output image.
	     */
	    off = rels->r_offset - ircache->c_shdr->sh_addr;
	    iaddr = (unsigned char *)ircache->c_data->d_buf + off;
	    oaddr = (unsigned char *)orcache->c_data->d_buf + off;
	    move_reloc(iaddr, oaddr, type);
	}
    }
}