Mercurial > hg > xemacs-beta
view src/window-impl.h @ 4885:6772ce4d982b
Fix hash tables, #'member*, #'assoc*, #'eql compiler macros if bignums
lisp/ChangeLog addition:
2010-01-24 Aidan Kehoe <kehoea@parhasard.net>
Correct the semantics of #'member*, #'eql, #'assoc* in the
presence of bignums; change the integerp byte code to fixnump
semantics.
* bytecomp.el (fixnump, integerp, byte-compile-integerp):
Change the integerp byte code to fixnump; add a byte-compile
method to integerp using fixnump and numberp and avoiding a
funcall most of the time, since in the non-core contexts where
integerp is used, it's mostly distinguishing between fixnums and
things that are not numbers at all.
* byte-optimize.el (side-effect-free-fns, byte-after-unbind-ops)
(byte-compile-side-effect-and-error-free-ops):
Replace the integerp bytecode with fixnump; add fixnump to the
side-effect-free-fns. Add the other extended number type
predicates to the list in passing.
* obsolete.el (floatp-safe): Mark this as obsolete.
* cl.el (eql): Go into more detail in the docstring here. Don't
bother checking whether both arguments are numbers; one is enough,
#'equal will fail correctly if they have distinct types.
(subst): Replace a call to #'integerp (deciding whether to use
#'memq or not) with one to #'fixnump.
Delete most-positive-fixnum, most-negative-fixnum from this file;
they're now always in C, so they can't be modified from Lisp.
* cl-seq.el (member*, assoc*, rassoc*):
Correct these functions in the presence of bignums.
* cl-macs.el (cl-make-type-test): The type test for a fixnum is
now fixnump. Ditch floatp-safe, use floatp instead.
(eql): Correct this compiler macro in the presence of bignums.
(assoc*): Correct this compiler macro in the presence of bignums.
* simple.el (undo):
Change #'integerp to #'fixnump here, since we use #'delq with the
same value as ELT a few lines down.
src/ChangeLog addition:
2010-01-24 Aidan Kehoe <kehoea@parhasard.net>
Fix problems with #'eql, extended number types, and the hash table
implementation; change the Bintegerp bytecode to fixnump semantics
even on bignum builds, since #'integerp can have a fast
implementation in terms of #'fixnump for most of its extant uses,
but not vice-versa.
* lisp.h: Always #include number.h; we want the macros provided in
it, even if the various number types are not available.
* number.h (NON_FIXNUM_NUMBER_P): New macro, giving 1 when its
argument is of non-immediate number type. Equivalent to FLOATP if
WITH_NUMBER_TYPES is not defined.
* elhash.c (lisp_object_eql_equal, lisp_object_eql_hash):
Use NON_FIXNUM_NUMBER_P in these functions, instead of FLOATP,
giving more correct behaviour in the presence of the extended
number types.
* bytecode.c (Bfixnump, execute_optimized_program):
Rename Bintegerp to Bfixnump; change its semantics to reflect the
new name on builds with bignum support.
* data.c (Ffixnump, Fintegerp, syms_of_data, vars_of_data):
Always make #'fixnump available, even on non-BIGNUM builds;
always implement #'integerp in this file, even on BIGNUM builds.
Move most-positive-fixnum, most-negative-fixnum here from
number.c, so they are Lisp constants even on builds without number
types, and attempts to change or bind them error.
Use the NUMBERP and INTEGERP macros even on builds without
extended number types.
* data.c (fixnum_char_or_marker_to_int):
Rename this function from integer_char_or_marker_to_int, to better
reflect the arguments it accepts.
* number.c (Fevenp, Foddp, syms_of_number):
Never provide #'integerp in this file. Remove #'oddp,
#'evenp; their implementations are overridden by those in cl.el.
* number.c (vars_of_number):
most-positive-fixnum, most-negative-fixnum are no longer here.
man/ChangeLog addition:
2010-01-23 Aidan Kehoe <kehoea@parhasard.net>
Generally: be careful to say fixnum, not integer, when talking
about fixed-precision integral types. I'm sure I've missed
instances, both here and in the docstrings, but this is a decent
start.
* lispref/text.texi (Columns):
Document where only fixnums, not integers generally, are accepted.
(Registers):
Remove some ancient char-int confoundance here.
* lispref/strings.texi (Creating Strings, Creating Strings):
Be more exact in describing where fixnums but not integers in
general are accepted.
(Creating Strings): Use a more contemporary example to illustrate
how concat deals with lists including integers about #xFF. Delete
some obsolete documentation on same.
(Char Table Types): Document that only fixnums are accepted as
values in syntax tables.
* lispref/searching.texi (String Search, Search and Replace):
Be exact in describing where fixnums but not integers in general
are accepted.
* lispref/range-tables.texi (Range Tables): Be exact in describing
them; only fixnums are accepted to describe ranges.
* lispref/os.texi (Killing XEmacs, User Identification)
(Time of Day, Time Conversion):
Be more exact about using fixnum where only fixed-precision
integers are accepted.
* lispref/objects.texi (Integer Type): Be more exact (and
up-to-date) about the possible values for
integers. Cross-reference to documentation of the bignum extension.
(Equality Predicates):
(Range Table Type):
(Array Type): Use fixnum, not integer, to describe a
fixed-precision integer.
(Syntax Table Type): Correct some English syntax here.
* lispref/numbers.texi (Numbers): Change the phrasing here to use
fixnum to mean the fixed-precision integers normal in emacs.
Document that our terminology deviates from that of Common Lisp,
and that we're working on it.
(Compatibility Issues): Reiterate the Common Lisp versus Emacs
Lisp compatibility issues.
(Comparison of Numbers, Arithmetic Operations):
* lispref/commands.texi (Command Loop Info, Working With Events):
* lispref/buffers.texi (Modification Time):
Be more exact in describing where fixnums but not integers in
general are accepted.
| author | Aidan Kehoe <kehoea@parhasard.net> |
|---|---|
| date | Sun, 24 Jan 2010 15:21:27 +0000 |
| parents | 1e7cc382eb16 |
| children | d1247f3cc363 |
line wrap: on
line source
/* Window definitions for XEmacs. Copyright (C) 1985, 1986, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Copyright (C) 1994, 1995 Board of Trustees, University of Illinois. Copyright (C) 1995, 1996, 2002 Ben Wing. Copyright (C) 1996 Chuck Thompson. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. */ #ifndef INCLUDED_window_impl_h_ #define INCLUDED_window_impl_h_ #include "window.h" /* All windows in use are arranged into a tree, with pointers up and down. Windows that are leaves of the tree are actually displayed and show the contents of buffers. Windows that are not leaves are used for representing the way groups of leaf windows are arranged on the frame. Leaf windows never become non-leaves. They are deleted only by calling delete-window on them (but this can be done implicitly). Combination windows can be created and deleted at any time. A leaf window has a non-nil buffer field, and also has markers in its start and pointm fields. Non-leaf windows have nil in these fields. Non-leaf windows are either vertical or horizontal combinations. A vertical combination window has children that are arranged on the frame one above the next. Its vchild field points to the uppermost child. The parent field of each of the children points to the vertical combination window. The next field of each child points to the child below it, or is nil for the lowest child. The prev field of each child points to the child above it, or is nil for the highest child. A horizontal combination window has children that are side by side. Its hchild field points to the leftmost child. In each child the next field points to the child to the right and the prev field points to the child to the left. The children of a vertical combination window may be leaf windows or horizontal combination windows. The children of a horizontal combination window may be leaf windows or vertical combination windows. At the top of the tree are two windows which have nil as parent. The second of these is minibuf_window. The first one manages all the frame area that is not minibuffer, and is called the root window. Different windows can be the root at different times; initially the root window is a leaf window, but if more windows are created then that leaf window ceases to be root and a newly made combination window becomes root instead. In any case, on screens which have an ordinary window and a minibuffer, prev of the minibuf window is the root window and next of the root window is the minibuf window. On minibufferless screens or minibuffer-only screens, the root window and the minibuffer window are one and the same, so its prev and next members are nil. A dead window has the `dead' flag set on it. Note that unlike other dead objects, dead windows can be made live again through restoring a window configuration. This means that the values in a dead window need to be preserved, except for those that are reconstructed by from the window configuration. */ struct window { struct LCRECORD_HEADER header; /* The upper left corner coordinates of this window, as integers (pixels) relative to upper left corner of frame = 0, 0 */ int pixel_left; int pixel_top; /* The size of the window (in pixels) */ int pixel_height; int pixel_width; /* Number of columns display within the window is scrolled to the left. */ int hscroll; /* Idem for the window's modeline */ Charcount modeline_hscroll; /* Amount to clip off the top line for pixel-based scrolling. Point will remain constant but this will be incremented to incrementally shift lines up. */ int top_yoffset; /* Amount to clip off the left of the lines for pixel-based scrolling. Hscroll will remain constant but this will be incremented to incrementally shift lines left.*/ int left_xoffset; /* face cache elements correct for this window and its current buffer */ face_cachel_dynarr *face_cachels; /* glyph cache elements correct for this window and its current buffer */ glyph_cachel_dynarr *glyph_cachels; /* List of starting positions for display lines. Only valid if buffer has not changed. */ line_start_cache_dynarr *line_start_cache; int line_cache_validation_override; /* Length of longest line currently displayed. Used to control the width of the horizontal scrollbars. */ int max_line_len; /* Frame coords of point at that time */ int last_point_x[3]; int last_point_y[3]; /* Number of characters in buffer past bottom of window, as of last redisplay that finished. */ /* need one for each set of display structures */ int window_end_pos[3]; /* Set by the extent code when extents in the gutter are changed. */ int gutter_extent_modiff[4]; /* Set by redisplay to the last position seen. This is used to implement the redisplay-end-trigger-functions. */ Charbpos last_redisplay_pos; #define WINDOW_SLOT_DECLARATION #define WINDOW_SLOT(slot) Lisp_Object slot; #include "winslots.h" /* one-bit flags: */ /* marker used when restoring a window configuration */ unsigned int config_mark :1; /* Non-zero means window was dead. */ unsigned int dead :1; /* Non-zero means next redisplay must use the value of start set up for it in advance. Set by scrolling commands. */ unsigned int force_start :1; /* Non-zero means must regenerate modeline of this window */ unsigned int redo_modeline :1; /* Non-zero means current value of `start' was the beginning of a line when it was chosen. */ unsigned int start_at_line_beg :1; /* new redisplay flag */ unsigned int windows_changed :1; unsigned int shadow_thickness_changed :1; /* Vertical divider flag and validity of it */ unsigned int need_vertical_divider_p :1; unsigned int need_vertical_divider_valid_p :1; }; #define CURRENT_DISP 0 #define DESIRED_DISP 1 #define CMOTION_DISP 2 struct window_mirror { struct LCRECORD_HEADER header; /* Frame this mirror is on. */ struct frame *frame; /* Following child (to right or down) at same level of tree */ struct window_mirror *next; /* There is no prev field because we never traverse this structure backwards. Same goes for the parent field. */ /* First child of this window. */ /* vchild is used if this is a vertical combination, hchild if this is a horizontal combination. */ struct window_mirror *hchild, *vchild; /* Dynamic array of display lines */ display_line_dynarr *current_display_lines; display_line_dynarr *desired_display_lines; /* Buffer current_display_lines represent. */ struct buffer *buffer; #ifdef HAVE_SCROLLBARS /* Scrollbars associated with window, if any. */ struct scrollbar_instance *scrollbar_vertical_instance; struct scrollbar_instance *scrollbar_horizontal_instance; #endif /* HAVE_SCROLLBARS */ /* Flag indicating whether a subwindow is currently being displayed. */ unsigned int subwindows_being_displayed :1; /* Keep track of the truncation status in this window so we can detect when it has changed. #### Magic variables would be a huge win here. */ unsigned int truncate_win :1; }; /* Redefine basic properties more efficiently */ #undef WINDOW_LIVE_P #define WINDOW_LIVE_P(x) (!(x)->dead) #undef WINDOW_FRAME #define WINDOW_FRAME(w) ((w)->frame) #undef WINDOW_BUFFER #define WINDOW_BUFFER(w) ((w)->buffer) /* 1 if W is a minibuffer window. */ #define MINI_WINDOW_P(W) (!NILP ((W)->mini_p)) /* 1 if we are dealing with a parentless window (this includes the root window on a frame and the minibuffer window; both of these are siblings). */ #define TOP_LEVEL_WINDOW_P(w) NILP ((w)->parent) /* Set all redisplay flags indicating a window has changed */ #define MARK_WINDOWS_CHANGED(w) do { \ (w)->windows_changed = 1; \ if (!NILP (w->frame)) \ { \ struct frame *mwc_frame = XFRAME (w->frame); \ MARK_FRAME_WINDOWS_CHANGED (mwc_frame); \ } \ else \ windows_changed = 1; \ } while (0) /* #### This should be fixed not to call MARK_FRAME_CHANGED because faces are cached per window. Also, other code which changes window's face should use this macro. */ #define MARK_WINDOW_FACES_CHANGED(w) \ MARK_FRAME_FACES_CHANGED (XFRAME ((w)->frame)) #define WINDOW_TTY_P(w) FRAME_TTY_P (XFRAME ((w)->frame)) #define WINDOW_X_P(w) FRAME_X_P (XFRAME ((w)->frame)) #define WINDOW_NS_P(w) FRAME_NS_P (XFRAME ((w)->frame)) #define WINDOW_WIN_P(w) FRAME_WIN_P (XFRAME ((w)->frame)) /* XEmacs window size and positioning macros. */ #define WINDOW_TOP(w) ((w)->pixel_top) #define WINDOW_TEXT_TOP(w) (WINDOW_TOP (w) + window_top_gutter_height (w)) #define WINDOW_TEXT_TOP_CLIP(w) ((w)->top_yoffset) #define WINDOW_BOTTOM(w) ((w)->pixel_top + (w)->pixel_height) #define WINDOW_TEXT_BOTTOM(w) (WINDOW_BOTTOM (w) - window_bottom_gutter_height (w)) #define WINDOW_LEFT(w) ((w)->pixel_left) #define WINDOW_TEXT_LEFT(w) (WINDOW_LEFT (w) + window_left_gutter_width (w, 0)) #define WINDOW_MODELINE_LEFT(w) \ (WINDOW_LEFT (w) + window_left_gutter_width (w, 1)) #define WINDOW_RIGHT(w) ((w)->pixel_left + (w)->pixel_width) #define WINDOW_TEXT_RIGHT(w) \ (WINDOW_RIGHT (w) - window_right_gutter_width (w, 0)) #define WINDOW_MODELINE_RIGHT(w) \ (WINDOW_RIGHT (w) - window_right_gutter_width (w, 1)) #define WINDOW_HEIGHT(w) ((w)->pixel_height) #define WINDOW_TEXT_HEIGHT(w) (WINDOW_TEXT_BOTTOM (w) - WINDOW_TEXT_TOP (w)) #define WINDOW_WIDTH(w) ((w)->pixel_width) #define WINDOW_TEXT_WIDTH(w) (WINDOW_TEXT_RIGHT (w) - WINDOW_TEXT_LEFT (w)) #define WINDOW_HAS_MODELINE_P(w) (!NILP (w->has_modeline_p)) #define MODELINE_OFF_SHADOW_THICKNESS_ADJUSTED(win) \ abs ((!WINDOW_HAS_MODELINE_P (win) \ ? ((XINT (win->modeline_shadow_thickness) > 1) \ ? XINT (win->modeline_shadow_thickness) - 1 \ : ((XINT (win->modeline_shadow_thickness) < -1) \ ? XINT (win->modeline_shadow_thickness) + 1 \ : XINT (win->modeline_shadow_thickness))) \ : XINT (win->modeline_shadow_thickness))) #define MODELINE_SHADOW_THICKNESS(win) \ (MODELINE_OFF_SHADOW_THICKNESS_ADJUSTED (win) > 10 \ ? 10 \ : MODELINE_OFF_SHADOW_THICKNESS_ADJUSTED (win)) #endif /* INCLUDED_window_impl_h_ */
